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Abstract

The goal of this Independent Study, is to develop some new results
combining two well known fixed point theorems, in the context of Riesz
spaces (ordered Banach spaces with certain special properties). The result
proved, will be complemented with certain examples and counterexamples,
along with suggested directions for future research.

1 Introduction

Krasnoseslkii’s theorem is a very powerful result, which provides a bridge be-
tween classical fixed point theory and non-linear analysis. This is by providing
a generalized version of Banach’s contraction mapping theorem and Schauder’s
fixed point principle, for Banach spaces. It has numerous applications to Eco-
nomics, as well as to the study of existence of solutions of non-linear PDE’s.
This work was motivated by the goal of trying to find a similar bridge, between
Classcial/Metric Fixed- Point theory and Order- Theoretic Fixed- Point Theory.
Any such result, could potentially have applications to the study of economic
equilibria, choice-based markets, decision theory etc.

In this study, the two theorems of importance are Banach’s contraction mapping
theorem and Tarski’s fixed point theorem. These theorems are quite different
in flavor, given that Banach’s theorem is a theorem about metric spaces, while
Tarski’s theorem is about certain posets. Naturally, a common landscape for
their study would be that of ordered Banach spaces.

The result of interest will be developed analogously to Krasnoselskii’s theorem,
which proves the existence of a fixed point, for a contraction map perturbed by
a Schauder map in the context of a Banach space. In particular, we will study
the conditions under which the sum of an increasing map and a contraction have
a fixed point for an ordered Banach space.

In order to develop our results, we must first review the existing results, the
objects of study, and various related definitions.
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2 Review of Metric-Fixed point-theorems

Krasnoselskii’s theorem, is an extremely important result with applications to
Economics and the theory of differential equations. The idea behind this theo-
rem, is to combine Banach and Schauder’s theorems in the context of a Banach
space. It does so by considering a map which is the sum of a contraction and
a Schauder map (defined shortly) defined on some closed subset of a Banach
space. It turns out, that provided the map is a self map, it has a fixed point.
First, we state these component theorems, and then provide a proof of Kras-
noselskii’s theorem.

2.1 Theorem

Banach’s contraction mapping theorem:Let (X, d) be a complete metric
space, and let T : X → X be a contraction i.e. ∀x, y ∈ X, d(Tx, Ty) ≤ cd(x, y),
where c ∈ (0, 1). Then, ∃! x0 ∈ X such that T (x0) = x0

Remark 1: Banach’s contraction mapping theorem was first formulated by
the mathematician Stefan Banach in 1922. It’s first proof was given by the
mathematician Renato Caccioppoli in 1931.[1]. A concise proof of the theorem
can be found in [2].

2.2 Theorem

Schauder’s fixed point theorem: Let (X, ‖ ‖) be a normed linear space, and
let S be a closed and convex subset of X. If f is a continuous self map on S
such that f(S) ⊆ S is relatively compact i.e. cl(f(S)) is a compact subset of
S, then f has a fixed point. A map with this property is defined as a relatively
compact map.

Remark 2: Schauder’s fixed point theorem, in the case of Banach spaces was
first proved by Schauder in 1930. Further generalizations were achieved by the
Russian mathematician Tychonoff, with the most general case (assuming that
the subset is not compact but just relatively compact), being proved by B.V
Singbal. A proof can be found in [4].

We will now state and prove Krasnoselskii’s theorem, and highlight certain
parts of the proof, as they will be important for later parts of the paper.

2.3 Krasnoselskii’s Fixed point theorem

Krasnoselskii’s theorem combines Banach and Schauder’s fixed point theorems
for Banach spaces by considering a map formed from the addition of a contrac-
tion and a relatively compact map.
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Krasnoselsii’s Fixed point theorem: Let (X, ‖ ‖) be a Banach space (com-
plete, normed linear space) and let S be a closed, convex and nonempty subset
of X. Let g : S → X be a contraction and h : S → X a relatively compact map
such that (g + h)(S) ⊆ S. Then, g + h has a fixed point in S.

