Continuous Time Finance, Spring 2004 – Homework 4
Posted 3/19/04, due 3/31/04

(1) To solve Problem 5 of HW3 you needed to know that if \(dr = (\theta - \alpha r) dt + \sigma dw \) then the function \(v(x, t) \) defined by

\[
v(x, t) = E_r(t=0) \left[e^{-\int_0^t r(s) ds} f(r(T)) \right]
\]

solves

\[
v_t + (\theta - \alpha x)v_x + \frac{1}{2}\sigma^2 v_{xx} - xv = 0
\]

for \(t < T \), with final-time condition \(v(x, T) = f(x) \). This is a special case of the Feynman-Kac formula. Give a self-contained proof, using the method of HW1, problem 1. (You should assume that the PDE has a unique solution with this final-time condition; your task is to prove that the solution of the PDE satisfies (1).)

(2) The Section 6 notes explain how a trinomial tree can be used to approximate the random walk \(dx = \sigma dw \), and how working backward in this tree amounts to a standard finite-difference scheme for solving the backward Kolmogorov equation \(u_t + \frac{1}{2}\sigma^2 u_{xx} = 0 \). Let’s try to do something similar for the “geometric Brownian motion with drift” process \(dy = \mu y dt + \sigma y dw \), whose backward Kolmogorov equation is

\[
v_t + \mu y v_y + \frac{1}{2}\sigma^2 y^2 v_{yy} = 0
\]

Assume the time interval is \(\Delta t \), and at time \(t = n\Delta t \) the tree has nodes at \(-n\Delta y, \ldots, n\Delta y \). The process on the tree goes from \((y, t)\) to \((y + \Delta y, t + \Delta t)\) with probability \(p_u \), to \((y, t + \Delta t)\) with probability \(p_m \), and to \((y - \Delta y, t + \Delta t)\) with probability \(p_d \).

(a) How must \(p_u \), \(p_m \), and \(p_d \) be chosen to get the means and variances right? What are the conditions for them to be positive?

(b) What is wrong with this scheme?

(3) A better trinomial approximation of “geometric brownian motion with drift” is obtained by recognizing that if \(dy = \mu y dt + \sigma y dw \) then \(y = e^z \) with \(dz = (\mu - \frac{1}{2}\sigma^2) dt + \sigma dw \).

(a) Consider a trinomial tree process which goes from \((z, t)\) to \((z + \Delta z, t + \Delta t)\) with probability \(p_u \), to \((z, t + \Delta t)\) with probability \(p_m \), and \((z - \Delta z, t + \Delta t)\) with probability \(p_d \). How must \(p_u \), \(p_m \), and \(p_d \) be chosen to match the means and variances of the \(z \) process? What are the conditions for them to be positive?

(b) Working backward in this tree amounts to a finite-difference scheme for solving the backward Kolmogorov PDE \(w_t + (\mu - \frac{1}{2}\sigma^2) w_z + \frac{1}{2}\sigma^2 w_{zz} \) with specified final-time data at \(t = T \). In what sense can this also be viewed as a scheme for solving the PDE \(v_t + \mu y v_y + \frac{1}{2}\sigma^2 y^2 v_{yy} = 0 \)?

