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Approximations

Reminder: For all α ∈ R and all t ∈ N there exist a, q ∈ Z such that

|α− a

q
| < 1

qt
<

1

q2

α is irrational iff

|α− a

q
| < 1

q2

has infinitely many solutions.
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Examples

α :=
∞∑
k=0

(−1)k

2k!

Put
a

q
:=

m∑
k=0

(−1)k

2k!
.

Then

|α− a

q
| < 1

2(m+1)!
=

1

qm+1
, q := 2m!

and

|α− a

q
| < 1

qm

infinitely often.
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Examples

Theorem (Khinchin)

Let ψ(x) be a decreasing function on N, taking values in (0, 1/2).

Consider the inequality

|α− a

q
| < ψ(q)

q
(∗).

Consider ∑
q≥1

ψ(q) (∗∗)

1 If (**) diverges then, for almost all α (in the sense of Lebesgue
measure), (*) has infinitely many solutions in the rationals.

2 Otherwise, for almost all α, (*) has finitely many solutions.
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Algebraic tools

Recall the basic theory of Q[x ]: division with remainder, Euclidean
algorithm, etc.

Let α ∈ C be such that there exists a polynomial
φ ∈ Q[x ] with φ(α) = 0. Such α are called algebraic, their set is
denote by Q̄ ⊂ C. Pick φ of minimal degree.

If f ∈ Q[x ] is such that f (α) = 0 then φ | f .

Proof: Division with remainder.
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Algebraic tools

Let f ∈ Q[x ] be irreducible, and suppose that g ∈ Q[x ] has common
roots with f . Then f | g , and all roots of f are roots of g .

Proof: Let α be the common root, and φ a minimal polynomial for
α. Then φ | f , f (x) = φ(x) · u(x), . . ..

Corollary: If f ∈ Q[x ] is irreducible, then it has no multiple roots,
otherwise f ′(α) = 0, but deg(f ′) < deg(f ), contradiction.
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Algebraic numbers

Algebraic numbers form a field:

α, β ∈ Q̄⇒ α± β, α · β, α/β ∈ Q̄.

An algebraic α is called algebraic of degree n if the minimal
polynomial for α has degree n.

Theorem (Cantor 1874)

Q̄ is countable, but R is uncountable.

Thus there are infinitely many transcendental numbers. But it is hard
to produce an explicit transcendental number!
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Algebraic numbers

Let α ∈ R ∩ Q̄ be of degree n ≥ 2.

Then there exists a constant
c = c(α) ∈ (0, 1) such that for all a, q ∈ Z one has

|α− a

q
| > c

qn
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Algebraic numbers

Proof: Let

f (x) = anx
n + · · · a1x + a0, ai ∈ Z, an > 0

with root α = α1 and other roots α2, . . . , αn.

Evaluate

f (
p

q
) = an

∏(
p

q
− αi

)
If |p

q
− α| ≥ 1 then there is nothing to prove. Assume < 1 and

estimate

|αi −
p

q
| ≤ |αi − α|+ |α−

p

q
| ≤ 2 max(|αi |) + 1︸ ︷︷ ︸

R
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Algebraic numbers

0 6= |f (
p

q
)| ≤ an|α−

p

q
| · Rn−1

1

qn
≤ |A|

qn
= |f (

p

q
)| ≤ an|α−

p

q
| · Rn−1

1

qb
· c︸︷︷︸

1/anRn−1

≤ |α− p

q
|
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Algebraic numbers

A reformulation: Let α ∈ R ∩Q, of order d . Then there exist at
most finitely many approximations to

|α− p

q
| ≤ 1

qd+ε
, ε > 0

Theorem (Roth)

In fact, there are only finitely many approximations to

|α− p

q
| ≤ 1

q2+ε
, ε > 0
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Applications

Theorem
There are only finitely many solutions in x , y ∈ Z to

x3 − 2y 3 = a, a ∈ Z.
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Applications

Proof: As before, write

x3 − 2y 3 = (x − 3
√

2y)(x − ζ 3
√

2y)(x − ζ2 3
√

2y)

| a
y 3
| = |(x

y
− 3
√

2)(
x

y
− ζ 3
√

2)(
x

y
− ζ2 3
√

2)|

≥ |x
y
− 3
√

2| · |=(ζ
3
√

2)| · |=(ζ2 3
√

2)|

= |x
y
− 3
√

2| · 3

24/3
.

