Problemset 2. Due April 11.

The Gamma process is defined as a process with independent and stationary increments whose distribution at time 1 is the exponential distribution with density

\[p(x) = \begin{cases}
 e^{-x}dx & \text{if } x \geq 0 \\
 0 & \text{otherwise}
\end{cases} \]

1) What is its distribution at time \(t > 0 \)?

2) What is the Levy-Khintchine representation for the process?

3) Show that the process is increasing and made up only of positive jumps.

4) What is the distribution of the biggest jump during \(0 \leq t \leq 1 \)?

5) Given \(X(1) \geq A \) what is \(EX(1) \)?

6) If \(A \) is large, show that the large value of \(X(1) \) is due to at least one jump of order of magnitude \(A \) i.e if \(\Omega_{\delta A} \) is the set of paths with no jumps of size larger than \(\delta A \), then

\[\lim_{\delta \to 0} \limsup_{A \to \infty} P[\Omega_{\delta A}|X(1) = A] = 0 \]

7) If \(Y \) is the largest jump can you calculate asymptotically the conditional distribution of \(\frac{Y}{X(1)} \) given \(X(1) = A \), asymptotically as \(A \to \infty \)?

8) At what point in time would the largest jump have occurred?