(Note: The “trinomial tree” scheme for valuing options uses this tree for the \(z \) process, with \(\mu = r \). However the option value is the discounted payoff; this introduces a discount factor of \(e^{-r\Delta t} \) at each timestep, and a term \(-rw\) in the PDE.)
(4) As we discussed in class, the general one-factor HJM model stipulates
\[d_t f = \alpha(t, T) \, dt + \sigma(t, T) \, dw \] (2)
in the risk-neutral measure. We may choose the volatility \(\sigma(t, T) \) arbitrarily, but it determines the drift \(\alpha(t, T) \) through the formula
\[\alpha(t, T) = \sigma(t, T) \int_t^T \sigma(t, u) \, du. \] (3)
The associated short rate is
\[r(t) = f(0, t) + \int_0^t \sigma(s, t) \, dw(s) + \int_0^t \alpha(s, t) \, ds \]
which solves the SDE
\[dr = \left[\partial_T f(0, t) + \int_0^t \partial_T \sigma(s, t) \, dw(s) + \alpha(t, t) + \int_0^t \partial_T \alpha(s, t) \, ds \right] dt + \sigma(t, t) \, dw(t). \] (4)
Let’s verify that when \(\sigma(t, T) = \sigma e^{-a(T-t)} \) (with \(\sigma \) constant) we recover the Hull-White model:
(a) Show that \(\alpha(t, T) = \frac{\sigma^2}{a} e^{-a(T-t)} \left(1 - e^{-a(T-t)} \right) \).
(b) Show that the SDE (4) reduces in this case to \(dr = (\theta(t) - ar) \, dt + \sigma \, dw \) with
\[\theta(t) = \partial_T f(0, t) + af(0, t) + \frac{\sigma^2}{2a} \left(1 - e^{-2at} \right). \]

(5) This problem revisits HW3, problem 1, using the general one-factor HJM theory \(d_t f(t, T) = \alpha(t, T) \, dt + \sigma(t, T) \, dw \) rather than Vasicek-Hull-White. Well, not the most general theory: you must assume for this problem that \(\sigma(t, T) \) is a given, deterministic function of \(t \) and \(T \) (whereas the general HJM framework permits it to be random, provided it depends only on time-\(t \) information). Besides the formulas (2)-(3), you’ll need the fact that
\[d_t [P(t, T)/B_t] = [P(t, T)/B_t] \Sigma(t, T) \, dw \] (5)
where \(B_t \) is the money-market account and
\[\Sigma(t, T) = -\int_t^T \sigma(t, u) \, du. \]
(a) Show that for \(t \leq \tau \leq T \leq S \), the random variable \(\ln[P(\tau, S)/P(\tau, T)] \) is normal under the risk-neutral measure, and its variance (given information at time \(t \)) is
\[\int_t^\tau (\Sigma(u, S) - \Sigma(u, T))^2 \, du. \]
(b) To apply Black’s formula, we need the statistics of \(\ln[P(\tau, S)/P(\tau, T)] \) under the forward measure, not the risk-neutral measure. (The forward measure is the one for which \(V_t / P(t, T) \) is a martingale whenever \(V_t \) is the value of a tradeable.) Show that if \(\bar{w} \) is Brownian motion under the risk-neutral measure and \(\bar{w} \) is Brownian motion under the forward measure then

\[
d\bar{w} = -\Sigma(t, T) dt + dw.
\]

(Hint: specialize the calculation on page 9 of the Section 4 notes to the case at hand.)

(c) Use the result of (b) to show that \(\ln[P(\tau, S)/P(\tau, T)] \) is also normal under the forward measure, and its variance is the same under the forward and risk-neutral measures.

(d) Consider a call option with maturity \(T \) and strike \(K \), on a zero-coupon bond with maturity \(S > T \). Its payoff at time \(T \) is \((P(T, S) - K)^+ \). Show that its value at time \(t \) is

\[
P(t, S)N(d_1) - KP(t, T)N(d_2)
\]

where

\[
d_1 = \frac{\ln[P(t, S)/P(t, T)K] + \frac{1}{2}s^2}{s}, \quad d_2 = d_1 - s
\]

where \(s \) is defined by

\[
s^2 = \int_t^T (\Sigma(u, S) - \Sigma(u, T))^2 du.
\]

(6) This problem revisits HW3, problem 2, using the general one-factor HJM theory. Consider the call option valued in problem 5.

(a) What trading strategy produces a replicating portfolio using tradeables \(P(t, S) \) and \(P(t, T) \)?

(b) What trading strategy produces a replicating portfolio using tradeables \(P(t, S) \) and the money market fund \(B_t \)?

(c) What trading strategy produces a replicating portfolio using two bonds \(P(t, T_1) \) and \(P(t, T_2) \), where \(T_1 \) and \(T_2 \) are arbitrary (distinct) values greater than \(T \)?