1. The traffic flow can be modeled with \(q = 70 \rho (1 - \rho / 377) \) vehicles per hour. The traffic is moving at a constant speed and a constant density of 250 vehicles/mile. Because of an overturned truck, cars start to slow down slightly, causing a slight density increase. At \(t = 0 \) we thus observe that the density is 250 when \(x < 0 \) and is 270 when \(x > 0 \).

(a) How fast are cars moving before they encounter the wave?
(b) Using linear theory with \(\rho_0 = 250 \), estimate the velocity of the traffic wave. For what \(t \) (in minutes) will the car which was located at \(x = -1 \) mile at \(t = 0 \) encounter the wave? Sketch the wave propagation in an \(x - t \) diagram.
(c) Show from the general theory that a driver in the pack at density 250 will see the traffic wave approaching at speed \(u_{\text{max}} \rho / \rho_{\text{max}} \). Check this against the numbers you gave in (a) and (b).

2. Solve the following linear first-order PDEs with the indicated initial condition. In each case verify that you have a solution by substitution back in the equation.

\[(a) \quad \frac{\partial f}{\partial t} + \frac{xt}{1 + t^2} \frac{\partial f}{\partial x} = 0, \quad f(x, 0) = \sin(x), \]
\[(b) \quad \frac{\partial f}{\partial t} + \frac{1}{1 + x} \frac{\partial f}{\partial x} = 0, \quad f(x, 0) = x. \]

In (b) assume \(x > -1 \). (Hint in (b): \(F(\phi) = -1 + \sqrt{1 + 2\phi} \).)

3. Problem 71.1, page 322 of text. (\(a \) is a positive constant, and \(t \) is measured in hours.)

4. Problem 71.2, page 322 of text.

5. Apply the method we have used to solve the nonlinear traffic flow equation to the equation
\[
\frac{\partial \rho}{\partial t} + \rho^2 \frac{\partial \rho}{\partial x} = 0, \quad x > 0,
\]
with the initial condition \(\rho(x, 0) = x > 0 \). Verify your answer by substituting in the equation. (Hint: \(x = \rho^2(x_0, 0)t + x_0 \).)

6. For the red light problem with \(q = u_{\text{max}} \rho (1 - \rho / \rho_{\text{max}}) \), show that the expansion fan in the transition region has the form
\[
\rho(x, t) = \rho_{\text{max}} \left(\frac{u_{\text{max}} t - x}{2 u_{\text{max}} t} \right).
\]