Derivative Securities

Class 2
September 16, 2009
Lecture outline

latest correction: none yet

Jonathan Goodman
http://www.math.nyu.edu/faculty/goodman/teaching/DerivSec09/index.html
Outline

Arbitrage, pricing, risk neutral probabilities

- General abstract discrete model
- Definition of arbitrage
- The geometry
- "No arbitrage" is equivalent to "there exist risk neutral probabilities"
- Complete market -- a new instrument can be replicated
- The one period binomial model, the Δ hedge
- The multi-period binomial model, the binomial tree
- Rebalancing and dynamic replication
General abstract discrete model

- N instruments, $i = 1, \ldots, N$
- $C_i =$ price today of instrument i
- Prices may be positive or negative
- M possible states of the world “tomorrow”, $j = 1, \ldots, M$
- $V_{ij} =$ price tomorrow of instrument i in state j
- $\Pi =$ portfolio purchased today
- $W_i =$ weight of instrument i in Π
- Weights may be positive or negative
- Cost/value of Π today is $\Pi_0 = \sum_{i=1}^{N} W_i C_i$
- Cost/value of Π in state j tomorrow is $\Pi_{T,j} = \sum_{i=1}^{N} W_i V_{ij}$

Π is an abstract arbitrage if:

- $\Pi_0 = 0$
- $\Pi_{T,j} \geq 0$ for all j
- $\Pi_{T,j} > 0$ for some j

Axiom: the model is arbitrage free -- no such Π exists
Geometry and linear algebra

- Cash flow vector: $\Pi_T = (\Pi_{T,1}, \Pi_{T,2}, \ldots, \Pi_{T,M}) \in \mathbb{R}^M$
- $\mathcal{P} \subseteq \mathbb{R}^M$ = the set of all cash flow vectors achievable by portfolios
 - A linear subspace -- may add portfolios, and scalar multiply
- $\mathcal{L} \subseteq \mathcal{P}$ = the set of all portfolios with cost = $\Pi_0 = 0$
 - A linear subspace of \mathcal{P} -- may add zero cost portfolios, and scalar multiply
- There may be more than one set of weights that gives the same Π_T
- Lemma: If there is no arbitrage, then the cost, Π_0, is the same for any portfolio with the same output vector, Π_T.
 - Proof: otherwise, buy the cheap way (the cheaper set of weights) and sell the more expensive version (the other set of weights). That is an arbitrage.
- Thus, the cost is a linear function of Π_T
- Let n be a vector normal to \mathcal{L} inside \mathcal{P}
- $\Pi_0 = C (n \cdot \Pi_T)$
 - Two linear functions that vanish together
“No Arbitrage” and “Risk Neutral Pricing”

- \(A \) = the set of portfolios with \(\Pi_{T,j} \geq 0 \) for all outcomes \(j = 1, \ldots, M \)
- “No Arbitrage” means that \(L \) does not intersect \(A \), except at 0.
- In that case -- see figure -- n is inside \(A \).
- This means that the \(n_j \geq 0 \) for all outcomes \(j = 1, \ldots, M \).
- Define risk neutral probabilities \(P_j = C n_j \)
 - \(P_j \geq 0 \) for all \(j \), \(P_1 + P_2 + \cdots + P_M = 1 \) (through choice of \(C \))

\[\Pi_0 = \text{Portfolio cost} \]
\[= C \left(n \cdot \Pi_T \right) \]
\[= C_1 \left(P_1 \Pi_{T,1} + P_2 \Pi_{T,2} + \cdots + P_M \Pi_{T,m} \right) \]
\[= C_2 \mathbb{E}_P \left[\Pi_T \right] \]
\[\Pi_0 = C_2 \mathbb{E}_{RN} \left[\Pi_T \right] \]

Price = discounted (\(C_2 < 1 \)) expected value
Complete market and replication

- A market is *complete* if $P = R^M$
- An *option* is a contract that pays U_j in state j at time T
- In a complete market, there is a portfolio, Π, with $\Pi_T = U$
- *Replication*: $\Pi_{T,j} = U_j$ for all states of the world, $j = 1, \ldots, M$
- In a complete market, any option can be replicated.
- In a complete market without arbitrage, the price of the replicating portfolio is uniquely determined by its payout structure, U
- If the option is traded at time 0, it is part of the market
- *Theorem*: assume that
 - The market with the option is arbitrage free
 - The market without the option is complete
- *Then*:
 - The option may be replicated
 - All replicating portfolios have the same price
 - That price must be the market price of the option
 - That price is the discounted expected payout in the risk neutral measure

$$\text{Price(option)} = C \ E_P[\text{ option payout }]$$
Complete market and replication, comments

• The risk neutral probabilities are determined by the complete market without the option -- they are the same for every extra option.
• If the market is complete, the risk neutral probabilities are uniquely determined by the market -- the direction of a normal to a hyperplane of dimension M-1 is unique.
• If the market is not complete, the normal direction within P is unique -- there are unique risk neutral probabilities for any option that can be replicated.
• If the option cannot be replicated, then there is a range of prices that do not lead to arbitrage.
• Real markets have market frictions that prevent arbitrarily small arbitrage transactions.
 – Transaction costs: portfolios with equivalent values at time T may have different costs at time 0.
 – Limited liquidity: the cost to buy n “shares” of asset i may not be proportional to n -- move the market.
• This material often is described differently, using linear programming.
• Keith Lewis told me it was easier to do it geometrically, as it is here.
Utility, risk neutral pricing