Proof. The proof is divided into two parts:
Part 1:Let K ∈ (0, 1) be the Lipschitz constant for g. Define f(x) = x− g(x)
∀x ∈ S. We claim, f is an embedding of S into X. To this end, observe
if f(x) = f(y), then x − y = g(x) − g(y). But, we know ‖g(x) − g(y)‖ ≤
K‖x − y‖ < ‖x − y‖. Thus, this can only occur when ‖x − y‖ = 0 i.e. x = y.
Thus, f : S → X is injective. Continuity of f follows since ‖f(x) − f(y)‖ =
‖(x− y)− (g(x)− g(y))‖ ≤ (1 +K)‖x− y‖ (in particular, f is a Lipschitz map).
Finally, we must show that f−1 : f(S) → S is continuous. This too follows
because f−1 is Lipschitz. To see this, we pick u, v ∈ f(S). Then, ∃! x, y ∈ S
such that f(x) = u, f(y) = v. Then, ‖x − y‖ − ‖g(x) − g(y)‖ ≤ ‖f(x) − f(y)‖
(By reverse triangle inequality). So, (1−K)‖x− y‖ ≤ ‖f(x)− f(y)‖.
Therefore, f is an embedding.

Part 2: Having shown that f is an embedding, we will now use this to es-
tablish the theorem. In particular, we observe that showing g + h has a fixed
point, is equivalent to showing that f−1 ◦ h has a fixed point. This is because,
if f−1 ◦ h has a fixed point x ∈ S, then, f(f−1 ◦ h)(x) = f(x) =⇒ h(x) =
f(x) =⇒ g(x) + h(x) = (g + h)(x) = x.
To establish this, we must first show that h(S) ⊆ f(S) so that the map
f−1 ◦ h is well defined. We can in fact show that cl(h(S)) ⊆ f(S). To
this end, let y ∈ cl(h(S)). Define fy(x) = y + g(x), ∀x ∈ S. Then,
y + g(x) ∈ cl(h(S)) + g(S) ⊆ cl(h(S) + g(S)) ⊆ S (The last inclusion holds
because S is closed in X). This shows, that ∀y ∈ cl(h(S)) and ∀x ∈ S ,
fy(x) ∈ S. Also, observe that given y ∈ cl(h(S)), fy : S → S is a contraction
mapping since it is nothing but the translation of a contraction map. Then,
since X is a Banach space, and S is closed in X, S is also a Banach space. Fix
y and thus fy. Then, by Banach’s contraction mapping theorem applied to fy,
∃!x ∈ S such that fy(x) = x. This implies, y = f(x) i .e. y ∈ f(S). Since y
was arbitrary, we conclude that cl(h(S)) ⊆ f(S).
Now, consider f−1 ◦ h : S → S (this is well defined because h(S) ⊆ cl(h(S)) ⊆
f(S)). We already know that S is closed and convex. Further, we claim f−1 ◦h
is a Schauder map i.e. it is a relatively compact self map on S. This follows
because, given that f is a homeomorphism cl((f−1 ◦h)(S)) = f−1 ◦ cl(h(S)) and
a homeomorphism sends compact sets to compact sets. Thus, by Schauder’s
theorem, f−1 ◦ h : S → S must have a fixed point.

Therefore, as shown before we conclude that g+h has a fixed point proving the
theorem.[5]

3



Remark 3: Krasnoselskii’s fixed point theorem was discovered by Mark
Krasnoselskii in the 60’s. His main goal was to use the result for the study
of the solvability of certain non-linear PDE’s. Since then, the result has had
several generalizations. For a result achieved more recently, which implies the
previous generalizations, see [6].

Krasnoselskii embedding: The first part of the proof was paramount to
setting up the rest of the argument and allowed us to define an equivalent prob-
lem, by the use of Banach’s contraction mapping theorem. As a result, it will
be quite an important component of our proof of the main result in this paper,
which seeks to combine the contraction mapping theorem with Tarski’s order
theoretic fixed point theorem for ordered Banach spaces. For this reason, we
call this embedding constructed through a contraction map on a closed subset
of a Banach space, a Krasnoselskii embedding, and we will use it through the
rest of the paper without directly mentioning its construction.

3 Definitions and Tarski’s fixed point theorem

Below, we provide the relevant definitions from order theory.

1. Poset: A poset is a set equipped with a relation (X,<) such that this
relation is reflexive, anti-symmetric and transitive. The relation is known as a
partial order.

2. Chain: Let (X,<) be a poset. Then, S ⊆ X is said to be a <- chain
in X, if ∀ x, y ∈ S, either x < y or y < x.

3. Dedekind complete poset: A poset (X,<), is said to be Dedekind com-
plete, if each S ⊆ X bounded from above has a supremum i.e. ∃x∗ ∈ X such
that x∗ < y ∀y ∈ S and x < x∗ ∀x ∈ {x ∈ X : x < S} (by x < S, we mean
x < y, ∀ y ∈ S).

