Lecture 8

• Complex analytic tools (entire functions with prescribed zeroes)

- Complex analytic tools (entire functions with prescribed zeroes)
- More about $\Gamma(s)$

- Complex analytic tools (entire functions with prescribed zeroes)
- More about $\Gamma(s)$
- Zero-free region of $\zeta(s)$

- Complex analytic tools (entire functions with prescribed zeroes)
- More about $\Gamma(s)$
- Zero-free region of $\zeta(s)$
- Tauberian theorems

- Complex analytic tools (entire functions with prescribed zeroes)
- More about $\Gamma(s)$
- Zero-free region of $\zeta(s)$
- Tauberian theorems
- Prime Number Theorem

Analytic tools

Consider an open subset $\Omega \subseteq \mathbb{C}$.

Analytic tools

Consider an open subset $\Omega \subseteq \mathbb{C}$.

A function $g:\Omega \to \mathbb{C}$ is called analytic (holomorphic) iff

$$g(z)=\sum a_nz^n.$$

Analytic tools

Consider an open subset $\Omega \subseteq \mathbb{C}$.

A function $g:\Omega \to \mathbb{C}$ is called analytic (holomorphic) iff

$$g(z)=\sum a_nz^n.$$

It is called entire if $\forall \Omega \subset \mathbb{C}$ bounded,

 $g|_{\Omega}$ is analytic.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

Consider

$$u(s) := \prod (1 + u_n(s)).$$

Consider

$$u(s):=\prod(1+u_n(s)).$$

It converges if $\neq 0$, and

• $u_n(s) \neq -1 \ \forall s \in \Omega, \ n \geq 1$

Consider

$$u(s) := \prod (1 + u_n(s)).$$

It converges if $\neq 0$, and

- $u_n(s) \neq -1 \ \forall s \in \Omega, \ n \geq 1$
- $|u_n(s)| \leq a_n$ and $\sum a_n < \infty$

Consider

$$u(s) := \prod (1 + u_n(s)).$$

It converges if $\neq 0$, and

- $u_n(s) \neq -1 \ \forall s \in \Omega, \ n \geq 1$
- $|u_n(s)| \leq a_n$ and $\sum a_n < \infty$
- $\Rightarrow u(s)$ is holomorphic in Ω , $u(s) \neq 0$ for all $s \in \Omega$.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Consider

$$u(s) := \prod (1 + u_n(s)).$$

It converges if $\neq 0$, and

- $u_n(s) \neq -1 \ \forall s \in \Omega, \ n \geq 1$
- $|u_n(s)| \leq a_n$ and $\sum a_n < \infty$
- $\Rightarrow u(s)$ is holomorphic in Ω , $u(s) \neq 0$ for all $s \in \Omega$.

Our goal will be to write down entire functions with prescribed zeros.

10/10/12/12/ 2 740

• Consider a sequence $a_1, a_2, \ldots \in \mathbb{C}$

- Consider a sequence $a_1, a_2, \ldots \in \mathbb{C}$
- $0 < |a_1| \le |a_2| \le \cdots$

- Consider a sequence $a_1, a_2, \ldots \in \mathbb{C}$
- $0 < |a_1| \le |a_2| \le \cdots$
- $\lim_{n\to\infty} 1/|a_n| = 0$

- Consider a sequence $a_1, a_2, \ldots \in \mathbb{C}$
- $0 < |a_1| \le |a_2| \le \cdots$
- $\lim_{n\to\infty} 1/|a_n| = 0$
- $\Rightarrow \exists$ an entire function

$$g:\mathbb{C}\to\mathbb{C}$$

such that $\{a_n\}$ are its zeroes, with multiplicities.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

$$u_n(s) := \left(1 - \frac{s}{a_n}\right) \cdot e^{\sum_{j=1}^{n-1} \frac{1}{j} \left(\frac{s}{a_n}\right)^j}$$
$$u(s) := \prod_{s} u_n(s)$$

$$u_n(s) := \left(1 - \frac{s}{a_n}\right) \cdot e^{\sum_{j=1}^{n-1} \frac{1}{j} \left(\frac{s}{a_n}\right)^j}$$

$$u(s) := \prod_n u_n(s)$$

Put

$$\Omega_n := \{s \in \mathbb{C} \mid |s| \leq (1-\epsilon)|a_n|\}$$

$$u_n(s) := \left(1 - \frac{s}{a_n}\right) \cdot e^{\sum_{j=1}^{n-1} \frac{1}{j} \left(\frac{s}{a_n}\right)^j}$$

$$u(s) := \prod_{s} u_n(s)$$

Put

$$\Omega_n := \{s \in \mathbb{C} \mid |s| \leq (1 - \epsilon)|a_n|\}$$

We have

$$\ln(u_r(s)) = \ln(1 - \frac{s}{a_r}) + \sum_{i=1}^{r-1} \frac{1}{j} (\frac{s}{a_r})^j$$

$$u_n(s) := \left(1 - \frac{s}{a_n}\right) \cdot e^{\sum_{j=1}^{n-1} \frac{1}{j} \left(\frac{s}{a_n}\right)^j}$$

$$u(s) := \prod_{s} u_n(s)$$

Put

$$\Omega_n := \{s \in \mathbb{C} \mid |s| \leq (1 - \epsilon)|a_n|\}$$

We have

$$\ln(u_r(s)) = \ln(1 - \frac{s}{a_r}) + \sum_{j=1}^{r-1} \frac{1}{j} (\frac{s}{a_r})^j = -\sum_{j=r}^{\infty} \frac{1}{j} (\frac{s}{a_r})^j$$

