The general one-period market model. The binomial and trinomial (single-period) models are special cases of a more general theory, which we now present. Main purposes of this discussion:

- deeper understanding of risk-neutral probabilities;
- more careful treatment of the “principle of no arbitrage”;
- preparation for the Arbitrage Pricing Theory view of CAPM, and more generally for factor models.

This material is standard, but I don’t know a good elementary source. Advanced sources include Chapter 2 of J. Ingersoll, “Theory of financial decision making,” Rowman and Littlefield, 1987; and Chapter 1 of D. Duffie, “Dynamic asset pricing theory”, Princeton University Press, 1996.

In considering one-period models with few assets and many states, we are close to the issue of portfolio analysis: which of the many possible portfolios should an investor hold? We’ll address that issue soon, in the discussion of CAPM. In concentrating on the one-period case we miss an important dynamic aspect of investing – the ability to change asset allocations as time evolves. The final sections of Luenberger’s book give an elementary but informative discussion of how things look a bit different when viewed dynamically.

The general one-period market has

- \(N \) securities, \(i = 1, \ldots, N \)
- \(M \) final states, \(\alpha = 1, \ldots, M \)
- fixed initial values: one unit of security \(i \) is worth \(p_i \) dollars
- state-dependent final values: if the final state is \(\alpha \) then one unit of security \(i \) is worth \(D_{i\alpha} \).

An investor can hold any portfolio \(\theta_i \) units of security \(i \). It has initial value \(\langle p, \theta \rangle = \sum p_i \theta_i \). If the final state is \(\alpha \) then its final value is \(\langle \theta, D_{i\alpha} \rangle = \sum \theta_i D_{i\alpha} \).

Examples:

Binomial model: \(p = (e^{-rT}, s_1), \quad D = \begin{pmatrix} 1 & 1 \\ s_2 & s_3 \end{pmatrix} \)

Trinomial model: \(p = (e^{-rT}, s_1), \quad D = \begin{pmatrix} 1 & 1 & 1 \\ s_2 & s_3 & s_4 \end{pmatrix} \)
In general, if security 1 is a riskless bond then

\[p = (e^{-rT}, p_2, \ldots, p_N), \quad D = \begin{pmatrix} 1 & \cdots & 1 \\ D_{21} & \cdots & D_{2M} \\ \vdots & \ddots & \vdots \\ D_{N1} & \cdots & D_{NM} \end{pmatrix} \]

Here’s a careful statement of the **Principle of no arbitrage**:

(a) \(\sum_i \theta_i D_{i\alpha} \geq 0 \) for all \(\alpha \) \(\implies \sum_i \theta_i p_i \geq 0 \)

(b) when the conclusion of (a) holds with \(= \) then the hypothesis must also have \(= \) for every \(\alpha \).

These capture with precision the informal statements that (a) a portfolio with nonnegative payoff has nonnegative value; and (b) a portfolio with nonnegative and sometimes positive payoff has strictly positive value.

The key result relating risk-neutral probabilities to lack of arbitrage is this:

Theorem: The economy satisfies (a) iff there exist \(\pi_\alpha \geq 0 \) such that

\[\sum_\alpha D_{i\alpha} \pi_\alpha = p_i, \quad i = 1, \ldots, N. \]

It satisfies both (a) and (b) if in addition the \(\pi_\alpha \) can be chosen to be all strictly positive.

The theorem is trivial in one direction: assuming the existence of \(\pi_\alpha \) we can easily prove the absence of arbitrage. In fact, for any portfolio \(\theta_i \) we have

\[\sum_i \theta_i D_{i\alpha} \geq 0 \text{ for all } \alpha \implies \sum_{i,\alpha} \theta_i D_{i\alpha} \pi_\alpha \geq 0 \]

\[\implies \sum_i \theta_i p_i \geq 0 \]

since \(\pi_\alpha \geq 0 \). If \(\pi_\alpha > 0 \) for each \(\alpha \) then the conclusion can hold with \(= \) only if each hypothesis holds with \(= \) rather than \(\geq \).

We now show that property (a) implies existence of \(\pi_\alpha \geq 0 \). A proof can be given using the min/max version of duality we used for the trinomial model. However I think it’s more convincing to use the following result. Its proper name is Farkas’ Lemma, but I think of it as the Fundamental Lemma of Linear Programming. (See e.g. V. Chvatal, *Linear Programming*, W.H. Freeman 1983, pg. 248, for this and related results).