4. Complete Lattice: A poset is said to be a complete lattice if it is Dedekind
complete and has a global maximum and minimum.

5.Riesz Space: A Real Banach space (X, ‖‖,<) equipped with a partial order,
is said to be Riesz if it satisfies the following compatibility laws:
i) If x < 0, then λx < 0 ∀λ ∈ R+.
ii) If x < y, then x+ z < y + z, ∀z ∈ X
iii)Given x < y < 0, we must have ‖x‖ ≥ ‖y‖.

6. Increasing map: A self map f on a poset, X is said to be increasing,
provided f(x) < f(y) whenever x < y.

7. Set of fixed points: From here on, Fix(f) will represent the set of fixed
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points of a self map f.

3.1 Tarski’s fixed point Theorem

Tarski’s fixed point theorem: Let (X,<) be a complete lattice, and f :
X → X be an increasing self-map on S. Then, Fix(f) is nonempty and is closed
under maximum and minimum. (In particular, the set of fixed points of f has a
maximum and minimum within it.)

Remark 4: Tarski’s fixed point theorem was stated by him in a paper pub-
lished in 1955. The mathematician Knaster also contributed, to the result, by
establishing the result for certain special lattices. For this reason, it is often
known as the Knaster-Tarski theorem. To see the result as orginally published,
see [7]

Note: A map of this nature will be known as a Tarski map.

4 Main Result

Now, we will state and prove the central result of this paper.

4.1 Theorem

Theorem 1. Let (X, ‖‖,<) be a Riesz space and let S ⊆ X such that:
i) S is a < chain in X
ii) S is a complete lattice
iii) S is closed in X.
Let g : S → X be a contraction on S with Lipschitz coefficient K ∈ (0, 1) and
let h : S → X be an increasing map on S. Then, if g(S)+h(S) ⊆ S, Fix(h+g)
is a nonempty subset of S and has a < maximum and < minimum.

Proof. Let f : S → X be the Krasnoselskii embedding constructed using the
contraction map. Then, we can define f−1 : f(S)→ S (as before, given that f
is an embedding). Now, f−1 ◦ h is well defined, since h(S) ⊆ f(S) (The proof
is identical to what was shown in the section on Krasnoselskii’s theorem).
As before, in order to show that h+ g has a fixed point, it suffices to show that
f−1 ◦ h : S → S has a fixed point.
Claim: f−1◦h is an increasing self map on S. To demonstrate this claim, suppose
x < y. Then, since h is an increasing map, h(x) < h(y). Let (f−1 ◦ h)(x) =
α, (f−1 ◦ h)(y) = β. Then, h(x) = f(α) = α − g(α), h(y) = β − g(β). So, we
have (α− g(α)) < (β − g(β)). This gives, α− β < g(α)− g(β).
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Now, given that S is a chain, we must have that either α < β or β < α.
Case 1: β < α. This implies g(β) − g(α) < β − α < 0. Since X is a Riesz
space, this would imply that ‖g(β) − g(α)‖ ≥ ‖β − α‖. However, given that g
is a contraction, this is a contradiction. Thus, this case cannot occur.
Therefore, we must have α < β. This shows that f−1 ◦ h is an increasing
self map on S. Thus, by Tarski’s theorem, f−1 ◦ h has a nonempty set of
fixed points which is closed under maximum and minimum. However, since
Fix(f−1 ◦ h) = Fix(h + g), the result holds for h + g. This completes the
proof.

5 Discussion and Counterexample

The proof of this theorem, would not be valid if we dropped the chain assump-
tion as it would not even be necessary for α and β to be < comparable. This
prompts the question - Would this result hold in general, if one dropped the
chain assumption, and simply assumed the subset to be closed and a complete
lattice?
It turns out that the result fails to hold for a general non-chain subset of a Riesz
space. To show this we provide a counterexample below.

5.1 Counterexample

Let X = R2 be the Riesz space under consideration. We will construct a spe-
cial subset S of X, which is a closed subset and a complete lattice, but is not
a chain in X. It will be shown, that the theorem does not hold for this par-
ticular subset. First, consider the anti-chain A = {(x, y) ∈ R2 : y = −x}
⊂ R2. Clearly, A is closed, but it is not a complete lattice as no two el-
ements are comparable with respect to the standard component-wise partial
order, and it’s components are unbounded. So, fix x∗ ∈ R+ and define S =
{(x, y) ∈ A : −x∗ ≤ x ≤ x∗} ∪ {(x∗, x∗), (−x∗,−x∗)}. In particular, S is
constructed by taking the union of a finite segment of A with two additional
points. These points serve as a maximum and minimum for the set, and since
A is an anti-chain, S is a complete lattice. Also, S is closed in X since it is a
union of two closed sets.However, it is clearly not a chain in X.

