Lecture 5.

Some times we want to estimate a function \(f(\theta) \) of \(\theta \) rather than \(\theta \) itself. If \(f \) is a smooth function and \(t_n(x_1, \ldots, x_n) \) is an estimate of \(\theta \) with

\[
E_\theta[(t_n - \theta)^2] \simeq \frac{v(\theta)}{n}
\]

by Taylor expansion we saw that \(f(t_n) - f(\theta) = f'(\theta)(t_n - \theta) \) and we expect

\[
E_\theta[(f(t_n) - f(\theta))^2] \simeq \frac{[f'(\theta)]^2 v(\theta)}{n}
\]

The Cramér-Rao inequality becomes

\[
E_\theta[f(t_n)] = f_n(\theta)
\]

\[
\sum_{x_1, \ldots, x_n} [f(t_n) \frac{\partial \phi(\theta, x_1, \ldots, x_n)}{\partial \theta}] = f_n'(\theta)
\]

\[
\sum_{x_1, \ldots, x_n} [f(t_n) \frac{\partial \log \phi(\theta, x_1, \ldots, x_n)}{\partial \theta} \phi(\theta, x_1, \ldots, x_n)] = f_n'(\theta)
\]

\[
E_\theta[\frac{\partial \log \phi(\theta, x_1, \ldots, x_n)}{\partial \theta} \phi(\theta, x_1, \ldots, x_n)] = 0
\]

\[
E_\theta[(f(t_n) - f(\theta)) \frac{\partial \log \phi(\theta, x_1, \ldots, x_n)}{\partial \theta} \phi(\theta, x_1, \ldots, x_n)] = f_n'(\theta)
\]

\[
E_\theta[(f(t_n) - f(\theta))^2] \geq \frac{[f'(\theta)]^2}{n I(\theta)}
\]

Maximum Likelihood estimate.

The maximum likelihood estimation is perhaps the most important method of estimation for parametric families. Whether it is probabilities \(p(\theta, x) \) or densities \(f(\theta, x) \) the likelihood function is the joint probability or density and is given by

\[
L(\theta, x_1, x_2, \ldots, x_n) = \prod_i p(\theta, x_i)
\]

or

\[
L(\theta, x_1, x_2, \ldots, x_n) = \prod_i f(\theta, x_i)
\]
Given the observed values \((x_1, x_2, \ldots, x_n)\) this is viewed as a function of \(\theta\) and the value \(\hat{\theta} = t(x_1, \ldots, x_n)\) that maximizes it is taken as the estimate of \(\theta\).

Examples.

1. **Binomial.** With \(t = \sum x_i\) the number of heads

\[
L(\theta, x) = \theta^t (1 - \theta)^{n-t}
\]

\[
\frac{d \log L}{d \theta} = 0
\]

\[
t \hat{\theta} = \frac{n - t}{1 - \hat{\theta}}
\]

reduces to \(\hat{\theta} = \frac{t}{n}\)

2. **Normal family with known variance equal to 1,**

\[
f(\mu, x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x - \mu)^2}{2}\right]
\]

\[
\log L(\mu, x_1, \ldots, x_n) = -\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \log 2\pi
\]

\[
\frac{\partial \log L}{\partial \mu} = \sum_{i=1}^{n} (x_i - \mu) = 0
\]

\[
\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

3. **Normal family with mean 0 but unknown variance \(\theta.\)**

\[
f(\theta, x) = \frac{1}{\sqrt{2\pi\theta}} \exp\left[-\frac{x^2}{2\theta}\right]
\]

\[
\log L(\theta, x_1, \ldots, x_n) = -\frac{1}{2\theta} \sum_{i=1}^{n} x_i^2 - \frac{n}{2} \log 2\pi - \frac{n}{2} \log \theta
\]
\[
\frac{\partial \log L}{\partial \theta} = \frac{1}{2\theta^2} \sum_{i=1}^{n} x_i^2 - \frac{n}{2\theta} = 0
\]

\[
\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i^2
\]

4. Gamma family.

\[
f(p, x) = \frac{1}{\Gamma(p)} e^{-x} x^{p-1}
\]

\[
L(p, x_1, \ldots, x_n) = -n \log \Gamma(p) - \sum_{i=1}^{n} x_i + (p - 1) \sum_{i=1}^{n} \log x_i
\]

\[
\frac{\partial \log L}{\partial p} = -n \frac{\Gamma'(p)}{\Gamma(p)} + \sum_{i=1}^{n} \log x_i = 0
\]

\(\hat{p}\) is the solution of the equation

\[
\frac{\Gamma'(p)}{\Gamma(p)} = \frac{1}{n} \sum_{i=1}^{n} \log x_i
\]

Properties of a good estimator.