We consider $r \ge n$. We claim absolute convergence:

$$\sum_{r=n}^{\infty}\sum_{j=r}^{\infty}\frac{1}{j}\left|\left(\frac{s}{a_{r}}\right)^{j}\right|<\infty.$$

We consider $r \ge n$. We claim absolute convergence:

$$\sum_{r=n}^{\infty}\sum_{j=r}^{\infty}\frac{1}{j}\left|\left(\frac{s}{a_r}\right)^j\right|<\infty.$$

Indeed,

$$\sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} \left((1 - \epsilon) \frac{|a_n|}{|a_r|} \right)^j$$

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・ 恵 ・ 夕久で

We consider $r \ge n$. We claim absolute convergence:

$$\sum_{r=n}^{\infty}\sum_{j=r}^{\infty}\frac{1}{j}\left|\left(\frac{s}{a_r}\right)^j\right|<\infty.$$

Indeed,

$$\sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} \left((1-\epsilon) \frac{|a_n|}{|a_r|} \right)^j \leq \sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} (1-\epsilon)^j$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ かへで

We consider $r \ge n$. We claim absolute convergence:

$$\sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} \left| \left(\frac{s}{a_r} \right)^j \right| < \infty.$$

Indeed,

$$\sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} \left((1 - \epsilon) \frac{|a_n|}{|a_r|} \right)^j \le \sum_{r=n}^{\infty} \sum_{j=r}^{\infty} \frac{1}{j} (1 - \epsilon)^j$$
$$\le \sum_{r=n}^{\infty} \frac{1}{j} (1 - \epsilon)^r < \infty$$

◆ロト ◆母ト ◆差ト ◆差ト 差 めなべ

It follows that u(s) is holomorphic in Ω_n . Since

$$\lim_{n\to\infty}\,\Omega_n=\mathbb{C}$$

we get the claim.

It follows that u(s) is holomorphic in Ω_n . Since

$$\lim_{n\to\infty}\,\Omega_n=\mathbb{C}$$

we get the claim.

Remark

lf

$$\sum_{n>1} \frac{1}{|a_n|^{\rho+1}} < \infty$$

then

$$g(s) = \prod_{n=1}^{\infty} \left(1 - \frac{s}{a_n}\right) e^{\sum_{j=1}^{\rho} \frac{1}{j} \left(\frac{s}{a_n}\right)^j}$$

is holomorphic with prescribed zeroes.

- 4日ト4個ト4度ト4度ト 度 めQで

Every entire function has the form

$$g(s) = e^{h(s)} \cdot s^m \cdot \prod_{n=1}^{\infty} \left(1 - \frac{s}{a_n}\right) e^{\sum \dots}$$

with h(s) entire.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Every entire function has the form

$$g(s) = e^{h(s)} \cdot s^m \cdot \prod_{n=1}^{\infty} \left(1 - \frac{s}{a_n}\right) e^{\sum \dots}$$

with h(s) entire.

Proof:

$$\frac{g(s)}{s^m} \cdot \prod \cdots$$

entire, no zeroes $\Rightarrow h(s)$ also entire.

Definition

Let $g:\mathbb{C} \to \mathbb{C}$ be an entire function. Put

•

$$m_g(r) := \max_{|s|=r} |g(s)|$$

Lecture 8 10 / 59

Definition

Let $g:\mathbb{C}\to\mathbb{C}$ be an entire function. Put

•

$$m_g(r) := \max_{|s|=r} |g(s)|$$

0

$$\alpha = \alpha(g) := \inf\{a | m_g(r) < e^{r^a}\}$$

Lecture 8 10 / 59

Definition

Let $g:\mathbb{C}\to\mathbb{C}$ be an entire function. Put

0

$$m_g(r) := \max_{|s|=r} |g(s)|$$

•

$$\alpha = \alpha(g) := \inf\{a | m_g(r) < e^{r^a}\}$$

•

$$\beta = \beta(g) := \inf\{b \mid \sum_{n \ge 1} \frac{1}{|a_n|^b} < \infty\}$$
 or ∞

Lecture 8 10 / 59

Let $g:\mathbb{C}\to\mathbb{C}$ be an entire function, $g(0)\neq 0$, $\alpha<\infty$. Then

• $\beta \leq \alpha$

Lecture 8 11 / 59

Let $g:\mathbb{C}\to\mathbb{C}$ be an entire function, $g(0)\neq 0$, $\alpha<\infty$. Then

- $\beta \leq \alpha$
- $h \in \mathbb{C}[s]$, $\deg(h) \leq \alpha$

Lecture 8 11 / 59

Let $g: \mathbb{C} \to \mathbb{C}$ be an entire function, $g(0) \neq 0$, $\alpha < \infty$. Then

- $\beta \leq \alpha$
- $h \in \mathbb{C}[s]$, $\deg(h) \leq \alpha$
- $\alpha = \max(\beta, \deg(h))$

Lecture 8 11 / 59

Theorem

Let $g: \mathbb{C} \to \mathbb{C}$ be an entire function, $g(0) \neq 0$, $\alpha < \infty$. Then

- $\beta \leq \alpha$
- $h \in \mathbb{C}[s]$, $deg(h) \leq \alpha$
- $\alpha = \max(\beta, \deg(h))$
- If $\exists r_1, \ldots, r_n, \ldots \to \infty$ with

$$m_g(r_j) \geq e^{c \cdot r_j^{\alpha}}$$

then

$$\alpha = \beta$$
 and $\sum \frac{1}{|a_n|^{\beta}} = \infty$.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Lecture 8 11 / 59

