1. (15 points) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$
(a) Find A^{-1}
(b) Find the null space of A.
(c) Use part (a) to find a solution to

$$
\begin{gathered}
x+2 y+3 z=-1 \\
y+4 z=1 \\
5 x+6 y=-1
\end{gathered}
$$

2. $(20$ points $)$ Let $B=\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$
(a) If $v=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$, find $[v]_{B}$
(b) If $[v]_{B}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$, find v.
(c) If A is the matrix whose columns are the first two only vectors in B and let A be the matrix for a linear transformation T, find the range (T).
3. (20 points) Recall that \mathbb{P}_{2} is the space of all polynomials of degree 2 or lower. Define a linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ by the formula

$$
T\left(a t^{2}+b t+c\right)=a(2-t)^{2}+b(2-t)+c
$$

(a) Find the matrix representation M of T with respect to the basis $\left\{1, t, t^{2}\right\}$.
(b) Show that $M^{2}=I$. (Hint: This can be done even without finding T in (3a). Consider $T \circ T$.)
(c) Conclude that the only possible eigenvalues for M are ± 1. Find a linearly independent set of eigenvectors.
(d) For each \mathbf{x} in (3c), find the corresponding $p(t) \in \mathbb{P}_{2}$ and evaluate $T(p(t))$ to see why these are called eigenfunctions.
4. (20 points) Let $\beta=\left\{1+2 x, x-x^{2}, x+x^{2}\right\}$
(a) Show β is a basis for P_{2}.
(b) Let $T: P_{2} \rightarrow P_{2}$ defined by $T\left(a x^{2}+b x+c\right)=2 a x+b$ (that is the differential operator). Is T a linear transformation? Justify your answer. (Note, I have defined this transformation into P_{2}.
(c) Find the matrix of the linear transformation.
(d) Find $P_{(\alpha \leftarrow \beta)}$ where α is the standard basis for P_{2}. Recall that

$$
[x]_{\alpha}=P_{(\alpha \leftarrow \beta)}[x]_{\beta}
$$

5. (10 points) Pick one of the following to prove below:
(a) $\operatorname{Nul}(A)=\operatorname{Nul}\left(A^{T} A\right)$
(b) Let M_{22} be the vector space of all 2×2 matrices, and define $T: M_{22} \rightarrow M_{22}$ by $T(A)=A+A^{T}$. Prove that T is a linear transformation.
(c) Let A be an $n \times n$-matrix and let $W=\left\{v \in R^{n} \mid A v=\lambda v\right\}$. Show that W is a subspace of R^{n}.
6. (20 points)
(a) Find an orthogonal basis for $\mathrm{Col}\left[\begin{array}{cc}1 & 2 \\ -1 & 7 \\ 1 & 2\end{array}\right]$.
(It need not be orthonormal.)
(b) For $W=\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 7 \\ 2\end{array}\right]\right\}$, find W^{\perp}

True or False

7. (2 points each) No partial credit given. No work need be shown.
(a)__Two vectors are linearly independent if one is not a scalar multiple of the other.
(b) ___If A is diagonalizable, then there is a basis of eigenvectors of A.
(c) ___If A does not have n distinct eigenvalues, then A is not diagonalizable
(d) ___ It is possible for the system $A x=0$ to have no real solution.
(e) ___In the end, the only thing that matters is $\ldots A x=b$.

Bonus: Tell me a joke. In order to receive any credit, it must make me grin.

