Homework 5

1. Let p be a prime $=1 \bmod 4$. Show that

$$
\sum_{j=0}^{p-1} \sin \left(\frac{2 \pi j^{2}}{p}\right)=0 \quad \text { and } \quad\left|\sum_{j=0}^{p-1} \cos \left(\frac{2 \pi j^{2}}{p}\right)\right|=\sqrt{p}
$$

2. Compute the residue of $\Gamma(s)$ at each pole.
3. Show that

$$
\sum_{0 \leq j \leq n / 3}\binom{n}{3 j}=\frac{1}{3}\left(2^{n}+2 \cos \left(\frac{\pi n}{3}\right)\right) .
$$

4. Show that

$$
\prod_{p} \frac{p^{2}+1}{p^{2}-1}=\frac{5}{2}
$$

5. Show that

$$
\int_{0}^{\infty} \frac{\sin (x)}{x^{s}} d x=\cos (\pi s / 2) \Gamma(1-s)
$$

