Problem Set 5

G63.2707 Fall 2002
Modern Statistical Inference And Econometrics Due October 21

Typographical errors in the Notes: About two-thirds of the way down on page 49, the phrase “unbiased estimator s^2 for σ” should be replaced by “unbiased estimator σ^2 for σ^2.” Also, in formula 95 on page 50, $\hat{\sigma}$ should be replaced by s. Finally, in the bottom line on page 70, $\hat{\sigma}$ should be replaced by s.

The problems concern the classical linear regression model

$$y = X\beta + u$$

where y is the n-vector of observations on the dependent variable, X is the $n \times k$ matrix of observations on the explanatory variables, β is a k-vector of unknown parameters, and u is the n-vector of unobserved disturbances. We assume that conditional on X, u has mean 0 and covariance matrix $\sigma^2 I$. The ordinary least squares (OLS) estimate of β is $b = (X^t X)^{-1} X^t y$ and the vector of residuals is $e = y - Xb$. An unbiased estimate of σ^2 is $s^2 = e^t e / (n - k)$. The symmetric idempotent matrix $H = X(X^t X)^{-1} X^t$ is called the “hat matrix.” Its ith diagonal element is denoted h_{ii}. Let y_i, u_i and e_i denote the ith elements of y, u and e respectively, and let x_{ij} denote the element of X in the ith row and jth column.

1. Suppose that the columns of the matrix X of explanatory variables are orthogonal, meaning

$$\sum_{i=1}^{n} x_{ij} x_{im} = 0 \quad \text{if } j \neq m.$$

Find simple expressions (not involving matrices) for the components of the OLS coefficient vector b in this case.

2. In this problem you will show that $\max_i h_{ii} \to 0$ as $n \to \infty$ in a simple regression ($k = 2$) with a linear time trend. The model is

$$y_i = \beta_1 + \beta_2 x_{i2} + u_i \quad i = 1, \ldots, n$$
where \(x_{i2} = i \) so that the \(n \times 2 \) matrix of explanatory variables is

\[
\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 3 \\
\vdots & \vdots \\
1 & n \\
\end{bmatrix}
\]

For computational simplicity, assume \(n \) is odd.

(a) By subtracting \((n + 1)/2 \) times the first column from the second column, the matrix of explanatory variables becomes

\[
X = \begin{bmatrix}
1 & -(n - 1)/2 \\
\vdots & \vdots \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
\vdots & \vdots \\
1 & (n - 1)/2 \\
\end{bmatrix}
\]

Explain why this transformation leaves the hat matrix \(H \) unchanged.

(b) Find \(X^tX \) and \((X^tX)^{-1} \). [Note: The fact that

\[
1^2 + 2^2 + \ldots + \left(\frac{n - 1}{2} \right)^2 = \frac{n(n - 1)(n + 1)}{24}
\]

is helpful.]

(c) Show that \(\max_i h_{ii} \to 0 \) as \(n \to \infty \).

3. Access the data for this problem by clicking on “Data for problem 3 in Problem Set 5” on the course web page. The data set has 40 rows and 3 columns. The first column is \(y \). Columns 2 and 3 of the data set are columns 2 and 3 of \(X \). The first column of \(X \) is a vector of ones. Thus, \(n = 40 \) and \(k = 3 \).

The purpose of this computational exercise is to familiarize you with symptoms of non-linearities.

(a) Find \(b \), and compute the vector \(e \) of residuals.
(b) Examine a scatter-plot of the residuals versus the third column of X. [Note: In MATLAB, the command `plotmatrix` works well.] Does the expectation of the residual appear to be related to the level of this explanatory variable? If so, what is the apparent relationship?

(c) Expand the model to

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i3}^2 + u_i \quad i = 1, \ldots, n$$

by adding a fourth column to the X matrix, with $x_{i4} = x_{i3}^2$ for all i. For this model, find b (which is now a 4-vector) and s. Also compute the estimated standard errors of the components of b (the square roots of the diagonal elements of $s^2(X^tX)^{-1}$). Examine plots of residuals versus the explanatory variables. Is there still clear visual evidence of misspecification?