- Let X be an investment whose value in state j is X_j.
- Let Q_j be the *real world* probability of state j, possibly subjective.
- The real world expected value is
 \[M = E_{Q}[X] = X_1Q_1 + X_2Q_2 + \cdots + X_MQ_M \]
- Fundamental axiom of finance: $\text{Price}(X) \leq M$
- If variance(X) > 0, a *risk averse* investor has $\text{value}(X) < M$
- A risk neutral investor has $\text{value}(X) = M$
- The difference $M - \text{value}(X)$ is the *risk premium* of X for that investor
- The difference $M - \text{price}(X)$ is the *risk premium* of the market
- Risk premia depend on personal psychology and needs
- The market risk premium is determined by interactions between investors. It should be positive but is hard to predict quantitatively
- In this setup, it is hard to predict $\text{price}(X)$ from first principles

- Risk neutral pricing says that there are risk neutral probabilities $P \neq Q$ so that $\text{price}(X) = C E_P[X]$, if X is an option payout in a complete market
- Since X can be replicated, $\text{value}(X)$ is the same for every investor, and is equal to $C E_P[X]$.
- Can find prices of options without psychology.
Binary “one period” model

- The market has two instruments, *stock* and *cash* (also called *bond*)
- There are $M = 2$ states of the world “tomorrow”, called “up” and “down”
- The value of “cash” today is 1
- The value of “cash” tomorrow is e^{rT}, r being the risk free rate
- The value of “stock” today is S_0
- The value of stock tomorrow is
 - $u S_0$ in state “up”
 - $d S_0$ in state “down”
 - Assume $u > d$
- This market is complete (check)
Risk neutral probabilities for the binary model

• With $M = 2$, the cost free portfolios form a one line
• $W_s = \text{weight of stock} = a$
• $W_c = \text{weight of cash} = -aS_0$ (to be cost free)
• Portfolio values at time T
 - $\Pi_{T,u} = aS_0(u - e^{rT})$
 - $\Pi_{T,d} = aS_0(d - e^{rT})$
 - Opposite sign (no arbitrage) if $d < e^{rT} < u$
• Normal: $(x,y) \Rightarrow (-y,x)$
• Normal to L: $(u - e^{rT}, d - e^{rT}) \Rightarrow (e^{rT} - d, u - e^{rT})$, both positive
• Normalize to get probabilities:
 - $n_u + n_d = u - d$
 - $n_u/(u - d) = p_u = (e^{rT} - d)/(u - d)$
 - $n_d/(u - d) = p_d = (u - e^{rT})/(u - d)$
 - Discount factor = e^{-rT}, otherwise risk free cash is an arbitrage
• If V is an option that pays (V_u, V_d), then the price of V today is

$$\text{price}(V) = e^{-rT}E_p[V_T] = e^{-rT} \left(V_u (e^{rT} - d) + V_d (u - e^{rT}) \right) / (u - d)$$
Binary model, Delta hedging

• A derivatives desk is asked to hold an option but does not want risk
• Short a *replicating portfolio*, Π, of stock and cash
• The total portfolio has zero value and zero risk.
• Make a profit from commissions.
• Replicating portfolio = $\Pi = \Delta$ Stock + C Cash,
• $\Pi_T = V_T$, both up and down
• $\Pi_0 = \Delta S_0 + C$
• $\Pi_{T,u} = \Delta u S_0 + e^{rt}C = V_u$
• $\Pi_{T,d} = \Delta d S_0 + e^{rt}C = V_d$
• Solve: $\Delta = \left(\frac{V_u - V_d}{u S_0 - d S_0} \right) = \text{(change in V) / (change in S)}$
• $\left(V - \Delta S \right)_u = \left(V - \Delta S \right)_d$
• Δ hedged portfolio value at time T is not random, risk free
• Equivalent to cash, value known at time 0
Binomial multi-period model

• Times 0 = t₀, t₁, ..., tₙ = T, tₖ = kδt
• Cash increases by e^{rδt} between tₖ and tₖ+1
• S₀ = present spot price = known
• Sₖ₊₁ = uSₖ or Sₖ₊₁ = dSₖ
• S₁ = uS₀, or S₁ = dS₀, as before
• S₂ = u²S₀, or S₂ = udS₀, or S₂ = d²S₀
• ud = du -- the binomial tree is recombining (diagram)
• N+1 possible values of Sₙ = Sₜ, 2ᴺ if not recombining
• State j has j up steps and k - j down steps: Sₖⱼ = uᵢdᵏ⁻ⱼ S₀
• European style option pays Vₙⱼ at time tₙ = T in state j
• Vₖⱼ = price/value of option at state j at time k
• Vₖⱼ is determined by Vₖ₊₁,j and Vₖ₊₁,j₊₁ as before
• Work backwards:
 – Given all Vₙⱼ values, calculate all Vₙ₋₁,j values
 – Given all Vₙ₋₁,j values, calculate all Vₙ₋₂,j values
 – Eventually, reach V₀
Dynamic hedging, rebalancing in the binomial tree model

• At time t_k in state j, there is a hedge ratio $\Delta_{kj} = \frac{(V_{k+1,j+1} - V_{k+1,j})}{S_k (u-d)}$
• This is how many shares of stock you own before you leave time t_k
• At time t_{k-1}, you probably had a different number of shares:
 - $\Delta_{k-1,j-1}$ or $\Delta_{k-1,j}$, neither one equal to Δ_{kj}
• When you arrive at time t_k, you have to replace the old number of shares with the correct number, Δ_{kj}. This is *rebalancing*.
• You pay for the new shares by spending your cash, this requires more borrowing if the cash position is negative.
• This is *dynamic hedging*, or
• *Dynamic replication*: $\Pi_T = V_T$ for any state at time T
• The dynamic hedging strategy produces a portfolio of stock and cash worth exactly V_{Tj}, if S_{Tj} is the state at time T.
• It is *self financing*. You generate the cash you need to buy stock. You keep the proceeds from selling stock.