Homework 8

- 1. Find a basis of the integers \mathcal{O}_K in $K = \mathbb{Q}(\sqrt{17}, \sqrt{-19})$.
- 2. Let $K = \mathbb{Q}(\sqrt[3]{a}, \sqrt[4]{b})$, with $a \neq m^3$, i.e., a is an integer which is not a cube, and $b \neq \pm n^2$. Determine the Galois group $\operatorname{Gal}(\tilde{K}/\mathbb{Q})$ of the Galois closure \tilde{K} of K.
- 3. Show that $e_1 := 1 + \zeta + \zeta^6$ and $e_2 = 1 + \zeta^3 + \zeta^4$, where $\zeta = \zeta_7 = e^{2\pi i/7}$ is the 7-th root of 1, are multiplicatively independent units in the cyclotomic extension $\mathbb{Q}(\zeta)/\mathbb{Q}$.
- 4. Determine generators of \mathcal{O}_K , where $K = \mathbb{Q}(\sqrt[3]{d})$, with $d \in \mathbb{Z}$.
- 5. Show that the discriminant of \mathcal{O}_K , with $K = \mathbb{Q}(\zeta_p)$, is given by

$$(-1)^{\frac{p-1}{2}}p^{p-2}.$$