Every solution gives an approximation to 3
√

2 of order 1
y3 , thus there

are finitely many such solutions.
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Special functions

Among all nonelementary functions encountered in solving the
simplest and most important equations are functions that appear
repeatedly, and therefore have been well studied and given various
names. Such functions are customarily called special functions.

f : R,C→ C,

given by

polynomials

functional equations, e.g., f (x + y) = f (x) + f (y)

differential equations, e.g., f ′(x) = f (x)

Taylor series
∑

anx
n, as generating functions

Dirichlet series
∑

an
ns
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Special functions

Examples:
ex , sin(x), cos(x), Γ(s)

Main interest: Study objects where arithmetic and transcendental
nature are closely combined, e.g.,

e iπ = −1, Q̄ab = ∪nQ(e
2πi
n )
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e

e =
∑
n≥0

1

n!

Euler 1737: e /∈ Q
Fourier 1815:

0 < n! · e − An = O(
1

n
)

with

An := n!
n∑

k=0

1

k!
∈ Z.

If e ∈ Q then we get an infinite sequence of integers with limit 0.
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e

Liouville 1840:

n! · e−1 − Cn = O(
1

n
), Cn := n!

n∑
k=0

(−1)k

k!

which implies that e2 /∈ Q and ae2 + be + c = 0 is not solvable,
with a, b, c ∈ Z.

Indeed,

n!(ae + b + ce−1)− (aAn + bn! + cCn)︸ ︷︷ ︸
dn

= O(
1

n
)

Thus dn = O( 1
n

) and dn = 0, ∀n > n0. On the other hand,

dn+2 − (n + 1)(dn+1 + dn) = 2a ⇒ ∃dn 6= 0.
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e

er /∈ Q, ∀r ∈ Q \ 0

I.e., the graph of y = ex avoids all rational points, except (0, 1).
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e

Proof: Consider

f (x) :=
xn(1− x)n

n!
=

1

n!

2n∑
i=n

cix
i , ci ∈ Z.

for 0 < x < 1 we have 0 < f (x) < 1
n!

f (k)(0) = f (k)(1) = 0, k = 1, . . . , n−1, f (k)(0), f (k)(1) ∈ Z ∀k

f (x) = f (1− x) ⇒ f (k)(x) = (−1)k f (k)(1− x)

f (k)(x) =
k!

n!
ck + · · ·

Lecture 9 20 / 59



e

Proof: Consider

f (x) :=
xn(1− x)n

n!
=

1

n!

2n∑
i=n

cix
i , ci ∈ Z.

for 0 < x < 1 we have 0 < f (x) < 1
n!

f (k)(0) = f (k)(1) = 0, k = 1, . . . , n−1, f (k)(0), f (k)(1) ∈ Z ∀k

f (x) = f (1− x) ⇒ f (k)(x) = (−1)k f (k)(1− x)

f (k)(x) =
k!

n!
ck + · · ·

Lecture 9 20 / 59



e

Proof: Consider

f (x) :=
xn(1− x)n

n!
=

1

n!

2n∑
i=n

cix
i , ci ∈ Z.

for 0 < x < 1 we have 0 < f (x) < 1
n!

f (k)(0) = f (k)(1) = 0, k = 1, . . . , n−1, f (k)(0), f (k)(1) ∈ Z ∀k

f (x) = f (1− x) ⇒ f (k)(x) = (−1)k f (k)(1− x)

f (k)(x) =
k!

n!
ck + · · ·

Lecture 9 20 / 59



e

Proof: Consider

f (x) :=
xn(1− x)n

n!
=

1

n!