Fundamental Lemma of Linear Programming: If a collection of linear inequalities implies another linear inequality then it does so “trivially,” i.e. the conclusion is a (non-negative) linear combination of the hypotheses.
Now, property (a) says that the collection of linear inequalities \(\sum_i \theta_i D_{i\alpha} \geq 0 \) for \(\alpha = 1, \ldots, M \) implies another linear inequality \(\sum_i \theta_i p_i \geq 0 \). By the Fundamental Lemma of Linear Programming this occurs only if there is a “trivial” proof, i.e. if there exists \(\pi_\alpha \geq 0 \) such that \(\sum \theta_i p_i = \sum_{i, \alpha} \theta_i D_{i\alpha} \pi_\alpha \) for all \(\theta_i \). But that means \(\sum D_{i\alpha} \pi_\alpha = p_i \).

Our final task is to show that if the economy satisfies both (a) and (b) then we can take \(\pi_\alpha > 0 \) for all \(\alpha \). If the \(\pi_\alpha \) already identified are all positive then we’re done. If not, then renumbering states if necessary we may suppose \(\pi_1, \ldots, \pi_{M'} > 0 \) and \(\pi_{M'+1} = \ldots = \pi_M = 0 \).

Let’s concentrate for a moment on index \(M'+1 \). If \(D_{M'+1} = (D_{1M'+1}, \ldots, D_{NM'+1}) \) is a linear combination of \(D_1, \ldots, D_{M'} \) then we can easily modify \(\pi_\alpha \) to make \(\pi_{M'+1} > 0 \). In fact, suppose \(D_{M'+1} = b_1 D_1 + \ldots + b_{M'} D_{M'} \). Then

\[
p_i = \sum_{\alpha=1}^{M'} D_{i\alpha} \pi_\alpha = \epsilon D_{iM'+1} + \sum_{\alpha=1}^{M'} D_{i\alpha} (\pi_\alpha - \epsilon b_\alpha),
\]

so replacing \(\pi = (\pi_1, \ldots, \pi_{M'}, 0, \ldots, 0) \) with \((\pi_1 - \epsilon b_1, \ldots, \pi_{M'} - \epsilon b_{M'}, \epsilon, 0, \ldots, 0) \) does the trick when \(\epsilon \) is sufficiently small.

Essentially the same argument shows that if any positive combination of \(D_{M'+1}, \ldots, D_M \) lies in the span of \(D_1, \ldots, D_{M'} \) then we can modify \(\pi_\alpha \) to make additional components positive.

Applying the preceding argument finitely many times, we either arrive at a new \(\pi \) with strictly positive components, or we find ourselves in a situation (with a new value of \(M' \)) where no positive combination of \(D_{M'+1}, \ldots, D_M \) lies in the span of \(D_1, \ldots, D_{M'} \). We claim the second alternative cannot happen when the economy has property (b).

This is another application of the Fundamental Lemma of Linear Programming. Our “second alternative” is that

\[
\sum_{\alpha=M'+1}^{M} a_\alpha D_{.\alpha} = \sum_{\alpha=1}^{M'} b_\alpha D_{.\alpha}, \quad a_\alpha \geq 0 \quad \Rightarrow \quad a_\alpha = 0, \alpha = M'+1, \ldots, M.
\]

The “trivial consequences” of the hypotheses are obtained by taking linear combinations. This amounts to taking the inner product with a vector \(\theta \in \mathbb{R}^N \). Thus the trivial consequences of the hypotheses are

\[
\sum_{\alpha=M'+1}^{M} a_\alpha \langle D_{.\alpha}, \theta \rangle = \sum_{\alpha=1}^{M'} b_\alpha \langle D_{.\alpha}, \theta \rangle.
\]
For this (coupled with $a_\alpha \geq 0$) to give a trivial proof that $a_\alpha = 0$ we must have

$$
\langle D_\alpha, \theta \rangle = \sum_i \theta_i D_{i\alpha} = 0 \quad \alpha = 1, \ldots, M'
$$
$$
\langle D_\alpha, \theta \rangle = \sum_i \theta_i D_{i\alpha} > 0 \quad \alpha = M' + 1, \ldots, M.
$$

But then θ represents a portfolio with no downside, some upside, and value 0 since $\sum_i \theta_i p_i = \sum_i \sum_{\alpha=1}^{M'} \theta_i D_{i\alpha} \pi_\alpha = 0$. This contradicts our assumption that the economy admits no arbitrage.

Our last application of the Fundamental Lemma of Linear Programming can alternatively be obtained using this geometrically intuitive result from convex analysis:

Separating hyperplane theorem: Let \mathcal{C} be a closed convex cone in \mathbb{R}^N, and let \mathcal{L} be a linear subspace meeting \mathcal{C} only at the origin. Then there exists a codimension-one hyperplane \mathcal{H} containing \mathcal{L} which meets \mathcal{C} only at the origin.

