Assignment 2.

Given September 12, due September 19.
Last revised, September 15.

Objective: Conditioning and Markov chains.

1. Suppose that \(F \) and \(G \) are two algebras of sets and that \(G \) adds information to \(F \) in the sense that any \(F \) measurable event is also \(G \) measurable. Since \(F \) and \(G \) are collections of events, this may be written \(F \subseteq G \). Suppose that the probability space \(\Omega \) is finite and that \(X(\omega) \) is a variable defined on \(\Omega \) (that is, a function of the random variable \(\omega \)). The conditional expectations (in the modern sense) of \(X \) with respect to \(F \) and \(G \) are
 \[Y = E[X \mid F] \] and \(Z = E[X \mid G] \). In each case below, state whether the statement is true or false and explain your answer with a proof or a counterexample.
 a. \(Z \in F \).
 b. \(Y \in G \).
 c. \(Z = E[Y \mid G] \).
 d. \(Y = E[Z \mid F] \).

2. For any event \(A \subseteq \Omega \) we can define the “indicator function” (also called the “characteristic function”, particularly by people who learned probability late in life), \(1_A(\omega) = 1 \) if \(\omega \in A \) and \(1_A(\omega) = 0 \) if \(\omega \notin A \). People who call this the “characteristic function” (usually people who learned probability late in life) write \(\chi_A(\omega) \) for \(1_A(\omega) \).
 a. Show that \(E[1_A] = P(A) \).
 b. For any event, \(B \), show that the classical \(E[1_A \mid B] \) is the same as the Bayes’ rule conditional probability of \(A \).

The “modern” definition of conditional probability, conditioning on an algebra of sets rather than a single set, is \(P(A \mid F) = E[1_A \mid F] \). The relationship between the classical and modern definition of conditional probability is more or less the same as the relation between classical and modern expected value.

3. Let \(S \) be a finite state space and \(\Omega \) be the set of paths of length \(T \) from \(S \). Let \(P(X) \) be the probability of a path \(X \in \Omega \). For any \(t \) in the range \(1 < t < T \), let \(F_t \) be the algebra of events in \(\Omega \) generated by the values of \(X_s \) for \(1 \leq s \leq t \). Let \(G_t \) be the smaller algebra generated only by \(X_t \). Finally, let \(H_t \) be the “complementary” algebra (based on complementary information) generated by the values \(X_t, \ldots, X_T \). An event in \(H_t \) is a statement about the path from time \(t \) on without saying anything about the beginning values \(X_1, \ldots, X_{t-1} \). Show that the Markov property is equivalent to either of the following,
a.
\[E[1_A | \mathcal{F}_t] = E[1_A | \mathcal{G}_t] \quad \text{for any } A \in \mathcal{H}_{t+1}. \]

b.
\[E[F(X) | \mathcal{F}_t] = E[F(X) | \mathcal{G}_t] \quad \text{for any } F \in \mathcal{H}_{t+1}. \]

Notes: (i) Part a is a special case of part b (why?). (ii) Part b implies that \(E[F(X) | \mathcal{F}_t] \) is a function of \(X_t \) only. This is supposed to be intuitively clear as a consequence of the Markov property. (iii) Together with question 1, part b is a justification for the backward equation for expected values of final payouts.

4. Suppose we have a 3 state Markov chain with transition matrix
\[
P = \begin{pmatrix}
.6 & .2 & .2 \\
.3 & .5 & .2 \\
.1 & .2 & .7 \\
\end{pmatrix}
\]
and suppose that \(X_1 = 1 \).

a. Show that the probability distribution of the first \(t \) steps conditioned on \(\mathcal{G}_{t+1} \) is the same as that conditioned on \(\mathcal{H}_{t+1} \). This is a kind of backwards Markov property: a forward Markov chain is a backward Markov chain also.

b. Calculate \(P(X_2 = 2 | \mathcal{G}_3) \). This consists of 3 numbers.