
Lecture 4.

Data is information. About what? About the underlying distribution that
the data is sampled from. We can always create data by simulation if we
know the underlying distribution exactly, in which case the data has no
value. In that case any lost data can be recreated and it does not make
any difference. If we do not know the distribution exactly then the loss is
indeed a loss and we can not recreate the data by simulation or ”drawing a
sample” again because we do to know which population to draw from.

A statistic is a function of the observations t(x1, x2, . . . , xn). If we calculate
t = t(x1, x2, . . . , xn) from the sample, store it and discard the sample, we
have lost some information but not all. Some times we can resurrect it.

Sufficiency. Let us go back to coin tossing. We denote the probability
of a head in a toss by θ. But we have data in the form of (x1, x2, . . . , xn)
where each xi is 1 for a head and 0 for a tail. The probability for a string
x1, x2, . . . , xn of 0’s and 1’s.

p(θ, x1, x2, . . . , xn) = θt(1− θ)n−t

where t = t(x1, x2, . . . , xn) =
∑
i xi. The probability depends on the obser-

vations (x1, x2, . . . , xn) only thorough t. What does that mean? We know
the number of heads in n tosses but we have lost the information about the
order in which head or tail occurred. Once we know the number of heads is
t, there are

(
n
t

)
possible arrangements and they all have equal probability.

Arrange in a random order and nobody would notice! In other words the
”order” in this case has no additional information about the parameter θ
beyond what is provided by the total number t of heads.

Geometric variables. x ≥ 0

p(θ, x) = θ(1− θ)x

If we have n of them

p(θ, x1, x2, . . . , xn) = θn(1− θ)t(x1,x2,...,xn)

where t(x1, x2, . . . , xn) =
∑
i xi
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We have a coin with unknown probability θ for a head. We keep tossing
till we get n heads, the i-th head preceded by xi tails. t =

∑
i xi. If we

only know t and do not know θ can we recreate {xi}? We see that all of
them have equal probability. How many are there? The number of ways of
dividing t into {xi} is choosing t slots among n + t − 1 slots for the tails.
Out of n + t slots the last one has to be a head. Each arrangement has

probability
(
n+t−1

t

)−1
.

p(θ, x1, x2, . . . , xn) = θn(1− θ)t
(
n+ t− 1

t

)(
n+ t− 1

t

)−1
Poisson variables. x ≥ 0

p(θ, x) =
e−θθx

x!

With t = t(x1, x2, . . . , xn) =
∑
i xi

p(θ, x1, x2, . . . , xn) =
e−nθθt(x1,x2,...,xn)

x1!x2! · · ·xn!

Now p(θ, x1, x2, . . . , xn) factors as

p(θ, x1, x2, . . . , xn) = p1(θ, t)p2(x1, x2, . . . , xn)

where

p1(θ, t) =
e−nθntθt

t!

and

p2(x1, x2, . . . , xn) =
t!

x1!x2! . . . xn!

1

nt

You have monthly data on the number of accidents accidents for each
month. It is known to follow a Poisson distribution, with an unknown
parameter, but is known to be the same for every month. You have kept
the total number of accidents for the year but have lost the information
about how many each month. You can recreate it by assigning each ac-
cident randomly with probability 1

12 to one of the months and you have
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successfully recreated the lost data. If you can do it then you really did
not need the full data, the partial information was ”SUFFICIENT”. The
crucial step is that the conditional distribution of the full sample x1, . . . , xn
given t should not dependent of θ, so given t we can recreate x1, . . . , xn
with out knowing θ.

It is a little more complicated in continuous variables. Let for θ > 0, on
[0,∞) the density be given by

f(θ, x) = θe−θx

Then with t =
∑
i xi

f(θ, x1, x2, . . . , xn) = θne−θt

Given the sum t, x1, x2, . . . , xn is uniformly distributed over the hyperplane
xi ≥ 0,

∑
i xi = t no matter what the value of t is. So t is sufficient.