1. Consistency.

\[
P_\theta[|t_n - \theta| \geq \delta] \to 0
\]

Enough if \(E_\theta[|t_n - \theta|^2] \to 0\).

2. Efficiency

The variance \(E_\theta[|t_n - \theta|^2]\) must be as small as possible. If the Cramér-Rao bound is approached it is good. Asymptotically efficient.

\[
nE_\theta[(t_n - \theta)^2] \to \frac{1}{I(\theta)}
\]

3. It is good to know the asymptotic distribution of \(t_n\). A central limit theorem of the form

\[
P[\sqrt{n}(t_n - \theta) \sqrt{1(\theta)} \leq x] \to \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{y^2}{2}\right]dy
\]

3
4. If there is a sufficient statistic MLE is a function of it.

Theorem. If \(f(\theta, x) \) is nice then the MLE satisfies 1, 2 and 3.

Explanation. Why does it work? Consider the function \(\log p(\theta, x) \) as a function of \(\theta \) and compute its expectation under a particular value \(\theta_0 \) of \(\theta \).

\[
E_{\theta_0} [\log p(\theta, x)] - E_{\theta_0} [\log p(\theta_0, x)] = E_{\theta_0} \left[\log \frac{p(\theta, x)}{p(\theta_0, x)} \right] \\
\leq \log E_{\theta_0} \left[\frac{p(\theta, x)}{p(\theta_0, x)} \right] \\
= \log \sum_x p(\theta, x) \\
= 0
\]

If the sample is from the population with \(\theta = \theta_0 \) by the law of large numbers the function

\[
\frac{1}{n} \log L(\theta, x_1, x_2, \ldots, x_n) \simeq E_{\theta_0} [\log p(\theta, x)]
\]

has its maximum at \(\theta_0 \). Therefore \(L(\theta, x_1, x_2, \ldots, x_n) \) is likely to have its maximum close to \(\theta_0 \).

More Examples.

\[
f(\theta, x) = \frac{1}{\theta^2}; \quad 0 \leq x \leq \theta
\]

\[
f(\theta, x_1, \ldots, x_n) = \frac{1}{\theta^n}
\]

\(\theta \) wants to be as small as possible. But \(\theta \geq x_i \) for every \(i \).

\[
t_n(x_1, \ldots, x_n) = \max\{x_1, \ldots, x_n\}
\]

Multiparameter families

1.

\[
f(\mu, \theta, x) = \frac{1}{\sqrt{2\pi}\theta} \exp\left[-\frac{(x - \mu)^2}{2\theta} \right]
\]
\[
\log L(\theta, x_1, \ldots, x_n) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \theta - \frac{1}{2\theta} \sum_{i=1}^{n} (x_i - \mu)^2
\]

\[
\frac{\partial \log L}{\partial \theta} = 0, \quad \frac{\partial \log L}{\partial \mu} = 0
\]

\[
\theta = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2; \quad \sum_{i=1}^{n} (x_i - \mu) = 0
\]

\[
\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

\[
\hat{\theta} = s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2
\]

2. Multivariate Normal families. \(x = \{x_1, \ldots, x_d\}, \mu = \mu_1, \ldots, \mu_d \in \mathbb{R}^d \). \(A = \{a_{r,s}\} \) is a symmetric positive definite \(d \times d \) matrix.

\[
f(\mu, A, x) = \left(\frac{1}{\sqrt{2\pi|A|}}\right)^d \exp\left[-\frac{<x, A^{-1}x>}{2}\right]
\]

\[
\int_{\mathbb{R}^d} x_r f(\mu, A, x) dx = \mu_r
\]

\[
\int_{\mathbb{R}^d} (x_r - \mu_r)(x_s - \mu_s) f(\mu, A, x) dx = a_{r,s}
\]

\[
\hat{\mu}_r = \bar{x}_r = \frac{1}{n} \sum_{i=1}^{n} x_{i,r}
\]

\[
\hat{a}_{r,s} = \frac{1}{n} \sum_{i=1}^{n} (x_{i,r} - \mu_r)(x_{i,s} - \mu_s) = \frac{1}{n} \sum_{i=1}^{n} x_{i,r} x_{i,s} - \bar{x}_r \bar{x}_s
\]