Assignment 5.

Given October 1, due October 21. Last revised, October 7.

Objective: Brownian Motion.

1. Suppose \(h(x) \) has \(h'(x) > 0 \) for all \(x \) so that there is at most one \(x \) for each \(y \) so that \(y = h(x) \). Consider the process \(Y_t = h(X_t) \), where \(X_t \) is standard Brownian motion. Suppose the function \(h(x) \) is smooth. The answers to the questions below depend at least on second derivatives of \(h \).

 a. With the notation \(\Delta Y_t = Y_{t+\Delta t} - Y_t \), for a positive \(\Delta t \), calculate \(a(y) \) and \(b(y) \) so that \(E[\Delta Y_t | F_t] = a(Y_t) \Delta t + O(\Delta t^2) \) and \(E[\Delta Y_t^2 | F_t] = b(Y_t) \Delta t + O(\Delta t^2) \).

 b. With the notation \(f(Y_t, t) = E[V(Y_T) | F_t] \), find the backward equation satisfied by \(f \). (Assume \(T > t \).)

 c. Writing \(u(y, t) \) for the probability density of \(Y_t \), use the duality argument to find the forward equation satisfied by \(u \).

 d. Write the forward and backward equations for the special case \(Y_t = e^{cX_t} \). Note (for those who know) the similarity of the backward equation to the Black Scholes partial differential equation.

2. Use a calculation similar to the one we used in class to show that \(Y_T = X_T^4 - 6 \int_0^T X_t^2 dt \) is a martingale. Here \(X_t \) is Brownian motion.

3. Show that \(Y_t = \cos(kX_t)e^{k^2 t/2} \) is a martingale.

 a. Verify this directly by first calculating (as in problem 1) that

 \[
 E[Y_{t+\Delta t} | F_t] = Y_t + O(\Delta t^2)
 \]

 Then explain why this implies that \(Y_t \) is a martingale exactly (Hint: To show that \(E[Y_t | F_t] = Y_t \), divide the time interval \((t, t')\) into \(n \) small pieces and let \(n \to \infty \).

 b. Verify that \(Y_t \) is a martingale using the fact that a certain function satisfies the backward equation. Note that, for any function \(V(x) \), \(Z_t = E[V(X_T) | F_t] \) is a martingale (the tower property). Functions like this \(Z \) satisfy backward equations.

 c. Find a simple intuition that allows a supposed martingale to grow exponentially in time.

4. Let \(A_{x_0, t} \) be the event that a standard Brownian motion starting at \(x_0 \) has \(X_{t'} > 0 \) for all \(t' \) between 0 and \(t \). Here are two ways to verify the large time asymptotic approximation

\[
P(A_{x_0, t}) \approx \frac{1}{\sqrt{2\pi \sqrt{t}}} e^{-\frac{x_0^2}{2t}}.
\]
a. Use the formula from “Images and reflections” to get
\[
P(A_{x_0,t}) = \int_0^\infty u(x,t) dx \\
\approx \frac{1}{\sqrt{2\pi t}} \int_0^\infty e^{-x^2/2t} \left(e^{x_0/t} - e^{-x_0/t} \right) dx.
\]

The change of variables \(y = x/\sqrt{t}\) should make it clear how to approximate the last integral for large \(t\).

b. Use the same formula to get
\[
\frac{-d}{dt} P(A_{x_0,t}) = \frac{1}{\sqrt{2\pi}} \frac{2x_0}{t^{3/2}} e^{-x_0^2/2t}.
\]

Once we know that \(P(A_{x_0,t}) \to 0\) as \(t \to \infty\), we can estimate its value by integrating (1) from \(t\) to \(\infty\) using the approximation \(e^{\text{const}/t} \approx 1\) for large \(t\). Note: There are other hitting problems for which \(P(A_t)\) does not go to zero as \(t \to \infty\). This method would not work for them.