1) Give a probabilistic interpretation for the solution of each PDE. (You must justify your answer to receive full credit.)

(a) \(u_t + f(x)u_x + \frac{1}{2}g^2(x)u_{xx} = 0 \) for \(t < T \) and \(x \in \mathbb{R} \), with final-time condition \(u(x, T) = \phi(x) \).

(b) \(f(x)u_x + \frac{1}{2}g^2(x)u_{xx} = -1 \) on the interval \(a < x < b \), with \(u = 0 \) at the boundary points \(x = a, b \).

2) This problem concerns the explicit solution formulas for the linear heat equation in a half-space and a bounded interval.

(a) The solution of
\[
 u_t = u_{xx} \quad \text{for} \quad t > 0 \quad \text{and} \quad x > 1, \quad \text{with} \quad u = (x-1)^3 \quad \text{at} \quad t = 0 \quad \text{and} \quad u = 0 \quad \text{at} \quad x = 1
\]
can be expressed as
\[
 u(x, t) = \frac{1}{\sqrt{4\pi t}} \int e^{-|x-y|^2/4t} \phi(y) \, dy.
\]
What is \(\phi(y) \)?

(b) The solution of
\[
 u_t = u_{xx} \quad \text{for} \quad t > 0 \quad \text{and} \quad 0 < x < 1, \quad \text{with} \quad u = g(x) \quad \text{at} \quad t = 0 \quad \text{and} \quad u = 0 \quad \text{at} \quad x = 0, 1
\]
can be expressed as
\[
 u(x, t) = \sum_{n=1}^{\infty} a_n(t) \sin(n\pi x).
\]
Find \(a_n(t) \) in terms of \(g \).

3) This problem concerns the arrival time at the boundary, for a random walker solving \(dy = f dt + gw \) on the interval \([a, b]\).

(a) Let \(G(x, y, t) \) be the probability, starting from \(x \) at time 0, of being at \(y \) at time \(t \) without having yet hit the boundary. What version of the forward Kolmogorov equation does \(G \) solve?

(b) Express, as an integral involving \(G_t \), the “first passage time density to the boundary,” i.e. the probability that the process, starting from \(a < x < b \), first hits the boundary at time \(t \).

(c) Using your answers to (a) and (b) and some further manipulation, show that
\[
 \text{first passage time density to the boundary} = -\frac{1}{2} \frac{\partial}{\partial y} (g^2 G(x, y, t)) \bigg|_{y=b} + \frac{1}{2} \frac{\partial}{\partial y} (g^2 G(x, y, t)) \bigg|_{y=a}.
\]

4) Consider the following version of the Merton asset allocation problem:

- There is a risk-free asset, whose price satisfies \(dp_1 = rp_1 ds \).

- There are two risky assets, whose prices \(p_2 \) and \(p_3 \) satisfy \(dp_i = \mu_i p_i ds + \sigma_i p_i dw_i \) for \(i = 2, 3 \). We assume for simplicity that \(w_2 \) and \(w_3 \) are independent Brownian motions.

- Your controls are \(\alpha_i(s) = \) the fraction of your wealth invested in asset \(i \) at time \(s \), \(i = 1, 2, 3 \); note that \(\alpha_1 + \alpha_2 + \alpha_3 = 1 \).

- There is no consumption, and your goal is to optimize your expected utility of wealth at a predetermined time \(T \). Your utility function is \(h \).
Answer the following:

(a) What stochastic differential equation describes the evolution of your total wealth?
(b) Define an appropriate value function \(u(x,t) \).
(c) Specify the Hamilton-Jacobi-Bellman equation and final-time condition \(u \) should satisfy.
(d) How does the value function determine the optimal asset allocations \(\alpha_i \)?

5) In pricing a perpetual American put, we considered an underlying satisfying \(dy = \mu y ds + \sigma y dw \) and the goal was to evaluate \(\max_{\tau} E_{y(0) = x} \left[e^{-\tau r} (K - y(\tau))_+ \right] \). Show that if \(v \) is a differentiable function with \(v \geq (K - x)_+ \) and \(-rv + \mu vx + \frac{1}{2}\sigma^2 x^2 v_{xx} \leq 0 \) for all \(x \) then \(v \) gives an upper bound:

\[
E_{y(0) = x} \left[e^{-\tau r} (K - y(\tau))_+ \right] \leq v(x)
\]

for any bounded, nonanticipating stopping time \(\tau \).

6) This is a variant of the Bertsimas-Kogan-Lo least-squares-replication problem considered in Section 7. It differs from the version in the notes in two ways: (i) the underlying has stochastic volatility; and (ii) the goal is not least-square replication but rather maximizing the utility of final-time wealth.

The underlying is a stock which can be traded at discrete times \(i\Delta t \). Its price \(P_i \) and volatility \(\sigma_i \) at the \(i \)th time satisfy

\[
\sigma_{i+1} = \sigma_i + f(\sigma_i)\Delta t + g(\sigma_i)\phi_i \sqrt{\Delta t} \\
P_{i+1} = P_i + \sigma_i P_i \psi_i \sqrt{\Delta t}
\]

where \(f \) and \(g \) are specified functions and \(\psi_i, \phi_i \) are independent standard Gaussians (with mean 0 and variance 1).

You have sold an option on this stock with payoff \(F(P_N) \), receiving cash \(V_0 \) in payment. Your goal is to invest this cash wisely, trading in a self-financing way, to maximize the expected utility of your final-time wealth \(E[h(V_N - F(P_N))] \). Here \(h \) is your utility.

(a) Set this up as a discrete-time optimal control problem. What are the state variables? What is the control? Define an appropriate value function (call it \(J_i \)) at time \(i\Delta t \). Be sure to specify the arguments of \(J_i \), i.e. the variables it depends on.
(b) What is the value of \(J_N \)?
(c) Give a recursion relation that specifies \(J_i \) in terms of \(J_{i+1} \) for \(i < N \).

7) Consider scaled Brownian motion with jumps: \(dy = \sigma dw + J dN \), starting at \(y(0) = x \). Assume the jump occurrences are Poisson with rate \(\lambda \), and the jumps have mean 0 and variance \(\delta^2 \).

(a) Find \(E[y^2(T)] \). (Hint: for a Poisson process with rate \(\lambda \), the expected number of arrivals by time \(T \) is \(\lambda T \).)
(b) What backward Kolmogorov equation does part (a) solve?