COMPUTING IN FINANCE
Courant Institute of Mathematical Sciences
Masters of Finance in Mathematics Program

Instructors:
Kishor Laud Email: kishorlaud@gmail.com
Lee Maclin Email: LeeMaclin@gmail.com

Teaching Assistant:
TBD Email:

Meeting: Thursdays, 7:10 pm
Office Hours: WWH Room 518, 6-7 pm before class on Thursdays or by appointment.

Course Synopsis:
This course will introduce students to the software development process, including applications in financial asset trading, research, hedging, portfolio management, and risk management. Students will use the C++ programming language to develop object-oriented software, and will focus on the most broadly important elements of programming - superior design, effective problem solving, and the proper use of data structures and algorithms. Students will work with market and historical data to run simulations and test strategies. The course is designed to give students a feel for the practical considerations of software development and deployment. Several key technologies and recent innovations in financial computing will be presented and discussed.

Course Topics:
The following is a rough outline of the course and the topics we expect to cover. The order of the individual lectures and the subject matter is subject to change depending on the schedules of the instructors. Most topics will be accompanied by programming exercises and assignments.

Software Development Fundamentals
- Algorithms and Data Structures: Fundamentals
- Object Oriented Design Principles
- Quick Tour of C++
- Software Engineering paradigms
- Design Patterns for Financial Applications
- Parallel Computing and GRID technologies
- Electronic Markets and Algorithmic Trading
- Options Market Making Systems
- Working With Historical Time Series Data

Framework for Pricing Derivatives
- Designing Software for Pricing Derivatives
- Typical Process for Model Development
- Implementation: Testing, Validation. Tips/Traps
- Compute Engines for Trees and PDE
- Monte Carlo simulation
- Efficiency and Performance Tuning
- Extending your design for new structures and products
- Constructing a Yield Curve, Pricing U.S. Treasury Bonds & Swaps
- Constructing a Volatility Curve
- Pricing Index Options & Variance Swaps

Framework for working with high frequency data
- Introduction to patterns
- Problems of the traditional relational model & Sequential databases
- DBManager / DBReader sequential database framework
Fundamental data structures for analyzing historical returns data
 Statistical trading and historical data
 Fixed fractional betting and optimal-f
 Analysis tools using fundamental data structures: Maps and linked lists
 Analyzing historical data using hist and dist utilities

Simulating the Sharpe ratios of risk-positive traders
 Object oriented simulation design
 The effect of risk-bias on the distribution of traders’ Sharpe ratios
 Survivorship bias
 The evolution of trader risk preferences: How does a mean-variance framework reward risk-positive traders?

Writing a futures trend-following simulation
 Mean-variance definition of trend-following
 Similarities between returns of trend-following and options-buying
 Design of a futures trend-following simulation:
 Positions Keeper, Strategy, Instrument, Portfolio, Capital allocation

Genetic algorithms
 Modern heuristics
 Genetic algorithms
 Tournament selection versus roulette selection
 Problem representation for constrained optimization problems

Execution optimization using genetic algorithms
 What is slippage?
 Temporary and permanent market impacts
 Risk and alpha
 Brief overview of the Chriss - Almgren framework
 Information leakage
 Execution optimization problem representation for genetic optimization