Calculus I, Sections 4, 5, 6.

Practice for Quiz 2

If you know your stuff, this should take about an hour. The actual quiz will be about a quarter this long and should take about fifteen minutes.

1. Calculate the derivatives of the following functions:
 a. \(f(x) = \frac{x}{\sqrt{1 + x^2}} \)
 b. \(f(x) = \sin\left(\frac{1}{x}\right) \)
 c. \(g(s) = \cos^2(\tan(s)) \)
 d. \(u(t) = \frac{1}{2 + \cos(t)} \)
 e. \(f(t) = \sqrt{t \tan(t)} \).

2. Compute \(\frac{d^2}{dt^2} \cos(t^2) \).

3. Suppose \(u = \frac{1}{A^2} \) and when \(t = 1 \), \(A(t) = 4 \) and \(A'(t) = -5 \). What is the value of \(\frac{du}{dt} \) when \(t = 2 \)?

4. Show that \(\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \) exists but that \(\lim_{x \to 0} \frac{d}{dx} \left(x \sin\left(\frac{1}{x}\right) \right) \) does not.

5. Starting from a spot in Central Park, I walked 40 feet east then 30 feet north. I wind up 50 feet from the starting point. About how much farther north should I walk to increase the distance from my starting point by 2%?

6. A point \(P \) is on the circle of radius 3 centered at the origin. The point makes an angle \(\theta \) with the \(x \) axis. The point \(Q \) has coordinates \((1, 2)\). The distance between \(P \) and \(Q \) is \(F \). Write a formula for \(\frac{dF}{d\theta} \).