2n∑
i=n

cix
i , ci ∈ Z.

for 0 < x < 1 we have 0 < f (x) < 1
n!

f (k)(0) = f (k)(1) = 0, k = 1, . . . , n−1, f (k)(0), f (k)(1) ∈ Z ∀k

f (x) = f (1− x) ⇒ f (k)(x) = (−1)k f (k)(1− x)

f (k)(x) =
k!

n!
ck + · · ·

Lecture 9 20 / 59



e

Let

F (x) = s2nf (x)− s2n−1f ′(x) + · · · ± · · · f (2n)(x), s ∈ N.

F ′(x) = −sF (x) + s2n+1f (x)

(esxF (x))′ = sesxF (x) + esxF ′(x) = s2n+1esx f (x)
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e

Assume that
es =

a

b
∈ Q, s ∈ Z.

Consider

N := b

∫ 1

0

s2n+1esx f (x)dx = b[esxF (x)]1
0

aF (1)− bF (0) ∈ Z

since F (1),F (0) ∈ Z. We have

0 < N︸︷︷︸
∈Z

< b · s
2n+1es

n!
.

It remains to choose n so that the right side is < 1. �
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π

Same argument works for π2.

Assume that π2 = a
b
, a, b ∈ Z>0. Put

F (x) = bn(π2nf (x)− π2n−2f (2)(x) + · · · ± · · · )

As before, we find

F ′′(x) = −πsF (x) + bnπ2n+2f (x), F (0),F (1) ∈ Z.

Have:

(F ′(x) sin(πx)− πF (x) cos(πx))′ = (F ′′(x) + π2F (x)) sin(πx)

= bnπ2n+2f (x) sin(πx)

= π2anf (x) sin(πx)
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π

0 < N := π

∫ 1

0

anf (x) sin(πx)dx

= [
1

π
F ′(x) sin(πx)− F (x) cos(πx)]1

0

= F (0) + F (1) ∈ Z

but

< π
an

n!
n� 0

which is a contradiction.
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π

Theorem (Lambert 1766)

π /∈ Q
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π

Proof (Hermite):

1

π2n+1

∫ 1

0

tn(1− t)n sin(πt) dt = n!Q(π), Q ∈ Z[x ], ∀n ∈ N

This is proved by induction, using integration by parts.

2 Q(π) 6= 0 – look at the integral

Lecture 9 26 / 59



π

Proof (Hermite):

1

π2n+1

∫ 1

0

tn(1− t)n sin(πt) dt = n!Q(π), Q ∈ Z[x ], ∀n ∈ N

This is proved by induction, using integration by parts.

2 Q(π) 6= 0 – look at the integral

Lecture 9 26 / 59



Further results

Lindemann 1882: α ∈ Q̄ \ 0⇒ eα /∈ Q̄

If α ∈ Q̄ such that ln(α) 6= 0 then ln(α) /∈ Q̄. E.g.,

π =
1

i
ln(−1) /∈ Q̄

and the squaring of the circle is impossible.

Lindemann-Weierstrass 1885: Let α0, . . . , αm ∈ Q̄ be distinct.
Then

eα0 , . . . , eαm

are linearly independent over Q̄

Lecture 9 27 / 59



Further results

Lindemann 1882: α ∈ Q̄ \ 0⇒ eα /∈ Q̄
If α ∈ Q̄ such that ln(α) 6= 0 then ln(α) /∈ Q̄.

E.g.,

π =
1

i
ln(−1) /∈ Q̄

and the squaring of the circle is impossible.

Lindemann-Weierstrass 1885: Let α0, . . . , αm ∈ Q̄ be distinct.
Then

eα0 , . . . , eαm

are linearly independent over Q̄

Lecture 9 27 / 59



Further results

Lindemann 1882: α ∈ Q̄ \ 0⇒ eα /∈ Q̄
If α ∈ Q̄ such that ln(α) 6= 0 then ln(α) /∈ Q̄. E.g.,

π =
1

i
ln(−1) /∈ Q̄

and the squaring of the circle is impossible.