Previously, we have established

$$\sin(\pi s) = se^{h(s)} \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right), \quad h(s) = as + b$$

Previously, we have established

$$\sin(\pi s) = se^{h(s)} \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right), \quad h(s) = as + b$$

Taking the logarithmic derivative, $log(\cdot)'$, we find

$$\pi \cdot \frac{\cos(\pi s)}{\sin(\pi s)} = \frac{1}{s} + h'(s) - \sum_{n=1}^{\infty} \frac{2s}{n^2 - s^2}$$

Previously, we have established

$$\sin(\pi s) = se^{h(s)} \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right), \quad h(s) = as + b$$

Taking the logarithmic derivative, $log(\cdot)'$, we find

$$\pi \cdot \frac{\cos(\pi s)}{\sin(\pi s)} = \frac{1}{s} + h'(s) - \sum_{n=1}^{\infty} \frac{2s}{n^2 - s^2}$$

Taking the limit $s \to 0$, we conclude that a = 0, so that

$$\frac{\sin(\pi s)}{s} = c \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right),$$

taking the limit $s \to 0$, we find that $c = \pi$.

It follows that

$$\sin(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right).$$

Lecture 8 13 / 59

Gamma function

Definition

$$rac{1}{\Gamma(s)} = s \cdot e^{\gamma s} \cdot \prod_{n=1}^{\infty} \left(1 + rac{s}{n}
ight) e^{-rac{s}{n}}$$

Gamma function

Definition

$$\frac{1}{\Gamma(s)} = s \cdot e^{\gamma s} \cdot \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) e^{-\frac{s}{n}}$$

This is an entire function.

$$\Gamma(s) = rac{1}{s} \prod_{n=1}^{\infty} \left(1 + rac{1}{n}\right)^{s} \left(1 + rac{s}{n}\right)^{-1}$$
 (Euler)

with

$$\gamma = \lim_{m \to \infty} \left(\sum_{i=1}^{m} \frac{1}{j} - \ln(m) \right).$$

Lecture 8 15 / 59

Proof: From the definition, we have

$$\frac{1}{\Gamma(s)} = s \cdot \lim_{m \to \infty} m^{-s} \prod_{n=1}^{m} \left(1 + \frac{s}{n} \right)$$

Lecture 8 16 / 59

Proof: From the definition, we have

$$\frac{1}{\Gamma(s)} = s \cdot \lim_{m \to \infty} m^{-s} \prod_{n=1}^{m} \left(1 + \frac{s}{n} \right)$$

$$s \cdot \lim_{m \to \infty} \prod_{n=1}^{m-1} \left(1 + \frac{1}{n}\right)^{-s} \cdot \prod_{n=1}^{m} \left(1 + \frac{s}{n}\right)^{-s}$$

Lecture 8 16 / 59

Proof: From the definition, we have

$$\frac{1}{\Gamma(s)} = s \cdot \lim_{m \to \infty} m^{-s} \prod_{n=1}^{m} \left(1 + \frac{s}{n} \right)$$

$$= s \cdot \lim_{m \to \infty} \prod_{n=1}^{m-1} \left(1 + \frac{1}{n} \right)^{-s} \cdot \prod_{n=1}^{m} \left(1 + \frac{s}{n} \right)$$

$$= s \cdot \lim_{m \to \infty} \left(\prod_{n=1}^{m} \left(1 + \frac{1}{n} \right)^{-s} \cdot \left(1 + \frac{s}{n} \right) \right) \underbrace{\left(1 + \frac{1}{m} \right)^{s}}_{\rightarrow 0}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Lecture 8 16 / 59

$$\Gamma(s) = \lim_{n \to \infty} \frac{1 \cdot 2 \cdots (n-1)n^s}{s(s+1) \cdots (s+n-1)}$$

Lecture 8 17 / 59

(3)
$$\Gamma(s+1) = s \cdot \Gamma(s) \quad \text{e.g., } \Gamma(n+1) = n!$$

Lecture 8 18 / 59

(3)
$$\Gamma(s+1) = s \cdot \Gamma(s) \quad \text{e.g., } \Gamma(n+1) = n!$$

(4) For
$$s \in \mathbb{C} \setminus \mathbb{Z}$$

$$\Gamma(s) \cdot \Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

Lecture 8 18 / 59

(3)
$$\Gamma(s+1) = s \cdot \Gamma(s) \quad \text{e.g., } \Gamma(n+1) = n!$$

(4) For
$$s \in \mathbb{C} \setminus \mathbb{Z}$$

$$\Gamma(s) \cdot \Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

Proof: Use the definition to obtain

$$\Gamma(s) \cdot \Gamma(-s) = -\frac{1}{s^2} \cdot \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right)^{-1} = -\frac{\pi}{s \cdot \sin(\pi s)}$$

Now use

$$\Gamma(1-s) = -s \cdot \Gamma(-s).$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

Lecture 8 19 / 59

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$$

Lecture 8 19 / 59

(5)

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.$$

(6)

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$$

(7) $arg(s) \in [-\pi + \delta, \pi - \delta], \ \delta > 0 \Rightarrow$

$$\log(\Gamma(s)) = (s - \frac{1}{2})\log(s) - s + \log(\sqrt{2\pi}) + \mathcal{O}(\frac{1}{|s|}) \quad \text{(Stirling)}$$

