Putnam Exam: Integration problems

1987B1. Evaluate
\[\int_{2}^{4} \frac{\sqrt{\ln(9 - x)} \, dx}{\sqrt{\ln(9 - x) + \ln(x + 3)}}. \]

1989A2 Evaluate \(\int_{0}^{a} \int_{0}^{b} e^{\max(b^2x^2, a^2y^2)} \, dy \, dx \), where \(a \) and \(b \) are positive.

1989B3. Let \(f \) be a function on \([0, \infty) \), differentiable and satisfying
\[f'(x) = -3f(x) + 6f(2x) \]
for \(x > 0 \). Assume that \(|f(x)| \leq e^{-\sqrt{x}} \) for \(x \geq 0 \) (so that \(f(x) \) tends rapidly to 0 as \(x \) increases). For \(n \) a nonnegative integer, define
\[\mu_n = \int_{0}^{\infty} x^n f(x) \, dx \]
(sometimes called the \(n \)th moment of \(f \)).

a. Express \(\mu_n \) in terms of \(\mu_0 \).

b. Prove that the sequence \(\{\mu_n 3^n / n!\} \) always converges, and that the limit is 0 only if \(\mu_0 = 0 \).

1990B1. Find all real-valued continuously differentiable functions \(f \) on the real line such that for all \(x \)
\[(f(x))^2 = \int_{0}^{x} ((f(t))^2 + (f'(t))^2 \, dt + 1990 \]

1991 A5. Find the maximum value of
\[\int_{0}^{y} \sqrt{x^4 + (y - y^2)^2} \, dx \]
for \(0 \leq y \leq 1 \).

1992A2. Define \(C(\alpha) \) to be the coefficient of \(x^{1992} \) in the power series expansion about \(x = 0 \) of \((1 + x)^\alpha \). Evaluate
\[\int_{0}^{1} C(-y - 1) \left(\frac{1}{y + 1} + \frac{1}{y + 2} + \frac{1}{y + 3} + \cdots + \frac{1}{y + 1992} \right) \, dy \]
1993A5. Show that
\[\int_{-10}^{10} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 dx + \int_{11}^{101} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 dx + \int_{10}^{101} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 dx \]
is a rational number.

1993B4. The function \(K(x, y) \) is positive and continuous for \(0 \leq x \leq 1, 1 \leq y \leq 1 \), and the functions \(f(x) \) and \(g(x) \) are positive and continuous for \(0 \leq x \leq 1 \). Suppose that for all \(x, 0 \leq x \leq 1, \)
\[\int_0^1 f(y)K(x, y)dy = g(x) \quad \text{and} \quad \int_0^1 g(y)K(x, y)dy = f(x). \]
Show that \(f(x) = g(x) \) for \(0 \leq x \leq 1 \).

1995A2. For what pairs of \((a, b) \) of positive real numbers does the improper integral
\[\int_0^\infty \left(\sqrt[4]{x + a} - \sqrt[4]{x - b} \right) dx \]
converge?

1997A3. Evaluate
\[\int_0^\infty \left(x - \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} - \frac{x^7}{2 \cdot 4 \cdot 6} + \cdots \right) \left(1 + \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots \right) dx. \]

2000A4. Show that the improper integral
\[\lim_{B \to \infty} \int_0^B \sin(x) \sin(x^2) dx \]
converges.