Lindemann-Weierstrass 1885: Let α0, . . . , αm ∈ Q̄ be distinct.
Then

eα0 , . . . , eαm

are linearly independent over Q̄

Lecture 9 27 / 59



Further results

Lindemann 1882: α ∈ Q̄ \ 0⇒ eα /∈ Q̄
If α ∈ Q̄ such that ln(α) 6= 0 then ln(α) /∈ Q̄. E.g.,

π =
1

i
ln(−1) /∈ Q̄

and the squaring of the circle is impossible.

Lindemann-Weierstrass 1885: Let α0, . . . , αm ∈ Q̄ be distinct.
Then

eα0 , . . . , eαm

are linearly independent over Q̄

Lecture 9 27 / 59



Rationality

We have looked at rationality properties of

√
2 =

∫
2x2≤1

dx

π :=

∫ ∫
x2+y1≤1

dx dy

log(2) =

∫ 2

1

dx

x
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Rationality

ζ(3) =

∫ ∫ ∫
0 <x<y<z<1

dx dy dx

(1− x)yz

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

xa−1(1− x)b−1dx
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Periods

A period is a number s ∈ C such that

=(s),<(s)

are absolute convergent integrals of rational functions
f ∈ Q[x1, . . . , xn] over domains in Rn, given by polynomial
inequalities with Q-coefficients.

P := {s}periods, P̂ := ∪n≥0
1

(2πi)n
P
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Periods

Fact: P is countable,
Q̄ ⊂ P ⊂ C.
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Period relations: examples

log(4) =

∫ 4

1

dx

x
=

∫ 2

1

dx

x
+

∫ 4

2

dx

x
= 2

∫ 2

1

dx

x
= 2 log(2)

6ζ(2) = π2

I :=

∫ 1

0

∫ 1

0

1

1− xy

dx dy
√
xy

= 3ζ(2)

Substitute

x := u2 1 + v 2

1 + u2
, y := v 2 1 + u2

1 + v 2
,

this will lead to

I := 2

∫ ∞
0

du

1 + u2
·
∫ ∞

0

dv

1 + v 2
=
π2

2
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Period relations

Standard rules:

Additivity∫ b

a

(f (x) + g(x))dx = · · · ,
∫ b

a

f (x)dx =

∫ c

a

· · ·+
∫ b

c

· · ·

Change of variables∫ f (b)

f (a)

F (y)dy =

∫ b

a

F (f (x))f ′(x)dx

Stokes (Newton–Leibniz)∫ b

a

f ′(x)dx = F (b)− F (a)
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Periods

Conjecture
If s ∈ P has two integral representations, then one can pass
between them using the above rules.

Any polynomial relation between periods is obtained through
manipulations of the defining integrals using the above rules.
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Periods: Γ-version

For a ∈ Q we have

1 Γ(a + 1) = aΓ(a)

2 Γ(a)Γ(1− a) = π
sin(πa)

3

n−1∏
k=0

Γ(a +
k

n
) = (2π)

n−1
2 n−na+ 1

2 Γ(na)
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Periods: Γ-version

Proof:
Γ(a)Γ(1)

Γ(a + 1)
=

∫ 1

0

xa−1(1− x)1−1dx =
1

a

Γ(a)Γ(1− a) =

∫ 1

0

xa−1(1− x)−adx

=

∫ 1

0

(
x

1− x

)a
dx

x

=

∫ ∞
0

ua du

1 + u
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Periods: Γ-version

Conjecture (Rohrlich)

Every multiplicative relation of the form∏
a∈Q

Γ(a)ma ∈ πZ/2Q̄, ma or its square ∈ Z

is generated by the relations (1), (2), (3).
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Restricted products

Let {Ti}i∈I be collection of topological spaces.