Lecture 8 19 / 59

It follows that, for $\sigma_0 \leq \sigma \leq \sigma_1$,

•

$$\Gamma(\sigma+it)=t^{\sigma+it-\frac{1}{2}}\cdot \mathrm{e}^{-\frac{\pi t}{2}-it+i\frac{\pi}{2}(\sigma-\frac{1}{2})}\sqrt{2\pi}\left(1+\mathcal{O}(\frac{1}{t})\right)$$

It follows that, for $\sigma_0 \leq \sigma \leq \sigma_1$,

•

$$\Gamma(\sigma+it)=t^{\sigma+it-\frac{1}{2}}\cdot \mathrm{e}^{-\frac{\pi t}{2}-it+i\frac{\pi}{2}(\sigma-\frac{1}{2})}\sqrt{2\pi}\left(1+\mathcal{O}(\frac{1}{t})\right)$$

•

$$rac{\Gamma'(s)}{\Gamma(s)} = \log(s) + \mathcal{O}(rac{1}{|s|}), \quad ext{ for } |\arg(s)| < \pi.$$

Conclusion: $\Gamma(s)^{-1}$ is entire, with $\alpha = 1$,

Conclusion: $\Gamma(s)^{-1}$ is entire, with $\alpha=1$, and with the following estimate

$$\Gamma(\sigma+it)=t^{\sigma+it-1/2}e^{-\pi t/2-it+i(\sigma-1)\pi/2}\sqrt{2\pi}\left\{1+\mathcal{O}\left(\frac{1}{|t|}\right)\right\},\,$$

for $\sigma_0 \leq \sigma \leq \sigma_1$.

$$\xi(s) := \pi^{-s/2} \cdot \Gamma(\frac{s}{2}) \cdot \zeta(s) \cdot \frac{s(s-1)}{2}$$

$$\xi(s) := \pi^{-s/2} \cdot \Gamma(\frac{s}{2}) \cdot \zeta(s) \cdot \frac{s(s-1)}{2}$$

Proved:

$$\xi(s) = \xi(1-s)$$

$$\xi(s) := \pi^{-s/2} \cdot \Gamma(\frac{s}{2}) \cdot \zeta(s) \cdot \frac{s(s-1)}{2}$$

Proved:

$$\xi(s) = \xi(1-s)$$

• $\zeta(s) \neq 0$ for $\Re(s) > 1 \Rightarrow \xi(s) \neq 0 \Rightarrow \xi(s) \neq 0$ for $\Re(s) < 0$.

$$\xi(s) := \pi^{-s/2} \cdot \Gamma(\frac{s}{2}) \cdot \zeta(s) \cdot \frac{s(s-1)}{2}$$

Proved:

•

$$\xi(s) = \xi(1-s)$$

- $\zeta(s) \neq 0$ for $\Re(s) > 1 \Rightarrow \xi(s) \neq 0 \Rightarrow \xi(s) \neq 0$ for $\Re(s) < 0$.
- $\xi(0) = \xi(1) \neq 0$

$$\xi(s) := \pi^{-s/2} \cdot \Gamma(\frac{s}{2}) \cdot \zeta(s) \cdot \frac{s(s-1)}{2}$$

Proved:

•

$$\xi(s) = \xi(1-s)$$

- $\zeta(s) \neq 0$ for $\Re(s) > 1 \Rightarrow \xi(s) \neq 0 \Rightarrow \xi(s) \neq 0$ for $\Re(s) < 0$.
- $\xi(0) = \xi(1) \neq 0$
- trivial zeroes of $\zeta(s)$ at $s=-2,-4,\ldots$ coming from poles of $\Gamma(\frac{s}{2})$ at $s\in 2\mathbb{N}$.

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・ 恵 ・ 夕久で

Riemann zeta function

Theorem

• Every nontrivial zero of $\zeta(s)$ has real part in [0,1].

Riemann zeta function

Theorem

• Every nontrivial zero of $\zeta(s)$ has real part in [0,1].

•

$$\sum rac{1}{|
ho_n|} = \infty, \quad \sum rac{1}{|
ho_n|^{1+\epsilon}} < \infty, \quad orall \epsilon > 0$$

• $\alpha(\xi)$? Using Abel summation

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + s \int \frac{\rho(u)}{u^{s+1}} du$$

It follows that

$$|\zeta(s)| = \mathcal{O}(|s|).$$

• $\alpha(\xi)$? Using Abel summation

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + s \int \frac{\rho(u)}{u^{s+1}} du$$

It follows that

$$|\zeta(s)|=\mathcal{O}(|s|).$$

• $|\Gamma(s)| \le e^{c \cdot |s| \cdot \ln(|s|)} \Rightarrow \alpha(\xi) \le 1.$

• $\alpha(\xi)$? Using Abel summation

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + s \int \frac{\rho(u)}{u^{s+1}} du$$

It follows that

$$|\zeta(s)|=\mathcal{O}(|s|).$$

- $|\Gamma(s)| \le e^{c \cdot |s| \cdot \ln(|s|)} \Rightarrow \alpha(\xi) \le 1.$
- For $s \to \infty$, $\ln(\Gamma(s)) \sim s \cdot \ln(s) \quad \Rightarrow \alpha(\xi) = 1$.

