Homework 8

1. Find a basis of the integers \mathcal{O}_{K} in $K=\mathbb{Q}(\sqrt{17}, \sqrt{-19})$.
2. Let $K=\mathbb{Q}(\sqrt[3]{a}, \sqrt[4]{b})$, with $a \neq m^{3}$, i.e., a is an integer which is not a cube, and $b \neq \pm n^{2}$. Determine the Galois $\operatorname{group} \operatorname{Gal}(\tilde{K} / \mathbb{Q})$ of the Galois closure \tilde{K} of K.
3. Show that $e_{1}:=1+\zeta+\zeta^{6}$ and $e_{2}=1+\zeta^{3}+\zeta^{4}$, where $\zeta=\zeta_{7}=e^{2 \pi i / 7}$ is the 7 -th root of 1 , are multiplicatively independent units in the cyclotomic extension $\mathbb{Q}(\zeta) / \mathbb{Q}$.
4. Determine generators of \mathcal{O}_{K}, where $K=\mathbb{Q}(\sqrt[3]{d})$, with $d \in \mathbb{Z}$.
5. Show that the discriminant of \mathcal{O}_{K}, with $K=\mathbb{Q}\left(\zeta_{p}\right)$, is given by

$$
(-1)^{\frac{p-1}{2}} p^{p-2}
$$

