Homework 7

1. Find all integer solutions of $y^{2}=x^{3}+1$.
2. Show that

$$
\log (\zeta(s))-\sum_{p} \frac{1}{p^{s}}
$$

remains bounded for $s \rightarrow 1+0$.
3. Let χ be a nontrivial character of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Let $0<a<b<p$. Show that

$$
\left|\sum_{a<n \leq b} \chi(n)\right|<\sqrt{p} \log (p)
$$

4. Prove that

$$
B_{n}=-\frac{1}{n+1} \sum_{k=0}^{n-1}\binom{n+1}{k} B_{k}, \quad n \geq 1
$$

5. Show that for $B \rightarrow \infty$, the number of ordered quadruples (a, b, c, d) of integers in the interval $[1, B]$ such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)$ is asymptotic to $\frac{2}{5} B^{4}$.