• $\alpha(\xi)$? Using Abel summation

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + s \int \frac{\rho(u)}{u^{s+1}} du$$

It follows that

$$|\zeta(s)| = \mathcal{O}(|s|).$$

- $|\Gamma(s)| \le e^{c \cdot |s| \cdot \ln(|s|)} \Rightarrow \alpha(\xi) \le 1.$
- For $s \to \infty$, $\ln(\Gamma(s)) \sim s \cdot \ln(s) \Rightarrow \alpha(\xi) = 1$. This implies that

$$\sum \frac{1}{|\rho_n|} = \infty,$$

i.e., ζ has infinitely many nontrivial zeroes. Furthermore,

$$\sum \frac{1}{|\rho_n|^{1+\epsilon}} < \infty, \quad \forall \epsilon > 0$$

Basic identity

Thus we have

$$\xi(s) = e^{a+bs} \cdot \prod_{n>1} \left(1 - \frac{s}{\rho_n}\right) \cdot e^{\frac{s}{\rho_n}}$$

and also symmetry with respect to $\Re(s) = \frac{1}{2}$ and $\Im(s) = 0$.

Basic identity

Thus we have

$$\xi(s) = e^{a+bs} \cdot \prod_{n>1} \left(1 - \frac{s}{\rho_n}\right) \cdot e^{\frac{s}{\rho_n}}$$

and also symmetry with respect to $\Re(s) = \frac{1}{2}$ and $\Im(s) = 0$.

$$\Rightarrow \frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s} - \frac{1}{s-1} + \underbrace{\sum \left(\frac{1}{s-\rho_n} + \frac{1}{\rho_n}\right)}_{\text{from } \zeta(s)} + \underbrace{\sum \left(\frac{1}{s+2n} - \frac{1}{2n}\right)}_{\text{from } \Gamma\left(\frac{s}{2}\right)} + \text{const.}$$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

Lemma

Put $\rho_n := \beta_n + i\gamma_n$, $T \ge 2$. We have

$$\sum_{n=1}^{\infty} \frac{1}{1+(T-\gamma_n)^2} \le c \log(T).$$

Lemma

Put $\rho_n := \beta_n + i\gamma_n$, $T \ge 2$. We have

$$\sum_{n=1}^{\infty} \frac{1}{1+(T-\gamma_n)^2} \le c \log(T).$$

Before we start the proof, some recollections regarding the von Mangoldt function.

$$\Lambda(n) = \begin{cases} \ln(p) & n = p^k \\ 0 & \text{otherwise} \end{cases}$$

$$\Lambda(n) = \begin{cases} \ln(p) & n = p^k \\ 0 & \text{otherwise} \end{cases}$$

Properties:

0

$$\sum_{d|n} \Lambda(d) = \log(n)$$

$$\Lambda(n) = \begin{cases} \ln(p) & n = p^k \\ 0 & \text{otherwise} \end{cases}$$

Properties:

0

$$\sum_{d|n} \Lambda(d) = \log(n)$$

$$\Lambda(n) = \sum_{d \mid n} \mu(d) \log(n/d)$$
 Moebius inversion

$$\Lambda(n) = \begin{cases} \ln(p) & n = p^k \\ 0 & \text{otherwise} \end{cases}$$

Properties:

$$\sum_{d|n} \Lambda(d) = \log(n)$$

•

$$\Lambda(n) = \sum_{d \mid n} \mu(d) \log(n/d)$$
 Moebius inversion

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{s \geq 1} \frac{\Lambda(n)}{n^s}, \qquad \Re(s) > 1.$$

□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● ○○○

Proof of the Lemma

Put
$$s := 2 + iT$$
.

•

$$|\sum_{n\geq 1}\frac{1}{s+2n}-\frac{1}{2n}|\leq c_0\log(T)$$

Proof of the Lemma

Put s := 2 + iT.

•

$$|\sum_{n\geq 1}\frac{1}{s+2n}-\frac{1}{2n}|\leq c_0\log(T)$$

•

$$-\Re\left(\frac{\zeta'(s)}{\zeta(s)}\right) = \Re\left(\frac{1}{s} - B_0 - \sum_{n \ge 1} \left(\frac{1}{s+2n} - \frac{1}{2n}\right)\right)$$
$$-\Re\left(\sum_{n \ge 1} \left(\frac{1}{s-\rho_n} + \frac{1}{\rho_n}\right)\right)$$
$$\le c_1 \log(T) - \Re\left(\sum_{n \ge 1} \left(\frac{1}{s-\rho_n} + \frac{1}{\rho_n}\right)\right)$$

With our choice the LHS

$$\sum \frac{\Lambda(n)}{n^{2+iT}} < c_2.$$

With our choice the LHS

$$\sum \frac{\Lambda(n)}{n^{2+iT}} < c_2.$$

It follows that

$$\Re\left(\sum_{n\geq 1}\left(\frac{1}{s-\rho_n}+\frac{1}{\rho_n}\right)\right)< c_3\log(T).$$

With our choice the LHS

$$\sum \frac{\Lambda(n)}{n^{2+iT}} < c_2.$$

It follows that

$$\Re\left(\sum_{n\geq 1}\left(\frac{1}{s-\rho_n}+\frac{1}{\rho_n}\right)\right)< c_3\log(T).$$

Now observe that

$$\left|\frac{1}{s-\rho_{n}}\right| \geq \frac{1}{1+(T-\gamma_{n})^{2}}, \qquad \left|\frac{1}{\rho_{n}}\right| \geq \frac{\beta_{n}}{\beta_{n}^{2}+\gamma_{n}^{2}} \geq 0.$$

This concludes the proof.

