Problem Set 1

G63.2707 Fall 2002
Modern Statistical Inference And Econometrics Due September 23

For problems 1 through 4, find the maximum likelihood (ML) estimate \(\hat{\theta} \) for the parameter \(\theta \) given observations \(x_1, \ldots, x_n \) on i.i.d. random variables with the indicated distribution on the indicated subset of \(\mathbb{R} \).

1. The distribution with mass function
 \[
 p(x|\theta) = \frac{e^{-\theta} \theta^x}{x!} \quad \text{for } x = 0, 1, 2, \ldots
 \]
 The parameter \(\theta \) must be positive. Assume that not all the \(x_i \) are zero.

2. The distribution with density function
 \[
 f(x|\theta) = (1 + \theta)x^\theta \quad \text{for } 0 < x < 1.
 \]
 The parameter \(\theta \) must be \(> -1 \).

3. The distribution with density function
 \[
 f(x|\theta) = \frac{1}{2}\theta^3x^2e^{-\theta x} \quad \text{for } x > 0.
 \]
 The parameter \(\theta \) must be positive.

4. The distribution with density function
 \[
 f(x|\theta) = \frac{1}{2}e^{-|x-\theta|} \quad \text{for } -\infty < x < \infty.
 \]

5. Suppose \(x_1, \ldots, x_n \) are a random sample from a Cauchy distribution, having density
 \[
 f(x|\theta, \omega) = \frac{1}{\pi \omega} \cdot \frac{1}{1 + (\frac{x-\theta}{\omega})^2} \quad \text{for } -\infty < x < \infty.
 \]
 Here \(\theta \) can be any real number, but \(\omega \) must be positive.

 (a) Find the logarithm of the likelihood function \(L \) for the parameters \(\theta \) and \(\omega \).
(b) Differentiate log \(L \) with respect to \(\theta \) and \(\omega \) to find the first-order conditions satisfied by the ML estimates \(\hat{\theta} \) and \(\hat{\omega} \).

(c) Suppose the actual data are these twenty observations:

\[
\begin{array}{ccccccc}
282.6 & 313.9 & 297.8 & 288.1 & 92.2 \\
289.5 & 284.6 & 276.6 & 287.0 & 286.5 \\
280.4 & 268.0 & 295.2 & 296.5 & 292.3 \\
303.6 & 280.1 & 261.6 & 280.2 & 317.9 \\
\end{array}
\]

[Note: For those who prefer to copy and paste rather than retype, these data are also in a text file that you can access by clicking “Data for problem 5(c) in Problem Set 1” on the course web page.] By maximizing log \(L \) directly (or by finding solutions to the first-order conditions if you prefer), find \(\hat{\theta} \) and \(\hat{\omega} \).

6. (Non-parametric maximum likelihood.) Let \(x_1, \ldots, x_n \) be observations on i.i.d. random variables having some unknown distribution \(F \) on \(\mathbb{R}^m \). For simplicity, assume that the observations are distinct; i.e. \(x_i \neq x_j \) if \(i \neq j \). Except for the observed data, absolutely nothing is known or assumed about \(F \). Show that the ML estimate \(\hat{F} \) for \(F \) is the discrete distribution that has mass \(1/n \) at each \(x_i \). [Note: This discrete distribution is called the empirical distribution, denoted by \(F_n \).]

7. This exercise asks you to carry out a simple simulation to compare the sampling distributions of the mean and the median, for (pseudo-) random samples of size \(n = 15 \) generated from a normal distribution. Let \(J \), the number of “trials” of the simulation, equal 10,000. For \(j = 1, \ldots, J \), generate random numbers \(x_1^{(j)}, \ldots, x_{15}^{(j)} \) from the standard normal distribution \(N(0, 1) \), and compute the mean \(\bar{x}_j \) and the median \(m_j \). Finally, compute and compare

\[
SD_{\text{mean}} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} \bar{x}_j^2}
\]

and

\[
SD_{\text{median}} = \sqrt{\frac{1}{J} \sum_{j=1}^{J} m_j^2}
\]

What does the comparison suggest about the desirability of the sample mean relative to the median, as a way to estimate the center of a normal distribution?
8. This exercise applies an alternative to ML, called the *method of moments*, to the estimation of the parameter θ in problem 2.

(a) For the density $f(x|\theta) = (1 + \theta)x^\theta$ on the set $0 < x < 1$, find the expected value of x as a function of the parameter θ. Denote this expected value by $\mu(\theta)$.

(b) The method-of-moments estimator $\tilde{\theta}$ is defined as the solution to

$$
\mu(\tilde{\theta}) = \bar{x}
$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. In other words, we "set the population moment equal to the sample moment." Solve for $\tilde{\theta}$ (as a function of \bar{x}). Notice that $\tilde{\theta}$ differs from the ML estimate $\hat{\theta}$.
