Chapter 5

Stochastic Integrals and Itô’s formula.

We will call an Itô process a progressively measurable almost surely continuous process $x(t, \omega)$ with values in \mathbb{R}^d, defined on some $(\Omega, \mathcal{F}_t, P)$ that is related to progressively measurable bounded functions $[a(s, \omega), b(s, \omega)]$ in the following manner.

$$\exp[(\theta, x(t, \omega) - x(0, \omega) - \int_0^t b(s, \omega)ds) - \frac{1}{2} \int_0^t \langle \theta, a(s, \omega)\theta \rangle ds]$$

is a martingale with respect to $(\Omega, \mathcal{F}_t, P)$ for all $\theta \in \mathbb{R}^d$. A canonical example is Brownian motion that corresponds to $b(s, \omega) \equiv 0$ and $a(s, \omega) \equiv 1$ or $a(s, \omega) \equiv I$ in higher dimensions. We will abbreviate it by $x(\cdot) \in I(a, b)$. Such processes are not of bounded variation unless $a \equiv 0$. In fact they have nontrivial quadratic variation.

Lemma 5.1. If $x(\cdot)$ is a one dimensional process and $x(\cdot) \in I(a, b)$ then

$$\lim_{n \to \infty} \sum_{j=1}^n |x(jT/n) - x((j-1)T/n)|^2 = \int_0^T a(s, \omega)ds$$

in probability and in $L_1(P)$.

Proof. If $y(t) = x(t) - x(0) - \int_0^t b(s, \omega)ds$, then $y(\cdot) \in I(a, 0)$ and the difference between $x(\cdot)$ and $y(\cdot)$ is a continuous function of bounded variation. It is therefore sufficient to show that

$$\lim_{n \to \infty} \sum_{j=1}^n |y(jT/n) - y((j-1)T/n)|^2 = \int_0^T a(s, \omega)ds$$

If we denote by

$$Z_j = |y(jT/n) - y((j-1)T/n)|^2 - \int_{(j-1)T/n}^{jT/n} a(s, \omega)ds$$

1
then \(E[Z_j] = 0 \) and for \(i \neq j \), \(E[Z_i Z_j] = 0 \). It is therefore sufficient to show
\[
E[|Z_j|^2] \leq \frac{C(T)}{n^2}.
\]
This follows easily from the Gaussian bound
\[
E[e^\lambda(y(t_2) - y(t_1))] \leq e^{\frac{C\lambda^2(t_2 - t_1)}{2}}
\]
provided \(a(s, \omega) \leq C \). We see that \(E[(y(t_2) - y(t_1))^4] \leq C(t_2 - t_1)^2 \).

This means that integrals of the form \(\int_0^t e(s, \omega) dx(s, \omega) \) have to be carefully defined. Since the difference between \(x(\cdot) \) and \(y(\cdot) \) is of bounded variation it suffices to concentrate on \(\int_0^t e(s, \omega) dx(s, \omega) \). We develop these integrals in several steps, each one formulated as a lemma.

Lemma 5.2. Let \(S \) be the space of functions \(e(s, \omega) \) that are uniformly bounded piecewise constant progressively measurable functions of \(s \). In other words there are intervals \([t_{j-1}, t_j)\) in which \(e(s, \omega) \) is equal to \(e(t_{j-1}, \omega) \) which is \(F_{t_{j-1}} \)-measurable. We define for \(t_{k-1} \leq t \leq t_k \)
\[
\xi(t) = \int_0^t e(s, \omega) dy(s) = \sum_{j=1}^{k-1} e(t_{j-1}, \omega)[y(t_j) - y(t_{j-1})] + e(t_{k-1}, \omega)[y(t) - y(t_{k-1})]
\]
The following facts are easy to check.

1. \(\xi(t) \) is almost surely continuous, progressively measurable. Moreover \(\xi(\cdot) \in \mathcal{I}(e^2(s, \omega)a(s, \omega), 0) \).
2. The space \(S \) is linear and the map \(e \to \xi \) is a linear map.
3. \[
E\left[\sup_{0 \leq s \leq t} |\xi(s, \omega)|^2 \right] \leq 4E\left[\int_0^t |e(s, \omega)|^2 a(s, \omega) ds \right]
\]
4. In particular if \(e_1, e_2 \in S \), and for \(i = 1, 2 \)
\[
\xi_i(t) = \int_0^t e_i(s, \omega) dy(s)
\]
then
\[
E\left[\sup_{0 \leq s \leq t} |\xi_1(s, \omega) - \xi_2(s, \omega)|^2 \right] \leq 4E\left[\int_0^t |e_1(s, \omega) - e_2(s, \omega)|^2 a(s, \omega) ds \right]
\]

Proof. It is easy to see that, because for \(\lambda \in \mathbb{R} \),
\[
E[\exp\{\lambda y(t) - y(s)\}] = e^{\frac{\lambda^2}{2} \int_s^t a(u, \omega) du} \mathbb{P}(s) = 1
\]
it follows that if \(\lambda \) is replaced by \(\lambda(\omega) \) that is bounded and \(\mathcal{F}_t \) measurable then

\[
E[\exp[\lambda(s, \omega)(y(t) - y(s))] - \frac{\lambda(s, \omega)^2}{2} \int_s^t a(u, \omega)du | \mathcal{F}_s] = 1
\]

We can take \(\lambda(s, \omega) = \lambda e^t(s, \omega) \). This proves 1. 2 is obvious and 3 is just Doob’s inequality. 4 is a restatement of 3 for the difference.