Corollary

$$\#\{n \mid T \leq |\Im(\rho_n)| \leq T+1\} \leq \log(T).$$

Zero-free region

Theorem (Vallee-Poussin)

Let $s = \sigma + it$. There exists a constant c > 0 such that

$$\zeta(s)\neq 0$$
,

for all s with

$$\Re(s) \geq 1 - \frac{c}{\log(|t|) + 2}.$$

Zero-free region

Theorem (Vallee-Poussin)

Let $s = \sigma + it$. There exists a constant c > 0 such that

$$\zeta(s)\neq 0$$
,

for all s with

$$\Re(s) \geq 1 - \frac{c}{\log(|t|) + 2}.$$

We cannot hope to get $\Re(s) > 1 - \epsilon$, but the given shape suffices for the Prime Number Theorem.

Zero-free region

Lecture 8

$$\rho_n = \beta_n + i\gamma_n, \ \gamma_n \ge \gamma_0, \ \Re(s) = \sigma > 1$$

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum \frac{\Lambda(n)}{n^s}$$
$$= \sum \frac{\Lambda(n)}{n^{\sigma}} \cdot e^{it \log(n)}$$

$$-\Re\left(rac{\zeta'(s)}{\zeta(s)}
ight) = \sum rac{\Lambda(n)}{n^{\sigma}} \cdot \cos(t\log(n))$$

$$-\Re\left(\frac{\zeta'(s)}{\zeta(s)}\right) = \sum \frac{\Lambda(n)}{n^{\sigma}} \cdot \cos(t \log(n))$$

Basic identity

$$3 + 4\cos(\phi) + \cos(2\phi) = 2(1 + \cos(\phi))^2 \ge 0$$

$$-\Re\left(rac{\zeta'(s)}{\zeta(s)}
ight) = \sum rac{\Lambda(n)}{n^{\sigma}} \cdot \cos(t\log(n))$$

Basic identity

$$3 + 4\cos(\phi) + \cos(2\phi) = 2(1 + \cos(\phi))^2 \ge 0$$

It follows:

$$3\left(-\frac{\zeta'(\sigma)}{\zeta(\sigma)}\right)+4\left(-\Re\left(\frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)}\right)\right)+\left(-\Re\left(\frac{\zeta'(\sigma+2it)}{\zeta(\sigma+2it)}\right)\right)\geq 0$$

(1)
$$-\frac{\zeta'(\sigma)}{\zeta(\sigma)} < \frac{1}{\sigma - 1} + c_1$$

$$-\frac{\zeta'(\sigma)}{\zeta(\sigma)}<\frac{1}{\sigma-1}+c_1$$

$$-\Re\left(\frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)}\right) \leq c_2 \log(|t|+2) - \sum_{k\geq 1} \Re\left(\frac{1}{s-\rho_k} + \frac{1}{\rho_k}\right)$$

with $0 \le \beta_k \le 1$;

$$-\frac{\zeta'(\sigma)}{\zeta(\sigma)} < \frac{1}{\sigma - 1} + c_1$$

(2)

$$-\Re\left(\frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)}\right) \leq c_2 \log(|t|+2) - \sum_{k>1} \Re\left(\frac{1}{s-\rho_k} + \frac{1}{\rho_k}\right)$$

with $0 \le \beta_k \le 1$; note that

$$\Re(\frac{1}{s-\rho_k}) = \frac{\sigma-\beta_k}{(\sigma-\beta_k)^2 + (t-\gamma_k)^2} > 0,$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

$$-\frac{\zeta'(\sigma)}{\zeta(\sigma)} < \frac{1}{\sigma - 1} + c_1$$

(2)

$$-\Re\left(\frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)}\right) \leq c_2 \log(|t|+2) - \sum_{k\geq 1} \Re\left(\frac{1}{s-\rho_k} + \frac{1}{\rho_k}\right)$$

with $0 \le \beta_k \le 1$; note that

$$\Re(\frac{1}{s-\rho_k}) = \frac{\sigma-\beta_k}{(\sigma-\beta_k)^2+(t-\gamma_k)^2} > 0, \quad \Re(\frac{1}{\rho_k}) = \frac{\beta_k}{\beta_t^2+\gamma_t^2} \geq 0.$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣۹○

It follows that

$$-\Re\left(\frac{\zeta'(s)}{\zeta(s)}\right) \leq c_2 \log(|t|+2) - \frac{\sigma - \beta_n}{(\sigma - \beta_n)^2 + (t - \gamma_n)^2}.$$

It follows that

$$-\Re\left(\frac{\zeta'(s)}{\zeta(s)}\right) \leq c_2 \log(|t|+2) - \frac{\sigma - \beta_n}{(\sigma - \beta_n)^2 + (t - \gamma_n)^2}.$$

(3)
$$-\Re\left(\frac{\zeta'(\sigma+2it)}{\zeta(\sigma+2it)}\right) \leq c_2 \log(|t|+2).$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Substituting everything into the trigonometric identity

$$3 + 4\cos(\phi) + \cos(2\phi) \ge 0$$

we find

$$\frac{3}{\sigma-1}-4\frac{\sigma-\beta_n}{(\sigma-\beta_n)^2+(t-\gamma_n)^2}+c_3\log(|t|+2)\geq 0,$$

for all $t, |t| \geq \gamma_0$, and all $\sigma \in (1, 2]$.

