Lecture 9

Plan

- Transcendence

Plan

- Transcendence
- Adeles

Approximations

Reminder: For all $\alpha \in \mathbb{R}$ and all $t \in \mathbb{N}$ there exist $a, \boldsymbol{q} \in \mathbb{Z}$ such that

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q t}<\frac{1}{q^{2}}
$$

Approximations

Reminder: For all $\alpha \in \mathbb{R}$ and all $t \in \mathbb{N}$ there exist $a, \boldsymbol{q} \in \mathbb{Z}$ such that

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q t}<\frac{1}{q^{2}}
$$

α is irrational iff

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}}
$$

has infinitely many solutions.

Examples

$$
\alpha:=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k!}}
$$

Examples

$$
\alpha:=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k!}}
$$

Put

$$
\frac{a}{q}:=\sum_{k=0}^{m} \frac{(-1)^{k}}{2^{k!}}
$$

Examples

$$
\alpha:=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k!}}
$$

Put

$$
\frac{a}{q}:=\sum_{k=0}^{m} \frac{(-1)^{k}}{2^{k!}}
$$

Then

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{2^{(m+1)!}}=\frac{1}{q^{m+1}}, \quad q:=2^{m!}
$$

and

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{m}}
$$

infinitely often.

Examples

Theorem (Khinchin)
Let $\psi(x)$ be a decreasing function on \mathbb{N}, taking values in $(0,1 / 2)$.

Examples

Theorem (Khinchin)

Let $\psi(x)$ be a decreasing function on \mathbb{N}, taking values in $(0,1 / 2)$.
Consider the inequality

$$
\left|\alpha-\frac{a}{q}\right|<\frac{\psi(q)}{q} \quad(*)
$$

Examples

Theorem (Khinchin)

Let $\psi(x)$ be a decreasing function on \mathbb{N}, taking values in $(0,1 / 2)$. Consider the inequality

$$
\left|\alpha-\frac{a}{q}\right|<\frac{\psi(q)}{q} \quad(*)
$$

Consider

$$
\sum_{q \geq 1} \psi(q) \quad(* *)
$$

(1) If $\left(^{* *}\right.$) diverges then, for almost all α (in the sense of Lebesgue measure), $\left(^{*}\right)$ has infinitely many solutions in the rationals.

Examples

Theorem (Khinchin)

Let $\psi(x)$ be a decreasing function on \mathbb{N}, taking values in $(0,1 / 2)$. Consider the inequality

$$
\left|\alpha-\frac{a}{q}\right|<\frac{\psi(q)}{q} \quad(*) .
$$

Consider

$$
\sum_{q \geq 1} \psi(q) \quad(* *)
$$

(1) If (${ }^{* *}$) diverges then, for almost all α (in the sense of Lebesgue measure), (${ }^{*}$) has infinitely many solutions in the rationals.
(2) Otherwise, for almost all $\alpha,\left({ }^{*}\right)$ has finitely many solutions.

Algebraic tools

Recall the basic theory of $\mathbb{Q}[x]$: division with remainder, Euclidean algorithm, etc.

Algebraic tools

Recall the basic theory of $\mathbb{Q}[x]$: division with remainder, Euclidean algorithm, etc. Let $\alpha \in \mathbb{C}$ be such that there exists a polynomial $\phi \in \mathbb{Q}[x]$ with $\phi(\alpha)=0$.

Algebraic tools

Recall the basic theory of $\mathbb{Q}[x]$: division with remainder, Euclidean algorithm, etc. Let $\alpha \in \mathbb{C}$ be such that there exists a polynomial $\phi \in \mathbb{Q}[x]$ with $\phi(\alpha)=0$. Such α are called algebraic, their set is denote by $\overline{\mathbb{Q}} \subset \mathbb{C}$.

Algebraic tools

Recall the basic theory of $\mathbb{Q}[x]$: division with remainder, Euclidean algorithm, etc. Let $\alpha \in \mathbb{C}$ be such that there exists a polynomial $\phi \in \mathbb{Q}[x]$ with $\phi(\alpha)=0$. Such α are called algebraic, their set is denote by $\overline{\mathbb{Q}} \subset \mathbb{C}$. Pick ϕ of minimal degree.

If $f \in \mathbb{Q}[x]$ is such that $f(\alpha)=0$ then $\phi \mid f$.

Algebraic tools

Recall the basic theory of $\mathbb{Q}[x]$: division with remainder, Euclidean algorithm, etc. Let $\alpha \in \mathbb{C}$ be such that there exists a polynomial $\phi \in \mathbb{Q}[x]$ with $\phi(\alpha)=0$. Such α are called algebraic, their set is denote by $\overline{\mathbb{Q}} \subset \mathbb{C}$. Pick ϕ of minimal degree.

If $f \in \mathbb{Q}[x]$ is such that $f(\alpha)=0$ then $\phi \mid f$.

Proof: Division with remainder.

Algebraic tools

Let $f \in \mathbb{Q}[x]$ be irreducible, and suppose that $g \in \mathbb{Q}[x]$ has common roots with f. Then $f \mid g$, and all roots of f are roots of g.

Algebraic tools

Let $f \in \mathbb{Q}[x]$ be irreducible, and suppose that $g \in \mathbb{Q}[x]$ has common roots with f. Then $f \mid g$, and all roots of f are roots of g.

Proof: Let α be the common root, and ϕ a minimal polynomial for α. Then $\phi \mid f, f(x)=\phi(x) \cdot u(x), \ldots$.

Algebraic tools

Let $f \in \mathbb{Q}[x]$ be irreducible, and suppose that $g \in \mathbb{Q}[x]$ has common roots with f. Then $f \mid g$, and all roots of f are roots of g.

Proof: Let α be the common root, and ϕ a minimal polynomial for α. Then $\phi \mid f, f(x)=\phi(x) \cdot u(x), \ldots$.

Corollary: If $f \in \mathbb{Q}[x]$ is irreducible, then it has no multiple roots,

Algebraic tools

Let $f \in \mathbb{Q}[x]$ be irreducible, and suppose that $g \in \mathbb{Q}[x]$ has common roots with f. Then $f \mid g$, and all roots of f are roots of g.

Proof: Let α be the common root, and ϕ a minimal polynomial for α. Then $\phi \mid f, f(x)=\phi(x) \cdot u(x), \ldots$

Corollary: If $f \in \mathbb{Q}[x]$ is irreducible, then it has no multiple roots, otherwise $f^{\prime}(\alpha)=0$, but $\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f)$, contradiction.

Algebraic numbers

Algebraic numbers form a field:

$$
\alpha, \beta \in \overline{\mathbb{Q}} \Rightarrow \alpha \pm \beta, \alpha \cdot \beta, \alpha / \beta \in \overline{\mathbb{Q}} .
$$

Algebraic numbers

Algebraic numbers form a field:

$$
\alpha, \beta \in \overline{\mathbb{Q}} \Rightarrow \alpha \pm \beta, \alpha \cdot \beta, \alpha / \beta \in \overline{\mathbb{Q}} .
$$

An algebraic α is called algebraic of degree n if the minimal polynomial for α has degree n.

Algebraic numbers

Algebraic numbers form a field:

$$
\alpha, \beta \in \overline{\mathbb{Q}} \Rightarrow \alpha \pm \beta, \alpha \cdot \beta, \alpha / \beta \in \overline{\mathbb{Q}} .
$$

An algebraic α is called algebraic of degree n if the minimal polynomial for α has degree n.

Theorem (Cantor 1874)

$\overline{\mathbb{Q}}$ is countable, but \mathbb{R} is uncountable.

Algebraic numbers

Algebraic numbers form a field:

$$
\alpha, \beta \in \overline{\mathbb{Q}} \Rightarrow \alpha \pm \beta, \alpha \cdot \beta, \alpha / \beta \in \overline{\mathbb{Q}} .
$$

An algebraic α is called algebraic of degree n if the minimal polynomial for α has degree n.

Theorem (Cantor 1874)

$\overline{\mathbb{Q}}$ is countable, but \mathbb{R} is uncountable.
Thus there are infinitely many transcendental numbers. But it is hard to produce an explicit transcendental number!

Algebraic numbers

Let $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$ be of degree $n \geq 2$.

