The problems concern the linear regression model

\[y = X\beta + u \]

where \(y \) is the \(n \)-vector of observations on the dependent variable, \(X \) is the \(n \times k \) matrix of observations on the explanatory variables, \(\beta \) is a \(k \)-vector of unknown parameters, and \(u \) is the \(n \)-vector of unobserved disturbances. Let \(\hat{\beta} \) denote the ordinary least squares (OLS) estimate of \(\beta \), let \(\hat{y} = X\hat{\beta} \) denote the vector of fitted values, and let \(e = y - \hat{y} \) denote the vector of residuals. Let \(y_i, u_i \) and \(e_i \) denote the \(i \)th elements of \(y, u \) and \(e \) respectively, let \(x_i \) denote the \(i \)th row of \(X \), and let \(x_{ij} \) denote the element of \(X \) in the \(i \)th row and \(j \)th column.

1. Let \(F \) be the F-statistic for testing the null hypothesis that \(\beta = 0 \).
 (a) Show that
 \[F = \frac{\hat{y}'\hat{y}}{e'e} \cdot \frac{n-k}{k} \]
 (b) If all the variables in the model have been “centered” to have mean zero, and there is no intercept (i.e. the matrix of explanatory variables does not have a column of ones), then the coefficient of determination \(R^2 \) is defined by
 \[R^2 = \frac{\hat{y}'\hat{y}}{y'y}. \]
 (See Subsection 6.6 of the Notes.) Show in this case that
 \[F = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k} \]

2. An alternative to OLS that was occasionally used in the past is the “least absolute residuals” (LAR) estimator. The estimate \(\hat{\beta} \) is defined as the solution to

\[\min_{\beta} \sum_{i=1}^{n} |y_i - x_i\beta|. \]
(a) Show that \(\hat{\beta} \) is the ML estimate if the disturbances \(u_i \) are i.i.d. with density

\[
f(t) = \frac{1}{2\theta} \exp\left\{ -\frac{|t|}{\theta} \right\} \quad \text{for } -\infty < t < \infty
\]

conditional on \(X \). (Here the scale parameter \(\theta \) must be positive.) What is the ML estimate \(\hat{\theta} \) for \(\theta \)?

(b) If \(y \) is replaced by \(y + X\alpha \) for some \(k \)-vector \(\alpha \), and \(X \) is replaced by \(XG \) for some non-singular \(k \times k \) matrix \(G \), show that the LAR estimate changes from \(\hat{\beta} \) to

\[
\hat{\beta}_{\text{new}} = G^{-1}(\hat{\beta} + \alpha).
\]

[Note: Equation 83 on page 44 of the Notes shows that OLS also has this property.]

3. This exercise leads you through a simple approach for dealing with heteroskedasticity. Access the data for this problem by clicking on “Data for problem 3 in Problem Set 7” on the course web page. The data set has 45 rows and 3 columns. The first column is \(y \). Columns 2 and 3 of the data set are columns 2 and 3 of \(X \). The first column of \(X \) is a vector of ones. Thus, \(n = 45 \) and \(k = 3 \).

(a) Compute the OLS coefficient vector \(b \) and the vector \(e \) of residuals. Examine scatter-plots of the residuals versus the second and third columns of \(X \). The plot versus the second column of \(X \) is noteworthy: It appears that the variance of the residual is larger for larger values of that explanatory variable. Let \(\sigma_i^2 \) denote the variance of the ith disturbance \(u_i \), and suppose \(\sigma_i^2 \) is related to \(x_{i2} \) by

\[
\sigma_i^2 = \alpha_1 + \alpha_2 x_{i2}^2
\]

where \(\alpha_1 \) and \(\alpha_2 \) are unknown parameters. (This is a simple special case of the general formulation on page 54 of the Notes.) Since \(\mathcal{E}(u_i^2|X) = \sigma_i^2 \) we can write

\[
u_i^2 = \alpha_1 + \alpha_2 x_{i2}^2 + v_i
\]

where \(\mathcal{E}(v_i|X) = 0 \). The disturbances are unobserved, but we can use \(e_i \) as a proxy for \(u_i \).
(b) Compute the least-squares coefficients $\hat{\alpha}_1$ and $\hat{\alpha}_2$ for the regression
\[e_i^2 = \alpha_1 + \alpha_2 x_i^2 + v_i \quad i = 1, \ldots, n. \]
Set $\sigma_i^2 = \hat{\alpha}_1 + \hat{\alpha}_2 x_i^2$ for each i. Find an $n \times n$ matrix P such that the transformed vector of disturbances $\tilde{u} = Pu$ has covariance matrix proportional to the identity matrix. Compute $\tilde{y} = Py$ and $\tilde{X} = PX$, and for the rest of this problem set regard \tilde{y} and \tilde{X} as the data.

(c) Compute the GLS estimate $\hat{\beta} = \left(\tilde{X}^t \tilde{X} \right)^{-1} \tilde{X}^t \tilde{y}$ and the estimated standard error $\hat{\sigma}$ of the components of the vector \tilde{u} of disturbances. Also compute the estimated standard errors of the components of $\hat{\beta}$, and the t-statistics for the components of $\hat{\beta}$. Which coefficients are “significant” at the 1% level?

(d) We wish to test the null hypothesis that β satisfies the following two conditions:
\[2.5 \beta_2 = 2 \beta_3 + 4.5 \]
\[\beta_3 = -0.8 \]
Find a matrix R and a vector r such that the null hypothesis can be expressed as $R\beta = r$. Assuming that the disturbances are normally distributed, compute the F-statistic for testing the null hypothesis. Can you reject the null hypothesis at the 5% level of significance? What about at the 1% level of significance?