Substituting everything into the trigonometric identity

$$3 + 4\cos(\phi) + \cos(2\phi) \ge 0$$

we find

$$\frac{3}{\sigma-1}-4\frac{\sigma-\beta_n}{(\sigma-\beta_n)^2+(t-\gamma_n)^2}+c_3\log(|t|+2)\geq 0,$$

for all $t, |t| \geq \gamma_0$, and all $\sigma \in (1, 2]$. Let $t = \gamma_n$. Then we find

$$\frac{4}{\sigma - \beta_n} \leq \frac{3}{\sigma - 1} + c_3 \log(|\gamma_n| + 2).$$

4□ > 4□ > 4 = > 4 = > = 90

Substituting everything into the trigonometric identity

$$3 + 4\cos(\phi) + \cos(2\phi) \ge 0$$

we find

$$\frac{3}{\sigma-1}-4\frac{\sigma-\beta_n}{(\sigma-\beta_n)^2+(t-\gamma_n)^2}+c_3\log(|t|+2)\geq 0,$$

for all $t, |t| \geq \gamma_0$, and all $\sigma \in (1, 2]$. Let $t = \gamma_n$. Then we find

$$\frac{4}{\sigma - \beta_n} \leq \frac{3}{\sigma - 1} + c_3 \log(|\gamma_n| + 2).$$

This already implies that $\beta_n \neq 1$: there are no zeroes on the line $\Re(s) = 1.$

Substituting everything into the trigonometric identity

$$3 + 4\cos(\phi) + \cos(2\phi) \ge 0$$

we find

$$\frac{3}{\sigma-1}-4\frac{\sigma-\beta_n}{(\sigma-\beta_n)^2+(t-\gamma_n)^2}+c_3\log(|t|+2)\geq 0,$$

for all $t, |t| \geq \gamma_0$, and all $\sigma \in (1,2]$. Let $t = \gamma_n$. Then we find

$$\frac{4}{\sigma - \beta_n} \leq \frac{3}{\sigma - 1} + c_3 \log(|\gamma_n| + 2).$$

This already implies that $\beta_n \neq 1$: there are no zeroes on the line $\Re(s) = 1$. Write $\beta_n = 1 - \delta_n$. Put

$$\sigma := 1 + c\delta_n, \quad \delta_n \in (0,1]$$

Lecture 8 37 / 59

We find that

$$\frac{4}{1+c\delta_n-1+\delta_n} \leq \frac{3}{1+c\delta_n-1}+c_3\log(|\gamma_n|+2).$$

We find that

$$\frac{4}{1+c\delta_n-1+\delta_n} \leq \frac{3}{1+c\delta_n-1}+c_3\log(|\gamma_n|+2).$$

$$\frac{4}{(c+1)\delta_n} \leq \frac{3}{c\delta_n}+c_3\log(|\gamma_n|+2).$$

We find that

$$egin{aligned} rac{4}{1+c\delta_n-1+\delta_n} &\leq rac{3}{1+c\delta_n-1}+c_3\log(|\gamma_n|+2). \ rac{4}{(c+1)\delta_n} &\leq rac{3}{c\delta_n}+c_3\log(|\gamma_n|+2). \ rac{1}{\delta_n}\left(rac{4}{c+1}-rac{3}{c}
ight) &\leq c_3\log(|\gamma_n|+2) \end{aligned}$$

For c = 4, we find that

$$1-\beta_n=\delta_n\geq \frac{1}{20c_3}\cdot \frac{1}{\log(|\gamma_n|+2)},$$

thus

$$\beta_n \leq 1 - c_4 \cdot \frac{1}{\log(|\gamma_n| + 2)}.$$

38 / 59

Idea:

$$\frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{x^s}{s} ds = \delta(x) := \begin{cases} 0 & 0 < x < 1 \\ 1/2 & x = 1 \\ 1 & x > 1 \end{cases}$$

Idea:

$$rac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}rac{x^s}{s}ds=\delta(x):=egin{cases} 0 & 0< x< 1\ 1/2 & x=1\ 1 & x> 1 \end{cases}$$

This is a kind of δ -function.

To prove this identity we shift contour of integration.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

We will use a slightly different result

$$I(T) := \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{x^s}{s} ds = \delta(x) + \mathcal{O}\left(x^{\sigma} \cdot \min(1, \frac{1}{T \log(T)})\right)$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

Lecture 8 40 / 59

How is this done? Pick different contours of integration Γ and $\tilde{\Gamma}$, which are rectangles given by $\Im(s)=\pm T$, $\Re(s)=\sigma$, and where the fourth side is given by $\Re(s)=\sigma_-<0$, for Γ , respectively, $\Re(s)=\sigma_+\to+\infty$, for $\tilde{\Gamma}$.

→ □ ト → □ ト → 三 ト → 三 → つへの

Lecture 8 41 / 59

How is this done? Pick different contours of integration Γ and $\tilde{\Gamma}$, which are rectangles given by $\Im(s)=\pm T$, $\Re(s)=\sigma$, and where the fourth side is given by $\Re(s)=\sigma_-<0$, for Γ , respectively, $\Re(s)=\sigma_+\to +\infty$, for $\tilde{\Gamma}$.

For x > 1, we integrate

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{x^s}{s} \, ds = 1,$$

(the residue at s = 0).

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Lecture 8 41 / 59

How is this done? Pick different contours of integration Γ and $\tilde{\Gamma}$, which are rectangles given by $\Im(s)=\pm T$, $\Re(s)=\sigma$, and where the fourth side is given by $\Re(s)=\sigma_-<0$, for Γ , respectively, $\Re(s)=\sigma_+\to +\infty$, for $\tilde{\Gamma}$.