Fix open subsets
Ui ⊂ Ti , for all i ∈ I . Define∏

i∈I

′ Ti =: T

as the set of

{(xi)i∈I | for almost all i we have xi ∈ Ui},

i.e., vectors, where all but finitely many xi are in the corresponding
Ui . The topology is given by a basis of open subsets:∏

i∈I0

Vi ×
∏
i∈I\I0

Ui ,

where I0 is finite and Vi ⊆ Ti are open.
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Restricted product

A basic example is

AQ :=
∏
p

′Qp × R

where Up = Zp ⊂ Qp.

We have

Q ↪→ AQ

by sending
x 7→ ((xp)p, x∞).

The image is discrete and cocompact.
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Proof

We have
AQ/(Q×

∏
p

Zp︸︷︷︸
compact

) ' R/Z.
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Dualities

An additive character is a continuous homomorphism

ψp : Qp → S1 = R/Z.

Being continuous, it has finite image, thus it is constant on some
pnZp. Concretely, put

ψa(x) = e2πi{ax}

where
{ax} = ax − [ax ]︸︷︷︸

∈Zp

.

Note that the left side is in Q.
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Dualities

With this choice, we have Qp and Zp are self-dual!

Fix Haar measures µp, for all primes p, normalized by

µp(Zp) = 1,

we have

µp(pnZp) =
1

pn
, µp(Z×p ) = 1− 1

p
.

We also put
µ∞ = dx ,

the standard Lebesgue measure on R. This gives a Haar measure on
AQ and we can integrate functions on the adeles.
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p
.

We also put
µ∞ = dx ,

the standard Lebesgue measure on R.

This gives a Haar measure on
AQ and we can integrate functions on the adeles.
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Dualities

This gives a well-defined measure on the adeles:∏
p

µp × µ∞.

We also have a character

ψa : AQ → S1,

where a ∈ AQ, defined as

ψa =
∏
p

ψap × ψa∞ ,

a product of local characters. This is indeed a continuous
homomorphism.
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Dualities

Q ⊂ AQ

is self-dual, (A/Q)⊥ = Q.

The Poisson summation formula takes the
form ∑

x∈Q

f (x) =
∑
a∈Q

f̂ (a),

where

f̂ (a) =

∫
AQ

f (x)ψa(x)µ(x),

provided we have convergence.
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Application

Recall that
P1(Q) := {(x0, x1) ∈ (Z2

prim \ 0)/±}.

Consider a height function:

H : P1(Q)→ R

given by

H(x0, x1) =
√

x2
0 + x2

1

Let
N(B) := #{(x0, x1) | H(x0, x1) ≤ B}

be the counting function.
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Application

We are interested in the asymptotic of

N(B), for B →∞.

This is nothing but the Gauss circle problem, except that we are
looking at coprime coordinates.
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Application

We now translate this into the adelic language.

Recall the product
formula: ∏

|x |p · |x |∞ = 1, x ∈ Q×.

The coprimality condition is nothing but

max(|x0|p, |x1|p) = 1, ∀p

This allows to rewrite the problem as follows.
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Application

Consider the following height function

H =
∏
p

Hp × H∞ : AQ → R,

with local factors given by

Hp(x) := max(1, |x |p), H∞(x) := (1 + x2)1/2.

Note that, for all p, the local height Hp is invariant under translation
by Zp. We are interested in the asymptotic of

N(B) := {x ∈ Q | H(x) ≤ B}, B →∞.
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Tauberian theorem

A convenient version of the Tauberian theorem is:

Consider
f (s) =

∑
n≥1

an
ns
.

Assume that f

is holomorphic for <(s) > a > 0,

has an isolated pole at s = a, of order b ∈ N, with leading
coefficient c ∈ R, c 6= 0.

Then

N(B) :=
∑
n≤B

an ∼
c

aΓ(b)
· Ba log(B)b−1, B →∞.
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Height zeta function

Therefore, we introduce and study the function

Z (s) :=
∑
x∈Q

H(x)−s .