What if
f(θ, x) = θ2e−θxx

We have again with t =
∑
i xi

f(θ, x1, x2, . . . , xn) = θ2ne−θtx1x2 · · ·xn

Now given t the distribution on
∑
i xi = t is not uniform but has a weight

x1x2 · · ·xn that is still independent of θ. It will have some normalization
c(t) and we will factor

f(θ, x1, x2, . . . , xn) = θ2ne−θtc(t)× [c(t)]−1x1x2 · · ·xn

c(t) =
t2n−1

Γ(2n)

Some times we need more than one ”t”, especially if there are many param-
eters.

Normal Family

f(µ, θ, x) = c(θ) exp[− (x− µ)2

2θ
] = c(θ, µ) exp[

µ

θ
x− x2

2θ
]
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We need both t1 = 1
n

∑
i xi and t2 =

∑
i x

2
i . Given t1 and t2, we have

uniform distribution on the intersection of the sphere
∑
i x

2
i = t2 with the

hyperplane
∑
i xi = t1. Do not need to know the values of µ, θ for this. t1,

t2 are sufficient for µ, θ. Some times we may need more than one statistic
for a single parameter. If we know that θ = µ2 and µ 6= 0 is the only
parameter still with

f(µ, θ, x) = c(θ) exp[− (x− µ)2

2µ2
] = c(µ) exp[

1

µ
x− x2

2µ2
]

we still need
∑
i xi and

∑
i x

2
i .

Do sufficient statistics exist. The entire sample is sufficient. Order is not
needed. Use symmetric functions. No need to use information you do not
need!

Other examples. Uniform distribution on [0, θ].

f(θ, x1, x2, . . . , xn) = θ−n; 0 ≤ xi ≤ θ ∀i

t = maxi xi is sufficient. Given t one of the {xi} has to be t and the
remaining are uniform over [0, t].

f(θ, x1, x2, . . . , xn) = nθ−ntn−1
1

ntn−1

and f(θ, t) = nθ−ntn−1 gives the density of t on [0, θ].

Rao-Blackwell theorem. If there is a sufficient statistic use it! We
have a parametric family f(x, θ). We may want to estimate θ or a given
function h(θ) of the unknown parameter θ from a random sample from the
population. We have an estimator u(x1, . . . , xn) and a sufficient statistic
t(x1, x2, . . . , xn). We can replace u(x1, . . . , xn) by û(t) = E[u(x1, . . . , xn)|t]
which will not depend on θ. Why is û better than u? From the properties
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of conditional expectation

E[u(x1, . . . , xn)] =
∑

x1,...,xn

u(x1, . . . , xn)p(θ, x1, . . . , xn)

=
∑

x1,...,xn

u(x1, . . . , xn)p1(θ, t)p2(t, x1, . . . , xn)

=
∑
t

p1(θ, t)
∑

x1,...,xn
t(x1,...,xn)=t

u(x1, . . . , xn)p2(t, x1, . . . , xn)

=
∑
t

û(t)p1(θ, t)

= E[û(t)]

E[(u− θ)2] = E
[
[(u− û) + (û− θ)]2

]
The cross term

E[(u− û)(û− θ)] = E
[
E[(u− û)|t](û− θ)

]
= 0

Therefore
E[(u− θ)2] ≥ E[(û− θ)2]

Works for E[|u − θ|] or any convex loss function. E[L(u, θ)] It is better to
replace u by û.

Jensen’s inequality. For convex φ.

E[φ(X)] ≥ φ(E[X])

Proof:
φ(x) = sup

a,b∈S
[ax+ b]

E[max(f, g)] ≥ max([E[f ], E[g]])

Conditional expectation is still an expectation.