Algebraic numbers

Let $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$ be of degree $n \geq 2$. Then there exists a constant $c=c(\alpha) \in(0,1)$ such that for all $a, q \in \mathbb{Z}$ one has

$$
\left|\alpha-\frac{a}{q}\right|>\frac{c}{q^{n}}
$$

Algebraic numbers

Proof: Let

$$
f(x)=a_{n} x^{n}+\cdots a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Z}, a_{n}>0
$$

with root $\alpha=\alpha_{1}$ and other roots $\alpha_{2}, \ldots, \alpha_{n}$.

Algebraic numbers

Proof: Let

$$
f(x)=a_{n} x^{n}+\cdots a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Z}, a_{n}>0
$$

with root $\alpha=\alpha_{1}$ and other roots $\alpha_{2}, \ldots, \alpha_{n}$. Evaluate

$$
f\left(\frac{p}{q}\right)=a_{n} \prod\left(\frac{p}{q}-\alpha_{i}\right)
$$

Algebraic numbers

Proof: Let

$$
f(x)=a_{n} x^{n}+\cdots a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Z}, a_{n}>0
$$

with root $\alpha=\alpha_{1}$ and other roots $\alpha_{2}, \ldots, \alpha_{n}$. Evaluate

$$
f\left(\frac{p}{q}\right)=a_{n} \prod\left(\frac{p}{q}-\alpha_{i}\right)
$$

If $\left|\frac{p}{q}-\alpha\right| \geq 1$ then there is nothing to prove.

Algebraic numbers

Proof: Let

$$
f(x)=a_{n} x^{n}+\cdots a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Z}, a_{n}>0
$$

with root $\alpha=\alpha_{1}$ and other roots $\alpha_{2}, \ldots, \alpha_{n}$. Evaluate

$$
f\left(\frac{p}{q}\right)=a_{n} \prod\left(\frac{p}{q}-\alpha_{i}\right)
$$

If $\left|\frac{p}{q}-\alpha\right| \geq 1$ then there is nothing to prove. Assume <1 and estimate

$$
\left|\alpha_{i}-\frac{p}{q}\right| \leq\left|\alpha_{i}-\alpha\right|+\left|\alpha-\frac{p}{q}\right| \leq \underbrace{2 \max \left(\left|\alpha_{i}\right|\right)+1}_{R}
$$

Algebraic numbers

$$
0 \neq\left|f\left(\frac{p}{q}\right)\right| \leq a_{n}\left|\alpha-\frac{p}{q}\right| \cdot R^{n-1}
$$

Algebraic numbers

$$
\begin{gathered}
0 \neq\left|f\left(\frac{p}{q}\right)\right| \leq a_{n}\left|\alpha-\frac{p}{q}\right| \cdot R^{n-1} \\
\frac{1}{q^{n}} \leq \frac{|A|}{q^{n}}=\left|f\left(\frac{p}{q}\right)\right| \leq a_{n}\left|\alpha-\frac{p}{q}\right| \cdot R^{n-1}
\end{gathered}
$$

Algebraic numbers

$$
\begin{gathered}
0 \neq\left|f\left(\frac{p}{q}\right)\right| \leq a_{n}\left|\alpha-\frac{p}{q}\right| \cdot R^{n-1} \\
\frac{1}{q^{n}} \leq \frac{|A|}{q^{n}}=\left|f\left(\frac{p}{q}\right)\right| \leq a_{n}\left|\alpha-\frac{p}{q}\right| \cdot R^{n-1} \\
\frac{1}{q^{b}} \cdot \underbrace{c}_{1 / a_{n} R^{n-1}} \leq\left|\alpha-\frac{p}{q}\right|
\end{gathered}
$$

Algebraic numbers

A reformulation: Let $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$, of order d. Then there exist at most finitely many approximations to

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{d+\epsilon}}, \quad \epsilon>0
$$

Algebraic numbers

A reformulation: Let $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$, of order d. Then there exist at most finitely many approximations to

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{d+\epsilon}}, \quad \epsilon>0
$$

Theorem (Roth)

In fact, there are only finitely many approximations to

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2+\epsilon}}, \quad \epsilon>0
$$

Applications

Theorem

There are only finitely many solutions in $x, y \in \mathbb{Z}$ to

$$
x^{3}-2 y^{3}=a, \quad a \in \mathbb{Z}
$$

Applications

Proof: As before, write

$$
x^{3}-2 y^{3}=(x-\sqrt[3]{2} y)(x-\zeta \sqrt[3]{2} y)\left(x-\zeta^{2} \sqrt[3]{2} y\right)
$$

Applications

Proof: As before, write

$$
\begin{aligned}
x^{3}-2 y^{3} & =(x-\sqrt[3]{2} y)(x-\zeta \sqrt[3]{2} y)\left(x-\zeta^{2} \sqrt[3]{2} y\right) \\
\left|\frac{a}{y^{3}}\right| & =\left|\left(\frac{x}{y}-\sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta \sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta^{2} \sqrt[3]{2}\right)\right|
\end{aligned}
$$

Applications

Proof: As before, write

$$
\begin{gathered}
x^{3}-2 y^{3}=(x-\sqrt[3]{2} y)(x-\zeta \sqrt[3]{2} y)\left(x-\zeta^{2} \sqrt[3]{2} y\right) \\
\left|\frac{a}{y^{3}}\right|=\left|\left(\frac{x}{y}-\sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta \sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta^{2} \sqrt[3]{2}\right)\right| \\
\geq\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot|\Im(\zeta \sqrt[3]{2})| \cdot\left|\Im\left(\zeta^{2} \sqrt[3]{2}\right)\right| \\
=\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot \frac{3}{2^{4 / 3}}
\end{gathered}
$$

Applications

Proof: As before, write

$$
\begin{gathered}
x^{3}-2 y^{3}=(x-\sqrt[3]{2} y)(x-\zeta \sqrt[3]{2} y)\left(x-\zeta^{2} \sqrt[3]{2} y\right) \\
\left|\frac{a}{y^{3}}\right|=\left|\left(\frac{x}{y}-\sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta \sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta^{2} \sqrt[3]{2}\right)\right| \\
\geq\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot|\Im(\zeta \sqrt[3]{2})| \cdot\left|\Im\left(\zeta^{2} \sqrt[3]{2}\right)\right| \\
=\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot \frac{3}{2^{4 / 3}}
\end{gathered}
$$

Every solution gives an approximation to $\sqrt[3]{2}$ of order $\frac{1}{y^{3}}$,

Applications

Proof: As before, write

$$
\begin{gathered}
x^{3}-2 y^{3}=(x-\sqrt[3]{2} y)(x-\zeta \sqrt[3]{2} y)\left(x-\zeta^{2} \sqrt[3]{2} y\right) \\
\left|\frac{a}{y^{3}}\right|=\left|\left(\frac{x}{y}-\sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta \sqrt[3]{2}\right)\left(\frac{x}{y}-\zeta^{2} \sqrt[3]{2}\right)\right| \\
\geq\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot|\Im(\zeta \sqrt[3]{2})| \cdot\left|\Im\left(\zeta^{2} \sqrt[3]{2}\right)\right| \\
=\left|\frac{x}{y}-\sqrt[3]{2}\right| \cdot \frac{3}{2^{4 / 3}}
\end{gathered}
$$

Every solution gives an approximation to $\sqrt[3]{2}$ of order $\frac{1}{y^{3}}$, thus there are finitely many such solutions.