Lemma 5.3. Given a bounded progressively measurable function \(e(s, \omega) \) it can be approximated by a sequence \(e_n \in S \), such that \(\{e_n\} \) are uniformly bounded and

\[
\lim_{n \to \infty} E[\int_0^T |e_n(s, \omega) - e(s, \omega)|^2ds] = 0
\]

As a consequence the sequence \(\xi_n(t) = \int_0^t e_n(s, \omega)dy(s) \) has a limit \(\xi(t, \omega) \) in the sense

\[
\lim_{n \to \infty} E[\sup_{0 \leq s \leq t} |\xi_n(s) - \xi(s)|^2] = 0
\]

It follows that \(\xi(t, \omega) \) is almost surely continuous and \(\xi(\cdot) \in \mathcal{I}(e^2(s, \omega)a(s, \omega)) \).

Proof. It is enough to prove the approximation property. Since

\[
Y_\lambda(t) = \exp[\lambda \xi_n(t)] - \frac{\lambda^2}{2} \int_0^s e_n^2(s, \omega)a(s, \omega)ds
\]

are martingales and \(e_n^2a \) has uniform bound \(C \), it follows that

\[
\sup_{0 \leq t \leq T} \sup_{n} E[\exp[\lambda \xi_n(t)]] \leq \exp[\frac{C\lambda^2T}{2}]
\]

providing uniform integrability. We note that

\[
\lim_{n,m \to \infty} E[\sup_{0 \leq s \leq t} |\xi_n(s) - \xi_m(s)|^2] = 0
\]

Now it is easy to show that \(\xi_n(\cdot) \) has a uniform limit in probability and pass to the limit. To prove the approximation property we approximate first \(e(s, \omega) \) by

\[
e_h(s, \omega) = \frac{1}{h} \int_{(s-h)v0}^s e(u, \omega)du
\]

It is a standard result in real variables that \(\|e_h(\cdot) - e_h(\cdot)\|_2 \to 0 \) as \(h \to 0 \) and \(e_h \) is continuous in \(s \). Note that we only look back and not ahead, thus preserving progressive measurability. We can now approximate \(e_h(s, \omega) \) by \(e_h(\frac{\text{int}}{h}, \omega) \) that are again progressively measurable, but simple as well, so they are in \(S \).

Lemma 5.4. If \(e(s, \omega) \) is progressively measurable and satisfies

\[
E[\int_0^T e^2(s, \omega)a(s, \omega)ds] < \infty
\]
we can define on \([0, T]\),
\[
\xi(t) = \int_0^t e(s, \omega)dy(s)
\]
as a square integrable martingale and
\[
\xi(t)^2 - \int_0^t e^2(s, \omega)a(s, \omega)ds
\]
will be a martingale.

Proof. The proof is elementary. Just approximate \(e\) by truncated functions
\[
e_n(s, \omega) = e(s, \omega)1_{|e(s, \omega)| \leq n}(\omega)
\]
and pass to the limit. Again
\[
\lim_{n,m \to \infty} E[\sup_{0 \leq s \leq t} |\xi_n(s) - \xi_m(s)|^2] = 0
\]

Remark 5.1. If \(x(\cdot) \in I(a, b)\) we can let \(y(t) = x(t) - \int_0^t b(s, \omega)ds\) and define
\[
\xi(t) = \int_0^t e(s, \omega)dx(s) = \int_0^t e(s, \omega)dy(s) + \int_0^t e(s, \omega)b(s, \omega)ds
\]
If
\[
E[\int_0^t b^2(s, \omega)e^2(s, \omega)ds] < \infty
\]
then we can check \(\xi\) is well defined. In fact we can define for bounded progressively measurable \(e, c,\)
\[
\xi(t) = \int e(s, \omega)dx(s) + \int c(s, \omega)ds
\]
It is easy to check that
\[
\xi(\cdot) \in I(e^2(s, \omega)a(s, \omega), e(s, \omega)b(s, \omega) + c(s, \omega))
\]
Recall that if \(X \sim N[\mu, \sigma^2]\) and \(Y = aX + b\) then \(Y \sim N[a\mu + b, a^2\sigma^2]\).