Now, we construct a contraction g : S → X and an increasing map h : S → X
such that h(S) + g(S) ⊂ S (which are the conditions of the theorem), but with
the property that Fix(h+ g) = φ.
First, we define C = {(x, y) ∈ A : −x∗ ≤ x ≤ x∗} andD = {(x∗, x∗), (−x∗,−x∗)}
(Effectively, we consider the two closed sets which separate S causing its dis-
connectedness). Now, define g(−x, x) = (x

3 ,
x
3 ) ∀(−x, x) ∈ C (Since C is the

bounded anti-chain y = −x, all points are of the form (−x, x) for some unique
x ∈ (−x∗, x∗)). Geometrically, this is nothing but a rotational isometry, followed
by a scaling by 1

3 . Extend g to the entire S by defining g(x∗, x∗) = (−2x∗
3 , −2x∗

3 )
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and g(−x∗,−x∗) = ( 2x∗
3 , 2x∗

3 ). So, g is defined piecewise on C and D. Clearly,
g restricted on C is a Lipschitz map with coefficent 1

3 . Therefore, to show g is
a contraction on S it suffices to prove that there is some c ∈ (0, 1) such that
d(g(x1, y1), g(x2, y2)) ≤ cd((x1, y1), (x2, y2)) ∀(x1, y1) ∈ D and ∀(x2, y2) ∈ C,
as then max(c, 13 ) would be a global Lipschitz coefficient for the function g,
proving that it is a contraction. By symmetry, we consider (x1, y1) = (x∗, x∗).
Let (x2, y2) = (x,−x). Then, d((x1, y1), (x2, y2)) =

√
(x∗ − x)2 + (x∗ + x)2 =

√
2
√

(x∗)2 + (x)2. On the other hand, d(g(x1, y1), g(x2, y2)) =
√

2
√

(x
3 + 2x∗

3 )2.

It is readily seen using the fact that x2 ≤ x2∗, that the quantity is bounded above

by
√

2
√

8
9

√
(x∗)2 + (x)2. In particular,

√
8
9 serves as a good enough value c for

our purposes. Thus, L = max(
√

8
9 ,

1
3 ) =

√
8
9 is a Lipshcitz coefficient for the

map g, proving g is a contraction.

Now, we construct the increasing map h on S as follows- Define h(x,−x) =
( 2x

3 , 0) ∀(x,−x) ∈ C \ 0. At 0, define h(0, 0) = (−x∗
3 ,

x∗
3 ). Clearly, h is an

increasing map when restricted to C because C is an anti-chain and every map
on it is an increasing map. Extend, h to S by defining h(x∗, x∗) = ( 2x∗

3 , 2x∗
3 )

and h(−x∗,−x∗) = (− 2x∗
3 ,− 2x∗

3 ). It is apparent that h is an increasing map
on S. Observe, g(S) + h(S) ⊂ S since all non-zero points on the anti-chain,
map to their own rescaling by 1

3 (as, (g + h)(x,−x) = (x
3 ,−

x
3 ), 0 maps to the

point h(0) ∈ S given that the contraction maps it to itself. Also, (g + h)(D)
= {(0, 0)}. However, even though all the conditions of our theorem were sat-
isfied for the closed, complete lattice S, we observe g + h has no fixed point.
Therefore, this method provides a counterexample albeit a pathological one, to
a more general version of our theorem with the chain assumption removed.

6 Conclusion and further discussion

From the past two sections, we have seen that while there is a partial result
on the combination of Banach and Tarski’s theorems in the context of special
subsets of a Riesz space, there is no generalization to arbitrary closed, complete
lattice subsets of a Riesz space. The former was shown through our theorem and
the latter was illustrated via a counterexample. But, chains are far too special
objects, and for this theorem to be useful, we would hope for a better result.
This prompts the questions: Are there certain special kinds of sub-lattices of
a poset for which this result holds, which are more general than chains? If
so, what are the potential applications of such a result? An example, could be
studying Boolean lattices and their sub-lattice structure and the validity of such
results.
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