Special functions

Among all nonelementary functions encountered in solving the simplest and most important equations are functions that appear repeatedly, and therefore have been well studied and given various names. Such functions are customarily called special functions.

$$
f: \mathbb{R}, \mathbb{C} \rightarrow \mathbb{C}
$$

given by

- polynomials

Special functions

Among all nonelementary functions encountered in solving the simplest and most important equations are functions that appear repeatedly, and therefore have been well studied and given various names. Such functions are customarily called special functions.

$$
f: \mathbb{R}, \mathbb{C} \rightarrow \mathbb{C}
$$

given by

- polynomials
- functional equations, e.g., $f(x+y)=f(x)+f(y)$

Special functions

Among all nonelementary functions encountered in solving the simplest and most important equations are functions that appear repeatedly, and therefore have been well studied and given various names. Such functions are customarily called special functions.

$$
f: \mathbb{R}, \mathbb{C} \rightarrow \mathbb{C}
$$

given by

- polynomials
- functional equations, e.g., $f(x+y)=f(x)+f(y)$
- differential equations, e.g., $f^{\prime}(x)=f(x)$

Special functions

Among all nonelementary functions encountered in solving the simplest and most important equations are functions that appear repeatedly, and therefore have been well studied and given various names. Such functions are customarily called special functions.

$$
f: \mathbb{R}, \mathbb{C} \rightarrow \mathbb{C}
$$

given by

- polynomials
- functional equations, e.g., $f(x+y)=f(x)+f(y)$
- differential equations, e.g., $f^{\prime}(x)=f(x)$
- Taylor series $\sum a_{n} x^{n}$, as generating functions

Special functions

Among all nonelementary functions encountered in solving the simplest and most important equations are functions that appear repeatedly, and therefore have been well studied and given various names. Such functions are customarily called special functions.

$$
f: \mathbb{R}, \mathbb{C} \rightarrow \mathbb{C}
$$

given by

- polynomials
- functional equations, e.g., $f(x+y)=f(x)+f(y)$
- differential equations, e.g., $f^{\prime}(x)=f(x)$
- Taylor series $\sum a_{n} x^{n}$, as generating functions
- Dirichlet series $\sum \frac{a_{n}}{n^{s}}$

Special functions

Examples:

$$
e^{x}, \sin (x), \cos (x), \Gamma(s)
$$

Special functions

Examples:

$$
e^{x}, \sin (x), \cos (x), Г(s)
$$

Main interest: Study objects where arithmetic and transcendental nature are closely combined, e.g.,

$$
e^{i \pi}=-1, \quad \overline{\mathbb{Q}}^{a b}=\cup_{n} \mathbb{Q}\left(e^{\frac{2 \pi i}{n}}\right)
$$

$e=\sum_{x=0}^{11}$
e

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

- Euler 1737: e $\notin \mathbb{Q}$

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

- Euler 1737: e $\notin \mathbb{Q}$
- Fourier 1815:

$$
0<n!\cdot e-A_{n}=O\left(\frac{1}{n}\right)
$$

with

$$
A_{n}:=n!\sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{Z}
$$

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

- Euler 1737: e $\notin \mathbb{Q}$
- Fourier 1815:

$$
0<n!\cdot e-A_{n}=O\left(\frac{1}{n}\right)
$$

with

$$
A_{n}:=n!\sum_{k=0}^{n} \frac{1}{k!} \in \mathbb{Z}
$$

If $e \in \mathbb{Q}$ then we get an infinite sequence of integers with limit 0 .

- Liouville 1840 :

$$
n!\cdot e^{-1}-C_{n}=O\left(\frac{1}{n}\right), \quad C_{n}:=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

which implies that $e^{2} \notin \mathbb{Q}$ and $a e^{2}+b e+c=0$ is not solvable, with $a, b, c \in \mathbb{Z}$.

e

- Liouville 1840 :

$$
n!\cdot e^{-1}-C_{n}=O\left(\frac{1}{n}\right), \quad C_{n}:=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

which implies that $e^{2} \notin \mathbb{Q}$ and $a e^{2}+b e+c=0$ is not solvable, with $a, b, c \in \mathbb{Z}$.
Indeed,

$$
n!\left(a e+b+c e^{-1}\right)-\underbrace{\left(a A_{n}+b n!+c C_{n}\right)}_{d_{n}}=O\left(\frac{1}{n}\right)
$$

Thus $d_{n}=O\left(\frac{1}{n}\right)$ and $d_{n}=0, \forall n>n_{0}$.

e

- Liouville 1840 :

$$
n!\cdot e^{-1}-C_{n}=O\left(\frac{1}{n}\right), \quad C_{n}:=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

which implies that $e^{2} \notin \mathbb{Q}$ and $a e^{2}+b e+c=0$ is not solvable, with $a, b, c \in \mathbb{Z}$.
Indeed,

$$
n!\left(a e+b+c e^{-1}\right)-\underbrace{\left(a A_{n}+b n!+c C_{n}\right)}_{d_{n}}=O\left(\frac{1}{n}\right)
$$

Thus $d_{n}=O\left(\frac{1}{n}\right)$ and $d_{n}=0, \forall n>n_{0}$. On the other hand,

$$
d_{n+2}-(n+1)\left(d_{n+1}+d_{n}\right)=2 a \quad \Rightarrow \quad \exists d_{n} \neq 0
$$

e

$e^{r} \notin \mathbb{Q}, \quad \forall r \in \mathbb{Q} \backslash 0$

$e^{r} \notin \mathbb{Q}, \quad \forall r \in \mathbb{Q} \backslash 0$

l.e., the graph of $y=e^{x}$ avoids all rational points, except $(0,1)$.

e

Proof: Consider

$$
f(x):=\frac{x^{n}(1-x)^{n}}{n!}=\frac{1}{n!} \sum_{i=n}^{2 n} c_{i} x^{i}, \quad c_{i} \in \mathbb{Z}
$$

e

Proof: Consider

$$
f(x):=\frac{x^{n}(1-x)^{n}}{n!}=\frac{1}{n!} \sum_{i=n}^{2 n} c_{i} x^{i}, \quad c_{i} \in \mathbb{Z}
$$

- for $0<x<1$ we have $0<f(x)<\frac{1}{n!}$

Proof: Consider

$$
f(x):=\frac{x^{n}(1-x)^{n}}{n!}=\frac{1}{n!} \sum_{i=n}^{2 n} c_{i} x^{i}, \quad c_{i} \in \mathbb{Z} .
$$

- for $0<x<1$ we have $0<f(x)<\frac{1}{n!}$

$$
f^{(k)}(0)=f^{(k)}(1)=0, k=1, \ldots, n-1, \quad f^{(k)}(0), f^{(k)}(1) \in \mathbb{Z} \quad \forall k
$$

Proof: Consider

$$
f(x):=\frac{x^{n}(1-x)^{n}}{n!}=\frac{1}{n!} \sum_{i=n}^{2 n} c_{i} x^{i}, \quad c_{i} \in \mathbb{Z}
$$

- for $0<x<1$ we have $0<f(x)<\frac{1}{n!}$

$$
f^{(k)}(0)=f^{(k)}(1)=0, k=1, \ldots, n-1, \quad f^{(k)}(0), f^{(k)}(1) \in \mathbb{Z} \quad \forall k
$$

$$
\begin{gathered}
f(x)=f(1-x) \quad \Rightarrow f^{(k)}(x)=(-1)^{k} f^{(k)}(1-x) \\
f^{(k)}(x)=\frac{k!}{n!} c_{k}+\cdots
\end{gathered}
$$

- Let

$$
F(x)=s^{2 n} f(x)-s^{2 n-1} f^{\prime}(x)+\cdots \pm \cdots f^{(2 n)}(x), \quad s \in \mathbb{N}
$$

- Let

$$
F(x)=s^{2 n} f(x)-s^{2 n-1} f^{\prime}(x)+\cdots \pm \cdots f^{(2 n)}(x), \quad s \in \mathbb{N}
$$

$$
F^{\prime}(x)=-s F(x)+s^{2 n+1} f(x)
$$

- Let

$$
F(x)=s^{2 n} f(x)-s^{2 n-1} f^{\prime}(x)+\cdots \pm \cdots f^{(2 n)}(x), \quad s \in \mathbb{N}
$$

$$
F^{\prime}(x)=-s F(x)+s^{2 n+1} f(x)
$$

$$
\left(e^{s x} F(x)\right)^{\prime}=s e^{s x} F(x)+e^{s x} F^{\prime}(x)=s^{2 n+1} e^{s x} f(x)
$$

Assume that

$$
e^{s}=\frac{a}{b} \in \mathbb{Q}, \quad s \in \mathbb{Z}
$$

e

Assume that

$$
e^{s}=\frac{a}{b} \in \mathbb{Q}, \quad s \in \mathbb{Z}
$$

Consider

$$
\begin{aligned}
N:=b \int_{0}^{1} s^{2 n+1} e^{s x} f(x) d x & =b\left[e^{s x} F(x)\right]_{0}^{1} \\
& a F(1)-b F(0) \in \mathbb{Z}
\end{aligned}
$$

since $F(1), F(0) \in \mathbb{Z}$.