In our setting the convex cone \mathcal{C} consists of positive linear combinations of $D_{M'+1}, \ldots, D_M$, and the subspace \mathcal{L} is spanned by $D_1, \ldots, D_{M'}$. The associated \mathcal{H} has the form $\{x : \langle \theta, x \rangle = 0\}$, with θ as above.

To connect this with risk-neutral probabilities, let us assume that Security 1 is a risk-less bond. Then $p_1 = e^{-rT}$ and the first row of $D_{i\alpha}$ is filled with 1’s. The statement of the theorem becomes: the market permits no arbitrage iff there exist positive π_α such that

$$
\pi_1 + \cdots + \pi_M = e^{-rT}
$$
$$
\sum_{\alpha} \pi_\alpha D_{i\alpha} = p_i, \quad i = 2, \ldots, N.
$$

Writing $\hat{\pi}_\alpha = e^{rT} \pi_\alpha$ we see that this is equivalent to the existence of positive $\hat{\pi}_\alpha$ such that

$$
\hat{\pi}_1 + \cdots + \hat{\pi}_M = 1
$$
$$
\sum_{\alpha} \hat{\pi}_\alpha D_{i\alpha} = e^{rT} p_i, \quad i = 2, \ldots, N.
$$

These $\hat{\pi}_\alpha$ are the risk-neutral probabilities.
For the trinomial market, we showed how arbitrage considerations restrict the initial value of any contingent claim f. The same max/min argument works in general, for any market in which Security 1 is a riskless bond. The conclusion is

$$\min_{\text{risk-neutral probs } \tilde{\pi}} e^{-rT} \sum_{\alpha} \tilde{\pi}_\alpha f_\alpha \leq V(f) \leq \max_{\text{risk-neutral probs } \tilde{\pi}} e^{-rT} \sum_{\alpha} \tilde{\pi}_\alpha f_\alpha.$$

We immediately see that

market completeness \Leftrightarrow arbitrage determines the value of every contingent claim

\Leftrightarrow there is a unique risk-neutral probability.

Exercises

1. Consider a forward contract on a non-dividend-paying stock, with strike price K and maturity T. Its value at time 0 is $s_0 - Ke^{-rT}$, where r is the risk-free rate (assumed constant) and s_0 is the stock price at time 0. We explained this in Section 1, using the standard “cash-and-carry” argument. Explain how that argument can be formalized using a one-period model with two assets and M states.

2. Consider the following one-period market with 3 assets and 4 states:
 - Asset 1 is a riskless bond, paying no interest.
 - Asset 2 is a stock with initial price 1 dollar/share; its possible final prices are d and u, with $d < 1 < u$.
 - Asset 3 is another stock with initial price 1 dollar/share and possible final prices d and u (same d and u).
 - To keep the arithmetic simple, let’s assume that $u = 1 + \epsilon$ and $d = 1 - \epsilon$ for some $\epsilon > 0$. To avoid confusion, let’s number the states: 1 = both stocks go up; 2 = asset 2 goes up, asset 3 goes down; 3 = asset 2 goes down, asset 3 goes up; 4 = both stocks go down.

 (a) What is the associated cash-flow matrix $D_{i\alpha}$?
 (b) Find all the risk-neutral probabilities.
 (c) Consider the contingent claim with payoff $f = (f_1, f_2, f_3, f_4)$. What are the smallest and largest prices for f permitted by arbitrage considerations? (Let’s call these $V_-(f)$ and $V_+(f)$.)
 (d) Does $f_\alpha \geq 0$ for all α and $V_-(f) = 0$ imply $f = 0$? Explain.
 (e) Which f’s are replicatable?

3. It is said that a London betmaker gave the following odds on the 1996 US Presidential election: 6-1 in favor of Clinton, 7-2 against Dole, 50-1 against Perot. Interpret this to mean that the betmaker was willing to take only three types of bets — that Clinton would win, that Dole would win, and that Perot would win — and
- 6 dollars bet on Clinton would return 7 if he won, 0 if not;
- 2 dollars bet on Dole would return 9 if he won, 0 if not;
- 1 dollar bet on Perot would return 51 if he won, 0 if not.

Interpret this as a one-period market with three assets: a 1-dollar bet on Clinton, a 1-dollar bet on Dole, and a 1-dollar bet on Perot. What are the associated risk-neutral probabilities? How much was the betmaker taking of every dollar bet? Explain. (This problem is adapted from Marco Avellaneda’s notes.)