Homework Assignment

1. (Due Dec 30) **Improving efficiency of Rejection Method**: By rejection from a Gaussian,

\[\rho_0(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{x^2}{2\sigma^2} \right], \]

we can sample from the density

\[\rho(x) = \frac{1}{Z} e^{-x^4/4} \]

where \(Z = \int_{-\infty}^{+\infty} e^{-x^4/4} dx \). Find an optimal value of \(\sigma \) such that the rejection method is efficient.

2. (Due Dec 7) **Rigidity of Covariance Matrix**: In the following, you are asked to compare results between \(N = 5 \) and \(N = 15 \), or even a larger value of \(N \), for \(n = 10 \) and \(n = 1000 \) or even larger value of \(n \).

 (a) Generate a valid \(N \times N \) covariance matrix \(\Sigma_{N\times N} \) (You can use any method at your disposal to generate the matrix. A valid covariance matrix should be able to pass the Choleski test).

 (b) Generate \(n \) independent observations, i.e., \(n \) normal deviates, \(\{x_i, i = 1, 2, \ldots, n\} \), from \(\mathcal{N}(0, \Sigma_{N\times N}) \). Note that \(x \) is an \(N \)-dimensional vector.

 (c) Then compute an empirical covariance matrix \(\tilde{\Sigma}_{N\times N} \) using these \(n \) observations.

 (d) Examine whether this empirical matrix \(\tilde{\Sigma}_{N\times N} \) can pass the Choleski test.

 (e) Perturb some entries in the matrix \(\tilde{\Sigma}_{N\times N} \) by a few percent to see if the resulting matrix can still pass the Choleski test.

3. (Due Dec 7) **The Order of Strong Convergence**: Solving the stochastic differential equation

\[dS = \mu S dt + \sigma S dW \]

with the initial value \(S = S_0 \) at \(t = 0 \), where \(\mu, \sigma \) are constant, using the following methods,

 (a) the exact solution advancement to obtain \(J \) trajectories, \(\{S^j(t_i), i = 1, 2, \ldots, n\}, \ j = 1, 2, \ldots, J, t_0 = 0, \ t_i = t_{i-1} + h, \ t_n = T \).

 (b) the Euler scheme to obtain \(J \) approximate trajectories \(\{\hat{S}^j_h(t_i), i = 1, 2, \ldots, n\}, \ j = 1, 2, \ldots, J \).

 (c) Then analyze the error in the sense of strong convergence using the estimate,

\[\varepsilon(h) \equiv \frac{1}{J} \sum_{j=1}^{J} \left| \hat{S}^j_h(T) - S^j(T) \right| \]

What is the slope of \(\varepsilon(h) \) vs \(h \) using the log-log plot?

You can choose \(S_0 = 20, \mu = 0.05, \sigma = 0.25, T = 1, J = 100, \) and \(h = T/n, \ n = 100, 1000, 10000, 100000. \)