e

Assume that

$$
e^{s}=\frac{a}{b} \in \mathbb{Q}, \quad s \in \mathbb{Z}
$$

Consider

$$
\begin{aligned}
N:=b \int_{0}^{1} s^{2 n+1} e^{s x} f(x) d x & =b\left[e^{s x} F(x)\right]_{0}^{1} \\
& a F(1)-b F(0) \in \mathbb{Z}
\end{aligned}
$$

since $F(1), F(0) \in \mathbb{Z}$. We have

$$
0<\underbrace{N}_{\in \mathbb{Z}}<b \cdot \frac{s^{2 n+1} e^{s}}{n!}
$$

e

Assume that

$$
e^{s}=\frac{a}{b} \in \mathbb{Q}, \quad s \in \mathbb{Z}
$$

Consider

$$
\begin{aligned}
N:=b \int_{0}^{1} s^{2 n+1} e^{s x} f(x) d x & =b\left[e^{s x} F(x)\right]_{0}^{1} \\
& a F(1)-b F(0) \in \mathbb{Z}
\end{aligned}
$$

since $F(1), F(0) \in \mathbb{Z}$. We have

$$
0<\underbrace{N}_{\in \mathbb{Z}}<b \cdot \frac{s^{2 n+1} e^{s}}{n!}
$$

It remains to choose n so that the right side is <1.

Same argument works for π^{2}.

Assume that $\pi^{2}=\frac{a}{b}, a, b \in \mathbb{Z}_{>0}$. Put

$$
F(x)=b^{n}\left(\pi^{2 n} f(x)-\pi^{2 n-2} f^{(2)}(x)+\cdots \pm \cdots\right)
$$

Same argument works for π^{2}.

Assume that $\pi^{2}=\frac{a}{b}, a, b \in \mathbb{Z}_{>0}$. Put

$$
F(x)=b^{n}\left(\pi^{2 n} f(x)-\pi^{2 n-2} f^{(2)}(x)+\cdots \pm \cdots\right)
$$

As before, we find

$$
F^{\prime \prime}(x)=-\pi^{s} F(x)+b^{n} \pi^{2 n+2} f(x), \quad F(0), F(1) \in \mathbb{Z}
$$

π

Same argument works for π^{2}.

Assume that $\pi^{2}=\frac{a}{b}, a, b \in \mathbb{Z}_{>0}$. Put

$$
F(x)=b^{n}\left(\pi^{2 n} f(x)-\pi^{2 n-2} f^{(2)}(x)+\cdots \pm \cdots\right)
$$

As before, we find

$$
F^{\prime \prime}(x)=-\pi^{s} F(x)+b^{n} \pi^{2 n+2} f(x), \quad F(0), F(1) \in \mathbb{Z}
$$

Have:

$$
\begin{aligned}
\left(F^{\prime}(x) \sin (\pi x)-\pi F(x) \cos (\pi x)\right)^{\prime} & =\left(F^{\prime \prime}(x)+\pi^{2} F(x)\right) \sin (\pi x) \\
& =b^{n} \pi^{2 n+2} f(x) \sin (\pi x) \\
& =\pi^{2} a^{n} f(x) \sin (\pi x)
\end{aligned}
$$

$$
\begin{aligned}
0<N & :=\pi \int_{0}^{1} a^{n} f(x) \sin (\pi x) d x \\
& =\left[\frac{1}{\pi} F^{\prime}(x) \sin (\pi x)-F(x) \cos (\pi x)\right]_{0}^{1} \\
& =F(0)+F(1) \in \mathbb{Z}
\end{aligned}
$$

but

$$
<\pi \frac{a^{n}}{n!} \quad n \gg 0
$$

which is a contradiction.

Theorem (Lambert 1766)

$$
\pi \notin \mathbb{Q}
$$

Proof (Hermite):

(1)

$$
\pi^{2 n+1} \int_{0}^{1} t^{n}(1-t)^{n} \sin (\pi t) d t=n!Q(\pi), \quad Q \in \mathbb{Z}[x], \quad \forall n \in \mathbb{N}
$$

This is proved by induction, using integration by parts.

Proof (Hermite):

(1)

$$
\pi^{2 n+1} \int_{0}^{1} t^{n}(1-t)^{n} \sin (\pi t) d t=n!Q(\pi), \quad Q \in \mathbb{Z}[x], \quad \forall n \in \mathbb{N}
$$

This is proved by induction, using integration by parts.
(2) $Q(\pi) \neq 0$ - look at the integral

Further results

- Lindemann 1882: $\alpha \in \overline{\mathbb{Q}} \backslash 0 \Rightarrow e^{\alpha} \notin \overline{\mathbb{Q}}$

Further results

- Lindemann 1882: $\alpha \in \overline{\mathbb{Q}} \backslash 0 \Rightarrow e^{\alpha} \notin \overline{\mathbb{Q}}$
- If $\alpha \in \overline{\mathbb{Q}}$ such that $\ln (\alpha) \neq 0$ then $\ln (\alpha) \notin \overline{\mathbb{Q}}$.

Further results

- Lindemann 1882: $\alpha \in \overline{\mathbb{Q}} \backslash 0 \Rightarrow e^{\alpha} \notin \overline{\mathbb{Q}}$
- If $\alpha \in \overline{\mathbb{Q}}$ such that $\ln (\alpha) \neq 0$ then $\ln (\alpha) \notin \overline{\mathbb{Q}}$. E.g.,

$$
\pi=\frac{1}{i} \ln (-1) \notin \overline{\mathbb{Q}}
$$

and the squaring of the circle is impossible.

Further results

- Lindemann 1882: $\alpha \in \overline{\mathbb{Q}} \backslash 0 \Rightarrow e^{\alpha} \notin \overline{\mathbb{Q}}$
- If $\alpha \in \overline{\mathbb{Q}}$ such that $\ln (\alpha) \neq 0$ then $\ln (\alpha) \notin \overline{\mathbb{Q}}$. E.g.,

$$
\pi=\frac{1}{i} \ln (-1) \notin \overline{\mathbb{Q}}
$$

and the squaring of the circle is impossible.

- Lindemann-Weierstrass 1885: Let $\alpha_{0}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$ be distinct. Then

$$
e^{\alpha_{0}}, \ldots, e^{\alpha_{m}}
$$

are linearly independent over $\overline{\mathbb{Q}}$

Rationality

We have looked at rationality properties of

$$
\sqrt{2}=\int_{2 x^{2} \leq 1} d x
$$

Rationality

We have looked at rationality properties of

$$
\begin{gathered}
\sqrt{2}=\int_{2 x^{2} \leq 1} d x \\
\pi:=\iint_{x^{2}+y^{1} \leq 1} d x d y
\end{gathered}
$$

Rationality

We have looked at rationality properties of

$$
\begin{gathered}
\sqrt{2}=\int_{2 x^{2} \leq 1} d x \\
\pi:=\iint_{x^{2}+y^{1} \leq 1} d x d y \\
\log (2)=\int_{1}^{2} \frac{d x}{x}
\end{gathered}
$$

Rationality

$$
\zeta(3)=\iiint_{0<x<y<z<1} \frac{d x d y d x}{(1-x) y z}
$$

Rationality

$$
\zeta(3)=\iiint_{0<x<y<z<1} \frac{d x d y d x}{(1-x) y z}
$$

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x
$$

Periods

A period is a number $s \in \mathbb{C}$ such that

$$
\Im(s), \Re(s)
$$

are absolute convergent integrals of rational functions $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ over domains in \mathbb{R}^{n}, given by polynomial inequalities with \mathbb{Q}-coefficients.

