Assignment 5, due October 24

Corrections: (none yet)

See notes on the Ito Integral posted on the Resources page.

1. Find a formula for \(\int_0^t (W_s^2 - s) \, dW_s \) in terms of \(W_t \). Hint: use Ito's lemma to calculate the differentials of \(W_t^3 \) and \(tW_t \).

2. The stochastic process \(X_t \) is geometric Brownian motion if it satisfies a stochastic differential equation (see the notes) of the form
 \[dX_t = \mu X_t \, dt + \sigma X_t \, dW_t. \]
 Show that stochastic processes of the form
 \[X_t = X_0 e^{\sigma W_t + (\mu - \frac{1}{2} \sigma^2) t} \]
 are geometric Brownian motions.

3. Suppose \(X_t = \int_0^t F_s \, dW_s + \int_0^t G_s \, ds \).
 (a) Show that the Ito integral is additive in the sense that \(\int_0^{t'} F_s \, dW_s = \int_0^t F_s \, dW_s + \int_t^{t'} F_s \, dW_s \). For this you need to define approximations that do not start at \(t = 0 \) and show that additivity holds approximately for the approximations.
 (b) If \(t' = t + \Delta t \) for small \(\Delta t \), you may use the approximations \(F_s \approx F_t \) and \(G_s \approx G_t \) for \(t \leq s \leq t' \). The increment of \(X \) over this interval is \(\Delta X = X_{t+\Delta t} - X_t \). Show that
 \[E[\Delta X \mid F_t] \approx G_t \Delta t \]
 \[E[(\Delta X)^2 \mid F_t] \approx F_t^2 \Delta t \]
 \[\text{var}[\Delta X \mid F_t] \approx F_t^2 \Delta t \]
 The conditional variance in the last formula is the conditional expected value of the square difference from the conditional mean. These formulas may be written informally as \(E[dX_t \mid F_t] = G_t \, dt \) and \(E[(dX_t)^2 \mid F_t] = F_t^2 \, dt \).
 (c) (not an action item) The formulas of part (b) usually are used in reverse. In modeling we have estimates of \(E[\Delta X \mid F_t] \) and \(E[\Delta X^2 \mid F_t] \) and use them to discover \(F \) and \(G \), or the coefficients \(a(X) \) and \(b(X) \) in the stochastic differential equation modeling \(X \). For example, the geometric Brownian motion of a stock price is “derived” (“motivated might be more accurate) by saying \(E[(\Delta X/X_t) \mid F_t] = \mu \Delta t \) (rate of return is \(\Delta X/(X_t \Delta t) \)). This is constant expected rate of return = \(\mu \).) Similarly, \(\text{var}(\Delta X/X_t \mid F_t) = \sigma^2 \Delta t \) defines \(\sigma \) as the volatility.
4. The Ornstein Uhlenbeck process is the linear stochastic differential equation
\[X_t = -\gamma X_t \, dt + \sigma dW_t. \] (1)

(a) Show that the solution is given by a formula something like (part of the problem is to find the correct formula)
\[X_t = e^{-\gamma t} X_0 + \int_0^t e^{-\gamma (t-s)} dW_s. \] (2)

(b) Assuming that \(X_0 \) is not random, use the (corrected) formula (2) to find formulas for \(m_t = E[X_t] \) and \(s^2_t = E[X^2_t] \). Evaluate these in the limit \(t \to \infty \).

(c) As an alternative method, calculate \(dm_t \) by formally differentiating \(m = E[X] \), as \(dm_t = E[dX_t | \mathcal{F}_t] \). Show that you get the same result by using the first formula of part (3b) and taking the limit \(\Delta t \to 0 \).

(d) Find formula for \(ds_t \) in a similar way using the middle part of (3b). For this, write \((X_t + \Delta X)^2 = X^2_t + 2X_t \Delta X + \Delta X^2 \) and take the conditional expectation in \(\mathcal{F}_t \).

(e) Intuition might suggest that the probability distribution of \(X_t \) would converge so a limiting distribution as \(t \to \infty \). The term \(-\gamma X_t \, dt \) acts as a restoring force, pushing \(X_t \) toward zero from the positive and negative directions. The restoring force becomes stronger as \(|X_t| \) increases but the noise keeps the same strength. If \(X_t \) were in equilibrium, we would have \(dm_t = 0 \) and \(ds_t = 0 \). Use the results of part (d) to find the values of \(m_t \) and \(s_t \) corresponding to this steady state. If everything is correct, these values should agree with those of part (b).