The series converges absolutely to a holomorphic function for
<(s) > 2. By the Poisson summation formula, we have

Z (s) =
∑
a∈Q

Ĥ(s, ψa)

where

Ĥ(s, ψa) =

∫
AQ

H(x)−s · ψa(x)µ(x).
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Height zeta function

Why is this any better? We started with a sum over Q, and we again
have a sum over Q.

However, because Hp is invariant under Zp, only characters which are
trivial on Zp, for all p contribute. So a must be in Z.
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Height zeta function

We write

Z (s) =

∫
AQ

H(x)−sµ(x)︸ ︷︷ ︸
trivial character

+

∑
a 6=0

· · ·︸ ︷︷ ︸
nontrivial characters

and analyze the terms.

put U(0) := {x | |x |p ≤ 1} and U(j) := {x | |x |p = pj}, note that

vol(U(j)) = pj(1− 1

p
).
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Local integrals

We have∫
Qp

Hp(xp)−sµp =
∫
U(0)

Hp(xp)−sµp +
∑

j≥1

∫
U(j)

Hp(xp)−sµp

= 1 +
∑

j≥1 p
−jsvol(U(j))

= 1−p−s

1−p−(s−1)∫
R(1 + x2)−s/2dx = Γ((s−1)/2)

Γ(s/2)

The Euler product gives

ζ(s − 1)

ζ(s)
· Γ((s − 1)/2)

Γ(s/2)

which has a simple pole at s = 2 with residue 1
ζ(2)

.
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Characters, once again

Qp/Zp ↪→ Q/Z

ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R

ψ =
∏

p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R

(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q

ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

Qp/Zp ↪→ Q/Z
ψp : xp 7→ e2πiap ·xp , with ap ∈ Qp

unramified: trivial on Zp, i.e., ap ∈ Zp

ψ∞ : x 7→ e2πia·x , a ∈ R
ψ =

∏
p ψp · ψ∞ = ψa, with a ∈ AQ

duality Q̂p = Qp and R̂ = R
(AQ/Q)∨ (characters trivial on Q) = Q
ψ = ψa unramified for all p ⇒ a ∈ Z.

Lecture 9 54 / 59



Characters, once again

For a ∈ Z \ 0 and p - a, we compute

Ĥp(s, ψa) = 1 +
∑
j≥1

p−sj
∫
|x |p=pj

ψa(xp)µp = 1− p−s .
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Characters, once again

Proof: let V (i) be the set of xp ∈ Qp with Hp(x) ≤ pi .

Then∫
V (i)

ψa(x)µp = pin
∫
Zp

ψa/pi (x)µp.

For i ≥ 1 and p - a, we integrate a nontrivial character over a
compact group, thus get 0. For i = 0, we get 1. Since
U(i) = V (i) \ V (i − 1), we have∫

U(i)

ψa(x)µp =

{
0 i ≥ 2

−1 i = 1
,

which implies the claim.
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Characters, once again

For <(s) > 1 + ε, and p | a, replace ψ by 1 and estimate

|Ĥp(s, ψa)| ≤ 1

1− p−ε
.

For any positive integer a we have∏
p|a

1

pε
� log(1 + a).

Thus ∏
p|a

|Ĥp(s, ψa)| � (1 + |a|)δ

for some (small) δ > 0.
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Characters, once again
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continued

Z (s) =
ζ(s − 1)

ζ(s)
· Γ((s − 1)/2)

Γ(s/2)
+

∑
a∈Z

∏
p-a

1

ζp(s)
·
∏
p|a

Ĥp(ap, s) ·
∫
R

(1 + x2)−s/2 · e2πiaxdx

For <(s) > 2− δ, one has:

|
∏

p|a Ĥp(s, a)| � |
∏

p|a
∫
Qp

Hp(xp)−sµp| � (1 + |a|)δ

|
∫
R(1 + x2)−s/2 · e2πiaxdx | �N

1
(1+|a|)N , for any N ∈ N,

(integration by parts)

This gives a meromorphic continuation of Z (s) and its pole at s = 2.
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