Periods

A period is a number $s \in \mathbb{C}$ such that

$$
\Im(s), \Re(s)
$$

are absolute convergent integrals of rational functions $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ over domains in \mathbb{R}^{n}, given by polynomial inequalities with \mathbb{Q}-coefficients.

$$
\mathcal{P}:=\{s\}_{\text {periods }}, \quad \hat{\mathcal{P}}:=\cup_{n \geq 0} \frac{1}{(2 \pi i)^{n}} \mathcal{P}
$$

Periods

Fact: \mathcal{P} is countable,

$$
\overline{\mathbb{Q}} \subset \mathcal{P} \subset \mathbb{C}
$$

Period relations: examples

$$
\log (4)=\int_{1}^{4} \frac{d x}{x}=\int_{1}^{2} \frac{d x}{x}+\int_{2}^{4} \frac{d x}{x}=2 \int_{1}^{2} \frac{d x}{x}=2 \log (2)
$$

Period relations: examples

$$
\begin{gathered}
\log (4)=\int_{1}^{4} \frac{d x}{x}=\int_{1}^{2} \frac{d x}{x}+\int_{2}^{4} \frac{d x}{x}=2 \int_{1}^{2} \frac{d x}{x}=2 \log (2) \\
6 \zeta(2)=\pi^{2} \\
1:=\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \frac{d x d y}{\sqrt{x y}}=3 \zeta(2)
\end{gathered}
$$

Period relations: examples

$$
\begin{gathered}
\log (4)=\int_{1}^{4} \frac{d x}{x}=\int_{1}^{2} \frac{d x}{x}+\int_{2}^{4} \frac{d x}{x}=2 \int_{1}^{2} \frac{d x}{x}=2 \log (2) \\
6 \zeta(2)=\pi^{2} \\
I:=\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} \frac{d x d y}{\sqrt{x y}}=3 \zeta(2)
\end{gathered}
$$

Substitute

$$
x:=u^{2} \frac{1+v^{2}}{1+u^{2}}, \quad y:=v^{2} \frac{1+u^{2}}{1+v^{2}}
$$

this will lead to

$$
I:=2 \int_{0}^{\infty} \frac{d u}{1+u^{2}} \cdot \int_{0}^{\infty} \frac{d v}{1+v^{2}}=\frac{\pi^{2}}{2}
$$

Period relations

Standard rules:

- Additivity

$$
\int_{a}^{b}(f(x)+g(x)) d x=\cdots, \quad \int_{a}^{b} f(x) d x=\int_{a}^{c} \cdots+\int_{c}^{b} \cdots
$$

Period relations

Standard rules:

- Additivity

$$
\int_{a}^{b}(f(x)+g(x)) d x=\cdots, \quad \int_{a}^{b} f(x) d x=\int_{a}^{c} \cdots+\int_{c}^{b} \cdots
$$

- Change of variables

$$
\int_{f(a)}^{f(b)} F(y) d y=\int_{a}^{b} F(f(x)) f^{\prime}(x) d x
$$

Period relations

Standard rules:

- Additivity

$$
\int_{a}^{b}(f(x)+g(x)) d x=\cdots, \quad \int_{a}^{b} f(x) d x=\int_{a}^{c} \cdots+\int_{c}^{b} \cdots
$$

- Change of variables

$$
\int_{f(a)}^{f(b)} F(y) d y=\int_{a}^{b} F(f(x)) f^{\prime}(x) d x
$$

- Stokes (Newton-Leibniz)

$$
\int_{a}^{b} f^{\prime}(x) d x=F(b)-F(a)
$$

Periods

Conjecture

- If $s \in \mathcal{P}$ has two integral representations, then one can pass between them using the above rules.

Periods

Conjecture

- If $s \in \mathcal{P}$ has two integral representations, then one can pass between them using the above rules.
- Any polynomial relation between periods is obtained through manipulations of the defining integrals using the above rules.

Periods: 「-version

For $a \in \mathbb{Q}$ we have
(1) $\Gamma(a+1)=a \Gamma(a)$

Periods: 「-version

For $a \in \mathbb{Q}$ we have
(1) $\Gamma(a+1)=a \Gamma(a)$
(2) $\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin (\pi a)}$

Periods: 「-version

For $a \in \mathbb{Q}$ we have
(1) $\Gamma(a+1)=a \Gamma(a)$
(2) $\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin (\pi a)}$
(3)

$$
\prod_{k=0}^{n-1} \Gamma\left(a+\frac{k}{n}\right)=(2 \pi)^{\frac{n-1}{2}} n^{-n a+\frac{1}{2}} \Gamma(n a)
$$

Periods: Г-version

Proof:

$$
\frac{\Gamma(a) \Gamma(1)}{\Gamma(a+1)}=\int_{0}^{1} x^{a-1}(1-x)^{1-1} d x=\frac{1}{a}
$$

Periods: 「-version

Proof:

$$
\frac{\Gamma(a) \Gamma(1)}{\Gamma(a+1)}=\int_{0}^{1} x^{a-1}(1-x)^{1-1} d x=\frac{1}{a}
$$

$$
\begin{aligned}
\Gamma(a) \Gamma(1-a) & =\int_{0}^{1} x^{a-1}(1-x)^{-a} d x \\
& =\int_{0}^{1}\left(\frac{x}{1-x}\right)^{a} \frac{d x}{x} \\
& =\int_{0}^{\infty} u^{a} \frac{d u}{1+u}
\end{aligned}
$$

Periods: 「-version

Conjecture (Rohrlich)

Every multiplicative relation of the form

$$
\prod_{a \in \mathbb{Q}} \Gamma(a)^{m_{a}} \in \pi^{\mathbb{Z} / 2} \overline{\mathbb{Q}}, \quad m_{a} \text { or its square } \in \mathbb{Z}
$$

is generated by the relations (1), (2), (3).

Restricted products

Let $\left\{\mathcal{T}_{i}\right\}_{i \in I}$ be collection of topological spaces.

Restricted products

Let $\left\{\mathcal{T}_{i}\right\}_{i \in I}$ be collection of topological spaces. Fix open subsets $\mathcal{U}_{i} \subset \mathcal{T}_{i}$, for all $i \in I$.

Restricted products

Let $\left\{\mathcal{T}_{i}\right\}_{i \in I}$ be collection of topological spaces. Fix open subsets $\mathcal{U}_{i} \subset \mathcal{T}_{i}$, for all $i \in I$. Define

$$
\prod_{i \in I}^{\prime} \mathcal{T}_{i}=: \mathcal{T}
$$

as the set of

$$
\left\{\left(x_{i}\right)_{i \in I} \mid \text { for almost all } i \text { we have } x_{i} \in \mathcal{U}_{i}\right\}
$$

i.e., vectors, where all but finitely many x_{i} are in the corresponding \mathcal{U}_{i}.

Restricted products

Let $\left\{\mathcal{T}_{i}\right\}_{i \in I}$ be collection of topological spaces. Fix open subsets $\mathcal{U}_{i} \subset \mathcal{T}_{i}$, for all $i \in I$. Define

$$
\prod_{i \in I}^{\prime} \mathcal{T}_{i}=: \mathcal{T}
$$

as the set of

$$
\left\{\left(x_{i}\right)_{i \in I} \mid \text { for almost all } i \text { we have } x_{i} \in \mathcal{U}_{i}\right\}
$$

i.e., vectors, where all but finitely many x_{i} are in the corresponding \mathcal{U}_{i}. The topology is given by a basis of open subsets:

$$
\prod_{i \in I_{0}} \mathcal{V}_{i} \times \prod_{i \in ハ I_{0}} \mathcal{U}_{i}
$$

where I_{0} is finite and $\mathcal{V}_{i} \subseteq \mathcal{T}_{i}$ are open.

Restricted product

A basic example is

$$
\mathbb{A}_{\mathbb{Q}}:=\prod_{p}^{\prime} \mathbb{Q}_{p} \times \mathbb{R}
$$

where $\mathcal{U}_{p}=\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$.

Restricted product

A basic example is

$$
\mathbb{A}_{\mathbb{Q}}:=\prod^{\prime} \mathbb{Q}_{p} \times \mathbb{R}
$$

where $\mathcal{U}_{p}=\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$. We have

$$
\mathbb{Q} \hookrightarrow \mathbb{A}_{\mathbb{Q}}
$$

by sending

$$
x \mapsto\left(\left(x_{p}\right)_{p}, x_{\infty}\right)
$$

Restricted product

A basic example is

$$
\mathbb{A}_{\mathbb{Q}}:=\prod^{\prime} \mathbb{Q}_{p} \times \mathbb{R}
$$

where $\mathcal{U}_{p}=\mathbb{Z}_{p} \subset \mathbb{Q}_{p}$. We have

$$
\mathbb{Q} \hookrightarrow \mathbb{A}_{\mathbb{Q}}
$$

by sending

$$
x \mapsto\left(\left(x_{p}\right)_{p}, x_{\infty}\right)
$$

The image is discrete and cocompact.

