(1) (Pre-calculus Review Set Problems 80 and 124.)
(a) Determine if each of the following statements is True or False. If it is true, explain why. If it is false, give a counterexample.
(i) If a and b are real numbers and $2 a^{5} b^{7}=3 a b$, then $2 a^{4} b^{6}=3$.
(ii) When solving $x^{2}(x-2)^{3}=(x-2)^{3}$, we get $x^{2}=1$, so the solutions are $x_{1}=1, x_{2}=-1$.
(b) Simplify and write the following expression without negative exponents. Show your work.

$$
\frac{6^{-1} r^{-3} r^{2}}{r^{5}}
$$

(2) Find the derivatives of the given functions. You must show your work. But you do not have to simplify your answers.
(a) $z(t)=\sqrt{t}\left(t^{2}+t+5\right)$
(b) $h(x)=\left(5 x^{2}-\frac{x^{2}}{\sqrt{x+1}}\right)^{7}$
(c) (6 points) Find $d y / d x$ implicitly: $e^{x^{2} y}=x+y$
(3) (a) (9 points) The graph below is the derivative of a function $f(x), f^{\prime}(x)$. Answer each of the following questions. You do not need to explain.

(i) $f(x)$ is increasing on the interval(s) \qquad
(If you are not sure about the coordinates of the end points, an estimate will do.)
(ii) $f(x)$ is concave up on the interval(s) \qquad
(iii) The function $f(x)$ achieves its absolute maximum value on the interval $[-4,4]$ at $x=$ \qquad
(b) (6 points) Write a parameterization for the line segment from $(2,-5)$ and $(-1,3)$.
(c) (6 points) Consider the function: $f(x)=\left\{\begin{array}{cc}|x-1|, & 0 \leq x \leq 2 \\ 3-x, & 2<x \leq 4\end{array}\right.$.
(i) Sketch the graph of $f(x)$. Please label clearly the value of f at $x=0,1,2,3$, and 4.
(ii) Find the average value of $f(x)$ on the interval $[0,4]$.
(d) (6 points) Find the equation of the tangent line (in the form of $y=m x+b$) at the point $(2,1)$ to the curve defined by the parametric equations

$$
x=2 t, \quad y=t^{3} .
$$

(4) Find each of the following limits when it exists, write DNE otherwise. Show your work.
(a) $\lim _{x \rightarrow \infty} \frac{13+2 x-4 x^{4}+3 x^{4}}{2 x-5 x^{2}-5 x^{4}}$
(b) $\lim _{x \rightarrow a^{+}} \frac{x-a}{\sqrt{x^{2}-a^{2}}}$, where $a>0$.
(c) $\lim _{x \rightarrow \infty} \frac{(\ln (x))^{2}}{x^{2}}$
(5) Consider $f(x)=x e^{-2 x^{2}}$. Answer each of the following questions. You must show all work.
(a) Find $f^{\prime}(x)$ and all critical point(s) of $f(x)$.
(b) Determine the interval(s) where $f(x)$ is increasing and decreasing. State the x coordinate(s) of the point(s) where f achieves it local maximum or/and local minimum.
(c) Find $f^{\prime \prime}(x)$ and all inflection point(s) of $f(x)$.
(6) The figure below shows the curve $y=\sqrt{x}$, and a rectangle with its upper-left corner on the curve, its sides parallel to the axes, its left end at $x=a$, and its right end at $x=b$. Let b be fixed as $b=20$. Find the value of a such that the rectangle has the maximum possible area. What is that maximum possible area? Show your work and give exact values.

Useful formulas

- The derivative of a function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Some rules of differentiation

$$
\begin{aligned}
\frac{d}{d x}(c f(x)) & =c f^{\prime}(x) \\
\frac{d}{d x}(f(x) g(x)) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \\
\frac{d}{d x} f(g(x)) & =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

- Differentiation formulas

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	$\frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x}$
$\frac{d}{d x}(\ln x)=\frac{1}{x}$	$\frac{d}{d x}(\sin (x))=\cos x$	$\frac{d}{d x}(\cos (x))=-\sin x$
	$\frac{d}{d x}(\tan (x))=\sec ^{2} x$	$\frac{d}{d x}(\cot (x))=-\csc ^{2} x$
	$\frac{d}{d x}(\sec (x))=\sec x \tan x$	$\frac{d}{d x}(\csc (x))=-\csc x \cot x$
$\frac{d}{d x}(\arcsin (x))=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}(\arccos (x))=\frac{-1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}(\arctan (x))=\frac{1}{1+x^{2}}$
$\frac{d}{d x}(\sinh (x))=\cosh (x)$	$\frac{d}{d x}(\cosh (x))=\sinh (x)$	$\frac{d}{d x}(\tanh (x))=\frac{1}{\cosh ^{2}(x)}$

- The linear approximation of a function f at a is given by

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

- Derivative of the inverse function If f is a one-to-one differentiable function with inverse function f^{-1} and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function of f is differentiable at a and

$$
\frac{d}{d x}\left(f^{-1}(a)\right)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)} .
$$

- Parametric Equations for a straight line: An object moving along a line through the point $\left(x_{0}, y_{0}\right)$, with $d x / d t=a$ and $d y / d t=b$ has parametric equations

$$
x=x_{0}+a t, \quad y=y_{0}+b t .
$$

The slope of the line is $m=b / a$.

- The instantaneous speed of a moving object is defined to be

$$
v=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

The quantity $v_{x}=d x / d t$ is the instantaneous velocity in the x-direction; $v_{y}=d y / d t$ is the instantaneous velocity in the y-direction. The velocity vector \vec{v} is written $\vec{v}=$ $v_{x} \vec{i}+v_{y} \vec{j}$.

- For parametric curves,

$$
\text { Slope of curve }=\frac{d y}{d x}=\frac{d y / d t}{d x / d t} ; \quad \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

- Fundamental Theorem of Calculus: If f is continuous on the interval $[a, b]$ and $f(t)=F^{\prime}(t)$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

- The average value of a function f on an interval $[a, b]$ is equal to $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
- Comparison of Definite Integrals: If f is continuous and $m \leq f(x) \leq M$
for $a \leq x \leq b$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.

- Basic integration formulas:

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C,(n \neq-1)$
2. $\int e^{x} d x=e^{x}+C$
3. $\int \sin (x) d x=-\cos (x)+C$
4. $\int \sec ^{2}(x) d x=\tan (x)+C$
5. $\int \sec (x) \tan (x) d x=\sec (x)+C$
6. $\int \frac{1}{x^{2}+1} d x=\tan ^{-1}(x)+C$
7. $\int \frac{1}{x} d x=\ln |x|+C$
8. $\int a^{x} d x=\frac{a^{x}}{\ln (a)}+C$

6 . $\int \cos (x) d x=\sin (x)+C$
8. $\int \csc ^{2}(x) d x=-\cot (x)+C$
10. $\int \csc (x) \cot (x) d x=-\csc (x)+C$
12. $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x)+C$