Remark 5.2. We can have \(x(t) \in \mathbb{R}^d\) and \(x(\cdot) \in I(a, b)\), where \(a = a(s, \omega)\)
is a symmetric positive semidefinite matrix valued bounded progressively measurable function and \(b = b(s, \omega)\) is an \(\mathbb{R}^d\) valued, bounded and progressively measurable. We can the define
\[
\xi(t) = \int_0^t e(s, \omega) \cdot dx(s) + \int c(s, \omega)ds
\]
where \(e(s, \omega) \) is a progressively measurable bounded \(k \times d \) matrix and \(c \) is \(\mathbb{R}^k \) valued, bounded and progressively measurable. The integral is defined by each component. For \(1 \leq i \leq k \),

\[
\xi_i(t) = \sum_j \int_0^t e_{i,j}(s, \omega) \cdot dx_j(s) + \int c_i(s, \omega)ds
\]

The one verifies easily that

\[
\xi(\cdot) \in \mathcal{I}(ca^*, eb + c)
\]

Theorem 5.5. Itô’s formula. Consider a smooth function \(f(t, x) \) on \([0, T] \times \mathbb{R}^d\). Let \(x(t) \) with values in \(\mathbb{R}^d \) belong to \(\mathcal{I}(a, b) \). Then almost surely

\[
f(t, x(t)) = f(0, x(0)) + \int_0^t f_s(s, x(s))ds + \int_0^t (\nabla_x f)(s, x(s)) \cdot dx(s) + \frac{1}{2} \int_0^t \sum a_{i,j}(s, \omega)(D_{x_i,x_j}f)(s, x(s))ds
\]

Proof. Consider the \(d + 1 \) dimensional process \(Z(t) = (f(t, x(t)), x(t)) \). If \(\sigma \in \mathbb{R} \) and \(\lambda \in \mathbb{R}^d \), then if we consider \(g(t, x) = \sigma f(t, x) + \langle \lambda, x \rangle \) we know that

\[
\exp[\sigma g(t, x(t)) - g(0, x(0)) - \int_0^t e^{-g}[\partial_s e^g + L_{s, \omega} e^g](s, x(s))ds]
\]

is a martingale. A computation yields

\[
e^{-g}[\partial_s e^g + L_{s, \omega} e^g] = \partial_s g + L_{s, \omega} g + \frac{1}{2} \langle \nabla g, a \nabla g \rangle
\]

\[
= \sigma \partial_s f + \sigma L_{s, \omega} f + \langle \lambda, b(s, \omega) \rangle + \frac{1}{2} \langle (\sigma \nabla f + \lambda), a(s, \omega)(\sigma \nabla f + \lambda) \rangle
\]

Implies that \(Z(t) \in \mathcal{I}(\tilde{a}, \tilde{b}) \), where

\[
\tilde{a} = \begin{pmatrix}
\langle \nabla f, a \nabla f \rangle & (a \nabla f)^{tr} \\
(a \nabla f) & a
\end{pmatrix}
\]

and

\[
\tilde{b} = (\partial_s f + L_{s, \omega} f, b)
\]

Now we can compute that \(w(\cdot) \in \mathcal{I}(A, B) \) where

\[
w(t) = \int_0^t \cdot df(s, x(s)) - \int_0^t (\partial_s f)(s, x(s))ds - \int_0^t (\nabla_x f)(s, x(s)) \cdot dx(s)
\]

\[- \frac{1}{2} \int_0^t \sum_{i,j} a_{i,j}(s, \omega)(D_{x_i,x_j}f)(s, x(s))ds
\]
If we can calculate and show that $A = 0$ and $B = 0$, this would imply that $w(t) \equiv 0$ and that proves the theorem.

$$
A = (1, -\nabla f) \left(\begin{pmatrix} \langle \nabla f, a \nabla f \rangle \\ a \end{pmatrix} - \nabla f \right) = 0
$$

$$
B = \partial_s f + L_{s, \omega} f - b \cdot \nabla f - \frac{1}{2} \sum_{i,j} a_{i,j}(s, \omega)(D_{x_i x_j} f) = 0
$$

Remark 5.3. If $x(\cdot) \in \mathcal{I}(a, b)$ and $y(t) = \int_0^t \sigma(s, \omega) \cdot dx(s) + \int_0^t c(s, \omega) ds$ we saw that

$$
y(\cdot) \in \mathcal{I}(\tilde{a}, \tilde{b})
$$

where

$$
\tilde{a} = \sigma a \sigma^*, \tilde{b} = \sigma b + c
$$

This is like linear change of variables of a Gaussian vector. $dx \simeq N[adtdt, bdtdt]$ and $\sigma dx + c \simeq N[\sigma a \sigma^* dt, (\sigma b + c) dt]$. We can develop stochastic integrals of $y(\cdot)$ and if $dz = \sigma' dy + c' dt$ then $dz = \sigma' \sigma dx + (\sigma' c + c') dt$. If σ is a invertible then $dy = \sigma dx + c dt$ can be inverted as $dx = \sigma^{-1} dy - \sigma^{-1} c dt$.

Finally one can remember Itô’s formula by the rules

$$
df(t, x(t)) = f_t dt + \sum_i f_{x_i} dx_i + \frac{1}{2} \sum_{i,j} f_{x_i x_j} dx_i dx_j
$$

If $x(\cdot) \in \mathcal{I}(a, b)$ then $dx_i dx_j = a_{i,j} dt$. $(dt)^2 = dt dx_i = 0$. Because the typical paths have half a derivative (more or less) $dx \simeq \sqrt{dt}$. $dx_i dx_j$ is of the order of dt and $dt dx_i, (dt)^2$ are negligible.