Proof

We have

$$
\mathbb{A}_{\mathbb{Q}} /(\mathbb{Q} \times \prod_{p} \underbrace{\mathbb{Z}_{p}}_{\text {compact }}) \simeq \mathbb{R} / \mathbb{Z}
$$

Dualities

An additive character is a continuous homomorphism

$$
\psi_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}
$$

Dualities

An additive character is a continuous homomorphism

$$
\psi_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}
$$

Being continuous, it has finite image, thus it is constant on some $p^{n} \mathbb{Z}_{p}$.

Dualities

An additive character is a continuous homomorphism

$$
\psi_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}
$$

Being continuous, it has finite image, thus it is constant on some $p^{n} \mathbb{Z}_{p}$. Concretely, put

$$
\psi_{a}(x)=e^{2 \pi i\{a x\}}
$$

where

$$
\{a x\}=a x-\underbrace{[a x]}_{\in \mathbb{Z}_{p}}
$$

Dualities

An additive character is a continuous homomorphism

$$
\psi_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}
$$

Being continuous, it has finite image, thus it is constant on some $p^{n} \mathbb{Z}_{p}$. Concretely, put

$$
\psi_{a}(x)=e^{2 \pi i\{a x\}}
$$

where

$$
\{a x\}=a x-\underbrace{[a x]}_{\in \mathbb{Z}_{p}} .
$$

Note that the left side is in \mathbb{Q}.

Dualities

With this choice, we have \mathbb{Q}_{p} and \mathbb{Z}_{p} are self-dual!

Dualities

With this choice, we have \mathbb{Q}_{p} and \mathbb{Z}_{p} are self-dual!
Fix Haar measures μ_{p}, for all primes p, normalized by

$$
\mu_{p}\left(\mathbb{Z}_{p}\right)=1
$$

we have

$$
\mu_{p}\left(p^{n} \mathbb{Z}_{p}\right)=\frac{1}{p^{n}}, \quad \mu_{p}\left(\mathbb{Z}_{p}^{\times}\right)=1-\frac{1}{p}
$$

Dualities

With this choice, we have \mathbb{Q}_{p} and \mathbb{Z}_{p} are self-dual!
Fix Haar measures μ_{p}, for all primes p, normalized by

$$
\mu_{p}\left(\mathbb{Z}_{p}\right)=1
$$

we have

$$
\mu_{p}\left(p^{n} \mathbb{Z}_{p}\right)=\frac{1}{p^{n}}, \quad \mu_{p}\left(\mathbb{Z}_{p}^{\times}\right)=1-\frac{1}{p}
$$

We also put

$$
\mu_{\infty}=d x
$$

the standard Lebesgue measure on \mathbb{R}.

Dualities

With this choice, we have \mathbb{Q}_{p} and \mathbb{Z}_{p} are self-dual!
Fix Haar measures μ_{p}, for all primes p, normalized by

$$
\mu_{p}\left(\mathbb{Z}_{p}\right)=1,
$$

we have

$$
\mu_{\rho}\left(p^{n} \mathbb{Z}_{p}\right)=\frac{1}{p^{n}}, \quad \mu_{\rho}\left(\mathbb{Z}_{p}^{\times}\right)=1-\frac{1}{p} .
$$

We also put

$$
\mu_{\infty}=d x,
$$

the standard Lebesgue measure on \mathbb{R}. This gives a Haar measure on $\mathbb{A}_{\mathbb{Q}}$ and we can integrate functions on the adeles.

Dualities

This gives a well-defined measure on the adeles:

$$
\prod_{p} \mu_{p} \times \mu_{\infty}
$$

Dualities

This gives a well-defined measure on the adeles:

$$
\prod \mu_{p} \times \mu_{\infty}
$$

We also have a character

$$
\psi_{a}: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{S}^{1}
$$

where $a \in \mathbb{A}_{\mathbb{Q}}$, defined as

$$
\psi_{a}=\prod_{p} \psi_{a_{p}} \times \psi_{a_{\infty}}
$$

a product of local characters. This is indeed a continuous homomorphism.

Dualities

$$
\mathbb{Q} \subset \mathbb{A}_{\mathbb{Q}}
$$

is self-dual, $(\mathbb{A} / \mathbb{Q})^{\perp}=\mathbb{Q}$.

Dualities

$$
\mathbb{Q} \subset \mathbb{A}_{\mathbb{Q}}
$$

is self-dual, $(\mathbb{A} / \mathbb{Q})^{\perp}=\mathbb{Q}$. The Poisson summation formula takes the form

$$
\sum_{x \in \mathbb{Q}} f(x)=\sum_{a \in \mathbb{Q}} \hat{f}(a),
$$

where

$$
\hat{f}(a)=\int_{\mathbb{A}_{Q}} f(x) \psi_{a}(x) \mu(x)
$$

provided we have convergence.

Application

Recall that

$$
\mathbb{P}^{1}(\mathbb{Q}):=\left\{\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}_{\text {prim }}^{2} \backslash 0\right) / \pm\right\} .
$$

Application

Recall that

$$
\mathbb{P}^{1}(\mathbb{Q}):=\left\{\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}_{\text {prim }}^{2} \backslash 0\right) / \pm\right\} .
$$

Consider a height function:

$$
H: \mathbb{P}^{1}(\mathbb{Q}) \rightarrow \mathbb{R}
$$

given by

$$
H\left(x_{0}, x_{1}\right)=\sqrt{x_{0}^{2}+x_{1}^{2}}
$$

Application

Recall that

$$
\mathbb{P}^{1}(\mathbb{Q}):=\left\{\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}_{\text {prim }}^{2} \backslash 0\right) / \pm\right\} .
$$

Consider a height function:

$$
H: \mathbb{P}^{1}(\mathbb{Q}) \rightarrow \mathbb{R}
$$

given by

$$
H\left(x_{0}, x_{1}\right)=\sqrt{x_{0}^{2}+x_{1}^{2}}
$$

Let

$$
N(B):=\#\left\{\left(x_{0}, x_{1}\right) \mid H\left(x_{0}, x_{1}\right) \leq B\right\}
$$

be the counting function.

Application

We are interested in the asymptotic of

$$
N(B), \quad \text { for } B \rightarrow \infty
$$

Application

We are interested in the asymptotic of

$$
N(B), \quad \text { for } B \rightarrow \infty
$$

This is nothing but the Gauss circle problem

Application

We are interested in the asymptotic of

$$
N(B), \quad \text { for } B \rightarrow \infty
$$

This is nothing but the Gauss circle problem, except that we are looking at coprime coordinates.

Application

We now translate this into the adelic language.

Application

We now translate this into the adelic language. Recall the product formula:

$$
\prod|x|_{p} \cdot|x|_{\infty}=1, \quad x \in \mathbb{Q}^{\times}
$$

Application

We now translate this into the adelic language. Recall the product formula:

$$
\prod|x|_{p} \cdot|x|_{\infty}=1, \quad x \in \mathbb{Q}^{\times} .
$$

The coprimality condition is nothing but

$$
\max \left(\left|x_{0}\right|_{p},\left|x_{1}\right|_{p}\right)=1, \quad \forall p
$$

Application

We now translate this into the adelic language. Recall the product formula:

$$
\prod|x|_{p} \cdot|x|_{\infty}=1, \quad x \in \mathbb{Q}^{\times} .
$$

The coprimality condition is nothing but

$$
\max \left(\left|x_{0}\right|_{p},\left|x_{1}\right|_{p}\right)=1, \quad \forall p
$$

This allows to rewrite the problem as follows.

Application

Consider the following height function

$$
H=\prod_{p} H_{p} \times H_{\infty}: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{R},
$$

with local factors given by

$$
H_{p}(x):=\max \left(1,|x|_{p}\right), \quad H_{\infty}(x):=\left(1+x^{2}\right)^{1 / 2} .
$$

Application

Consider the following height function

$$
H=\prod_{p} H_{p} \times H_{\infty}: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{R},
$$

with local factors given by

$$
H_{p}(x):=\max \left(1,|x|_{p}\right), \quad H_{\infty}(x):=\left(1+x^{2}\right)^{1 / 2} .
$$

Note that, for all p, the local height H_{p} is invariant under translation by \mathbb{Z}_{p}.