Cramér-Rao inequality. Let u be an unbiased estimator of θ.∑
p(θ, x1, x2, . . . , xn) ≡ 1
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∑
[u(x1, x2, . . . , xn)p(θ, x1, x2, . . . , xn)] ≡ θ

Differentiate ∑
[
dp(θ, x1, x2, . . . , xn)

dθ
] ≡ 0

∑
[
d log p(θ, x1, x2, . . . , xn)

dθ
p(θ, x1, x2, . . . , xn)] ≡ 0

∑
[u(x1, x2, . . . , xn)

dp(θ, x1, x2, . . . , xn)

dθ
] ≡ 1

∑
[u(x1, x2, . . . , xn)

d log p(θ, x1, x2, . . . , xn)

dθ
p(θ, x1, x2, . . . , xn)] ≡ 1

Set X = u, Y = d log p(θ,x1,x2,...,xn)
dθ . Then

E[Y ] = 0, E[XY ] = 1;E[(X−E(X))(Y −E(Y )] = E[XY ]−E[X]E[Y ] = 1

By Schwarz’s inequality

E[(X − E[X])2]E[Y 2] ≥ 1

On the other hand

Y =
∑
i

d log p(θ, xi)

dθ

and

E[Y 2] = nE[(
d log p(θ, x)

dθ
)2] = n I(θ)

You can not have an unbiased estimator with variance smaller than 1
nI(θ) .

Examples. Coin Tossing.

p(θ, 1) = θ, p(θ, 0) = 1− θ

I(θ) =
1

θ
+

1

1− θ
=

1

θ(1− θ)

Lower bound is 1
nθ(1− θ). can not improve r

n Minimum variance unbiased
estimator.
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Examples. Normal.

p(θ, x) =
1√
2π
e−

(x−θ)2
2

d log p

dθ
= (x− θ)

E[(x− θ)2] = 1, V ar(u) ≥ 1

n

x̄ is a minimum variance unbiased estimator. What if we do not demand
unbiasedness. But allow a bias, b(θ). The lower bound is (1+b′(θ))2

nI(θ) .

Estimation from parametric families. We have a family of probability
distributions {p(θ, x)} or densities {f(θ, x)}, indexed by one are more pa-
rameters. We have a sample {X1, X2, . . . , Xn} form one of these, we do not
know which. Guess ?. θ = t(X1, X2, . . . , Xn) is an estimate. It is purely
a function of {X1, X2, . . . , Xn} and does not depend on θ. Not all choices
of t(·) are good choices. What makes a choice good and how do find good
choices ?

Examples:

1. Tossing a coin n times with unknown probability θ of head. If r
n is the

proportion of heads in n tosses then we saw

Eθ[
r

n
] = θ,Eθ[(

r

n
− θ)2] =

θ(1− θ)
n

2. How about densities f(θ, x) = θxθ−1 on [0, 1]?

E[X] =

∫
θxθdx =

θ

θ + 1

If

tn = tn(X1, X2, . . . , Xn) = X̄ =
X1 + · · ·+Xn

n

then

Eθ[tn] =
θ

θ + 1
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Variance of X is∫ 1

0

θxθ+1dx− (
θ

θ + 1
)2 =

θ(pθ + 1)2 − θ2(θ + 2)

(θ + 2)(θ + 1)2
=

θ

(θ + 2)θ + 1)2

Variance of tn is therefore θ
n(θ+2)(θ+1)2 .

If tn ' θ
θ+1 then is un = tn

1−tn ' θ? Can we do better?

How about

E[− logX]? = −
∫ 1

0

θ log xxθ−1dx =

∫
xθ−1dx =

1

θ

Is the estimate vn = n

−
∑

logXi
better? How do we compare them?

E[(un − θ)2] = E

[[ tn
1− tn

−
θ
θ+1

1− θ
θ+1

]2]
' E[f(tn)− f(E(tn))]2

' [f ′(E(tn))]2E[(tn − E(tn))2]

' [f ′(E(tn))]2V ar(tn)

f(t) = t
1−t , f

′(t) = ( 1
1−t )

2 = ( 1
1− θ

θ+1

)2 = (θ + 1)2.

Variance of un is roughly θ(θ+1)2

n(θ+2) . On the other hand

θ

∫
(log x)2xθ−1dx = −2

∫
log xxθ−1dx =

2

θ2

Variance of logX is 1
θ2 . f(t) = 1

t . f
′(t) = −1

t2

Variance of vn is roughly θ4

nθ2 = θ2

n .

One can verify that

θ2 <
θ(θ + 1)2

(θ + 2)
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