Application

Consider the following height function

$$
H=\prod_{p} H_{p} \times H_{\infty}: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{R},
$$

with local factors given by

$$
H_{p}(x):=\max \left(1,|x|_{p}\right), \quad H_{\infty}(x):=\left(1+x^{2}\right)^{1 / 2} .
$$

Note that, for all p, the local height H_{p} is invariant under translation by \mathbb{Z}_{p}. We are interested in the asymptotic of

$$
N(B):=\{x \in \mathbb{Q} \mid H(x) \leq B\}, \quad B \rightarrow \infty .
$$

Tauberian theorem

A convenient version of the Tauberian theorem is:
Consider

$$
f(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

Tauberian theorem

A convenient version of the Tauberian theorem is:
Consider

$$
f(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

Assume that f

- is holomorphic for $\Re(s)>a>0$,

Tauberian theorem

A convenient version of the Tauberian theorem is:
Consider

$$
f(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

Assume that f

- is holomorphic for $\Re(s)>a>0$,
- has an isolated pole at $s=a$, of order $b \in \mathbb{N}$, with leading coefficient $c \in \mathbb{R}, c \neq 0$.

Tauberian theorem

A convenient version of the Tauberian theorem is:
Consider

$$
f(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

Assume that f

- is holomorphic for $\Re(s)>a>0$,
- has an isolated pole at $s=a$, of order $b \in \mathbb{N}$, with leading coefficient $c \in \mathbb{R}, c \neq 0$.
Then

$$
N(B):=\sum_{n \leq B} a_{n} \sim \frac{c}{a \Gamma(b)} \cdot B^{a} \log (B)^{b-1}, \quad B \rightarrow \infty
$$

Height zeta function

Therefore, we introduce and study the function

$$
Z(s):=\sum_{x \in \mathbb{Q}} H(x)^{-s}
$$

Height zeta function

Therefore, we introduce and study the function

$$
Z(s):=\sum_{x \in \mathbb{Q}} H(x)^{-s}
$$

The series converges absolutely to a holomorphic function for $\Re(s)>2$.

Height zeta function

Therefore, we introduce and study the function

$$
Z(s):=\sum_{x \in \mathbb{Q}} H(x)^{-s}
$$

The series converges absolutely to a holomorphic function for $\Re(s)>2$. By the Poisson summation formula, we have

$$
Z(s)=\sum_{a \in \mathbb{Q}} \hat{H}\left(s, \psi_{a}\right)
$$

Height zeta function

Therefore, we introduce and study the function

$$
Z(s):=\sum_{x \in \mathbb{Q}} H(x)^{-s}
$$

The series converges absolutely to a holomorphic function for $\Re(s)>2$. By the Poisson summation formula, we have

$$
Z(s)=\sum_{a \in \mathbb{Q}} \hat{H}\left(s, \psi_{a}\right)
$$

where

$$
\hat{H}\left(s, \psi_{a}\right)=\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \cdot \psi_{a}(x) \mu(x)
$$

Height zeta function

Why is this any better? We started with a sum over \mathbb{Q}, and we again have a sum over \mathbb{Q}.

Height zeta function

Why is this any better? We started with a sum over \mathbb{Q}, and we again have a sum over \mathbb{Q}.

However, because H_{p} is invariant under \mathbb{Z}_{p}, only characters which are trivial on \mathbb{Z}_{p}, for all p contribute.

Height zeta function

Why is this any better? We started with a sum over \mathbb{Q}, and we again have a sum over \mathbb{Q}.

However, because H_{p} is invariant under \mathbb{Z}_{p}, only characters which are trivial on \mathbb{Z}_{p}, for all p contribute. So a must be in \mathbb{Z}.

Height zeta function

We write

$$
Z(s)=\underbrace{\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \mu(x)}_{\text {trivial character }}+
$$

Height zeta function

We write

$$
Z(s)=\underbrace{\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \mu(x)}_{\text {trivial character }}+\underbrace{\sum_{a \neq 0} \cdots}_{\text {nontrivial characters }}
$$

Height zeta function

We write

$$
Z(s)=\underbrace{\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \mu(x)}_{\text {trivial character }}+\underbrace{\sum_{a \neq 0} \cdots}_{\text {nontrivial characters }}
$$

and analyze the terms.

Height zeta function

We write

$$
Z(s)=\underbrace{\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \mu(x)}_{\text {trivial character }}+\underbrace{\sum_{a \neq 0} \cdots}_{\text {nontrivial characters }}
$$

and analyze the terms.

- put $U(0):=\left\{\left.x| | x\right|_{p} \leq 1\right\}$ and $U(j):=\left\{\left.x| | x\right|_{p}=p^{j}\right\}$,

Height zeta function

We write

$$
Z(s)=\underbrace{\int_{\mathbb{A}_{\mathbb{Q}}} H(x)^{-s} \mu(x)}_{\text {trivial character }}+\underbrace{\sum_{a \neq 0} \cdots}_{\text {nontrivial characters }}
$$

and analyze the terms.

- put $U(0):=\left\{\left.x| | x\right|_{p} \leq 1\right\}$ and $U(j):=\left\{\left.x| | x\right|_{p}=p^{j}\right\}$, note that

$$
\operatorname{vol}(U(j))=p^{j}\left(1-\frac{1}{p}\right)
$$

Local integrals

We have

$$
\int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p}=\int_{U(0)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}+\sum_{j \geq 1} \int_{U(j)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}
$$

Local integrals

We have

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p} & =\int_{U(0)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}+\sum_{j \geq 1} \int_{U(j)} H_{p}\left(x_{p}\right)^{-s} \mu_{p} \\
& =1+\sum_{j \geq 1} p^{-j s} \operatorname{vol}(U(j)) \\
& =\frac{1-p^{-s} \geq 1}{1-p^{-(s-1)}}
\end{aligned}
$$

Local integrals

We have

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p} & =\int_{U(0)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}+\sum_{j \geq 1} \int_{U(j)} H_{p}\left(x_{p}\right)^{-s} \mu_{p} \\
& =1+\sum_{j \geq 1} p^{-j s} \operatorname{vol}(U(j)) \\
& =\frac{1-p^{-s}}{1-p^{-(s-1)}} \\
\int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} d x & =\frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}
\end{aligned}
$$

Local integrals

We have

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p} & =\int_{U(0)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}+\sum_{j \geq 1} \int_{U(j)} H_{p}\left(x_{p}\right)^{-s} \mu_{p} \\
& =1+\sum_{j \geq 1} p^{-j s} \operatorname{vol}(U(j)) \\
& =\frac{1-p^{-s} \geq 1}{1-p^{-(s-1)}} \\
\int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} d x & =\frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}
\end{aligned}
$$

The Euler product gives

$$
\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}
$$

Local integrals

We have

$$
\begin{aligned}
\int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p} & =\int_{U(0)} H_{p}\left(x_{p}\right)^{-s} \mu_{p}+\sum_{j \geq 1} \int_{U(j)} H_{p}\left(x_{p}\right)^{-s} \mu_{p} \\
& =1+\sum_{j \geq 1} p^{-j s} \operatorname{vol}(U(j)) \\
& =\frac{1-p^{-s} \geq 1}{1-p^{-(s-1)}} \\
\int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} d x & =\frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}
\end{aligned}
$$

The Euler product gives

$$
\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}
$$

which has a simple pole at $s=2$ with residue $\frac{1}{\zeta(2)}$.

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$
- unramified: trivial on \mathbb{Z}_{p}, i.e., $a_{p} \in \mathbb{Z}_{p}$
- $\psi_{\infty}: x \mapsto e^{2 \pi i a \cdot x}, a \in \mathbb{R}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$
- unramified: trivial on \mathbb{Z}_{p}, i.e., $a_{p} \in \mathbb{Z}_{p}$
- $\psi_{\infty}: x \mapsto e^{2 \pi i a \cdot x}, a \in \mathbb{R}$
- $\psi=\prod_{p} \psi_{p} \cdot \psi_{\infty}=\psi_{a}$, with $a \in \mathbb{A}_{\mathbb{Q}}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$
- unramified: trivial on \mathbb{Z}_{p}, i.e., $a_{p} \in \mathbb{Z}_{p}$
- $\psi_{\infty}: x \mapsto e^{2 \pi i a \cdot x}, a \in \mathbb{R}$
- $\psi=\prod_{p} \psi_{p} \cdot \psi_{\infty}=\psi_{a}$, with $a \in \mathbb{A}_{\mathbb{Q}}$
- duality $\hat{\mathbb{Q}}_{p}=\mathbb{Q}_{p}$ and $\hat{\mathbb{R}}=\mathbb{R}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$
- unramified: trivial on \mathbb{Z}_{p}, i.e., $a_{p} \in \mathbb{Z}_{p}$
- $\psi_{\infty}: x \mapsto e^{2 \pi i a \cdot x}, a \in \mathbb{R}$
- $\psi=\prod_{p} \psi_{p} \cdot \psi_{\infty}=\psi_{a}$, with $a \in \mathbb{A}_{\mathbb{Q}}$
- duality $\hat{\mathbb{Q}}_{p}=\mathbb{Q}_{p}$ and $\hat{\mathbb{R}}=\mathbb{R}$
- $\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)^{\vee}($ characters trivial on $\mathbb{Q})=\mathbb{Q}$

Characters, once again

- $\mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\psi_{p}: x_{p} \mapsto e^{2 \pi i a_{p} \cdot x_{p}}$, with $a_{p} \in \mathbb{Q}_{p}$
- unramified: trivial on \mathbb{Z}_{p}, i.e., $a_{p} \in \mathbb{Z}_{p}$
- $\psi_{\infty}: x \mapsto e^{2 \pi i a \cdot x}, a \in \mathbb{R}$
- $\psi=\prod_{p} \psi_{p} \cdot \psi_{\infty}=\psi_{a}$, with $a \in \mathbb{A}_{\mathbb{Q}}$
- duality $\hat{\mathbb{Q}}_{p}=\mathbb{Q}_{p}$ and $\hat{\mathbb{R}}=\mathbb{R}$
- $\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)^{\vee}($ characters trivial on $\mathbb{Q})=\mathbb{Q}$
- $\psi=\psi_{a}$ unramified for all $p \Rightarrow a \in \mathbb{Z}$.

Characters, once again

For $a \in \mathbb{Z} \backslash 0$ and $p \nmid a$, we compute

$$
\hat{H}_{p}\left(s, \psi_{a}\right)=1+\sum_{j \geq 1} p^{-s j} \int_{|x|_{p}=p^{j}} \psi_{a}\left(x_{p}\right) \mu_{p}=1-p^{-s}
$$

Characters, once again

Proof: let $V(i)$ be the set of $x_{p} \in \mathbb{Q}_{p}$ with $H_{p}(x) \leq p^{i}$.

Characters, once again

Proof: let $V(i)$ be the set of $x_{p} \in \mathbb{Q}_{p}$ with $H_{p}(x) \leq p^{i}$. Then

$$
\int_{V(i)} \psi_{a}(x) \mu_{p}=p^{i n} \int_{\mathbb{Z}_{p}} \psi_{a / p^{i}}(x) \mu_{p}
$$

Characters, once again

Proof: let $V(i)$ be the set of $x_{p} \in \mathbb{Q}_{p}$ with $H_{p}(x) \leq p^{i}$. Then

$$
\int_{V(i)} \psi_{a}(x) \mu_{p}=p^{i n} \int_{\mathbb{Z}_{p}} \psi_{a / p^{i}}(x) \mu_{p}
$$

For $i \geq 1$ and $p \nmid a$, we integrate a nontrivial character over a compact group, thus get 0 .

Characters, once again

Proof: let $V(i)$ be the set of $x_{p} \in \mathbb{Q}_{p}$ with $H_{p}(x) \leq p^{i}$. Then

$$
\int_{V(i)} \psi_{a}(x) \mu_{p}=p^{i n} \int_{\mathbb{Z}_{p}} \psi_{a / p^{i}}(x) \mu_{p}
$$

For $i \geq 1$ and $p \nmid a$, we integrate a nontrivial character over a compact group, thus get 0 . For $i=0$, we get 1 .

Characters, once again

Proof: let $V(i)$ be the set of $x_{p} \in \mathbb{Q}_{p}$ with $H_{p}(x) \leq p^{i}$. Then

$$
\int_{V(i)} \psi_{a}(x) \mu_{p}=p^{i n} \int_{\mathbb{Z}_{p}} \psi_{a / p^{i}}(x) \mu_{p}
$$

For $i \geq 1$ and $p \nmid a$, we integrate a nontrivial character over a compact group, thus get 0 . For $i=0$, we get 1 . Since $U(i)=V(i) \backslash V(i-1)$, we have

$$
\int_{U(i)} \psi_{a}(x) \mu_{p}= \begin{cases}0 & i \geq 2 \\ -1 & i=1\end{cases}
$$

which implies the claim.

Characters, once again

For $\Re(s)>1+\epsilon$, and $p \mid a$, replace ψ by 1 and estimate

$$
\left|\hat{H}_{p}\left(s, \psi_{a}\right)\right| \leq \frac{1}{1-p^{-\epsilon}}
$$

Characters, once again

For $\Re(s)>1+\epsilon$, and $p \mid a$, replace ψ by 1 and estimate

$$
\left|\hat{H}_{p}\left(s, \psi_{a}\right)\right| \leq \frac{1}{1-p^{-\epsilon}}
$$

For any positive integer a we have

$$
\prod_{p \mid a} \frac{1}{p^{\epsilon}} \ll \log (1+a)
$$

Characters, once again

For $\Re(s)>1+\epsilon$, and $p \mid a$, replace ψ by 1 and estimate

$$
\left|\hat{H}_{p}\left(s, \psi_{a}\right)\right| \leq \frac{1}{1-p^{-\epsilon}} .
$$

For any positive integer a we have

$$
\prod_{p \mid a} \frac{1}{p^{\epsilon}} \ll \log (1+a) .
$$

Thus

$$
\prod_{p \mid a}\left|\hat{H}_{p}\left(s, \psi_{a}\right)\right| \ll(1+|a|)^{\delta}
$$

for some (small) $\delta>0$.

Characters, once again

continued

$$
Z(s)=\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}+
$$

continued

$$
\begin{gathered}
Z(s)=\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}+ \\
\sum_{a \in \mathbb{Z}} \prod_{p \nmid a} \frac{1}{\zeta_{p}(s)} \cdot \prod_{p \mid a} \hat{H}_{p}\left(a_{p}, s\right) \cdot \int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} \cdot e^{2 \pi i a x} d x
\end{gathered}
$$

continued

$$
\begin{gathered}
Z(s)=\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}+ \\
\sum_{a \in \mathbb{Z}} \prod_{p \nmid a} \frac{1}{\zeta_{p}(s)} \cdot \prod_{p \mid a} \hat{H}_{p}\left(a_{p}, s\right) \cdot \int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} \cdot e^{2 \pi i a x} d x
\end{gathered}
$$

For $\Re(s)>2-\delta$, one has:

- $\left|\prod_{p \mid a} \hat{H}_{p}(s, a)\right| \ll\left|\prod_{p \mid a} \int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p}\right| \ll(1+|a|)^{\delta}$
- $\left|\int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} \cdot e^{2 \pi i a x} d x\right| \ll N \frac{1}{(1+|a|)^{n}}$, for any $N \in \mathbb{N}$, (integration by parts)

continued

$$
\begin{gathered}
Z(s)=\frac{\zeta(s-1)}{\zeta(s)} \cdot \frac{\Gamma((s-1) / 2)}{\Gamma(s / 2)}+ \\
\sum_{a \in \mathbb{Z}} \prod_{p \nmid a} \frac{1}{\zeta_{p}(s)} \cdot \prod_{p \mid a} \hat{H}_{p}\left(a_{p}, s\right) \cdot \int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} \cdot e^{2 \pi i a x} d x
\end{gathered}
$$

For $\Re(s)>2-\delta$, one has:

- $\left|\prod_{p \mid a} \hat{H}_{p}(s, a)\right| \ll\left|\prod_{p \mid a} \int_{\mathbb{Q}_{p}} H_{p}\left(x_{p}\right)^{-s} \mu_{p}\right| \ll(1+|a|)^{\delta}$
- $\left|\int_{\mathbb{R}}\left(1+x^{2}\right)^{-s / 2} \cdot e^{2 \pi i a x} d x\right|<_{N} \frac{1}{(1+\mid a)^{n}}$, for any $N \in \mathbb{N}$, (integration by parts)
This gives a meromorphic continuation of $Z(s)$ and its pole at $s=2$.