For x > 1, we integrate

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{x^s}{s} \, ds = 1,$$

(the residue at s = 0). For $x \in (0, 1)$ we integrate

$$\frac{1}{2\pi i} \int_{\tilde{\Gamma}} \frac{x^s}{s} \, ds = 0,$$

(there are no poles to the right of $\Re(s) = \sigma$).

It remains to estimate contributions over the other 3 sides of the rectangle.

It remains to estimate contributions over the other 3 sides of the rectangle. We have

$$|\int_{\Gamma_1}|,\quad |\int_{\Gamma_3}|,\quad |\int_{\tilde{\Gamma}_1}|,\quad |\int_{\tilde{\Gamma}_3}|<\frac{1}{2\pi}\int\frac{x^{\gamma}}{\sqrt{T^2+\gamma^2}}\,d\gamma\leq \frac{x^{\sigma}}{T\log(\sigma)},$$

where these are horizontal segments of the respective contours.

4□ > 4₫ > 4½ > 4½ > ½

For the horizontal segments, we have:

$$|\int_{\Gamma_2}|\leq \frac{1}{2\pi}\int_{-T}^T \frac{x^{-u}}{\sqrt{u^2+t^2}}\,dt=\mathcal{O}(x^{-u}),$$

which goes to zero for x > 1 and $u \to \infty$.

For the horizontal segments, we have:

$$|\int_{\Gamma_2}| \leq \frac{1}{2\pi} \int_{-T}^{T} \frac{x^{-u}}{\sqrt{u^2 + t^2}} dt = \mathcal{O}(x^{-u}),$$

which goes to zero for x > 1 and $u \to \infty$. Similarly,

$$|\int_{\tilde{\Gamma}_2}|\leq \frac{1}{2\pi}\int_{-T}^T \frac{x^u}{\sqrt{u^2+t^2}}\,dt=\mathcal{O}(x^u),$$

which goes to zero for $x \in (0,1)$ and $u \to \infty$.

4 D F 4 D F 4 E F 4 E F 4) Q (4

Applications

Proposition

Let

$$f(s) := \sum_{n} \frac{a_n}{n^s}$$

satisfy

- absolutely convergent $\Re(s) > 1$,
- $|a_n| \leq A(n), A(n+1) \geq A(n)$
- ۰

$$\sum rac{|a_n|}{n^{\sigma}} = \mathcal{O}\left(rac{1}{(\sigma-1)^{lpha}}
ight),$$

for $\sigma \to 1$ and some $\alpha > 0$.

continued ...

Applications

Then:

For all
$$\sigma \in (1, \sigma_0]$$
 and $x = N + 1/2$,

$$\mathcal{N}(x) := \sum_{n \le x} a_n$$

$$= \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} f(s) \cdot \frac{x^s}{s} ds + \mathcal{O}\left(\frac{x^\sigma}{T(\sigma - 1)^\alpha}\right)$$

$$+ \mathcal{O}\left(x \cdot A(2x) \cdot \frac{\log(x)}{T}\right)$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなぐ

We have

$$\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{x^s}{s} f(s) \, ds = \sum_{n \ge 1} a_n \left(\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \left(\frac{x}{n} \right)^s \, \frac{ds}{s} \right)$$

We have

$$\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{x^{s}}{s} f(s) ds = \sum_{n \ge 1} a_{n} \left(\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \left(\frac{x}{n} \right)^{s} \frac{ds}{s} \right)$$
$$= \sum_{n \le x} a_{n} + \mathcal{R},$$

remainder term.

We have

$$\mathcal{R} = \mathcal{O}\left(\sum_{n=1}^{\infty} |a_n| \left(\frac{x}{n}\right)^{\sigma} T^{-1} \log(\frac{x}{n})^{-1}\right)$$

We have

$$\mathcal{R} = \mathcal{O}\left(\sum_{n=1}^{\infty} |a_n| \left(\frac{x}{n}\right)^{\sigma} T^{-1} \log(\frac{x}{n})^{-1}\right)$$

To evaluate this, put

$$\Sigma_1 := \sum_{rac{x}{n} \leq rac{1}{2}} \cdots + \sum_{rac{x}{n} \geq 2} \cdots.$$

We have

$$\mathcal{R} = \mathcal{O}\left(\sum_{n=1}^{\infty} |a_n| \left(\frac{x}{n}\right)^{\sigma} T^{-1} \log(\frac{x}{n})^{-1}\right)$$

To evaluate this, put

$$\Sigma_1 := \sum_{\frac{x}{n} \le \frac{1}{2}} \cdots + \sum_{\frac{x}{n} \ge 2} \cdots$$

In this domain, we have

$$|\log(\frac{x}{n})| \geq \log(2)$$

and

$$\Sigma_1 = \mathcal{O}\left(rac{x^{\sigma}}{T(\sigma-1)^{lpha}}
ight),$$

the first \mathcal{O} in the statement of the theorem.

On the other hand,

$$\Sigma_2 := \sum_{\frac{x}{2} < n < 2x} |a_n| \left(\frac{x}{n}\right)^{\sigma} T^{-1} \log\left(\frac{x}{n}\right)^{-1}$$

On the other hand,

$$\Sigma_2 := \sum_{rac{x}{2} < n < 2x} |a_n| \left(rac{x}{n}
ight)^{\sigma} T^{-1} \log(rac{x}{n})^{-1}$$

$$\leq T^{-1}A(2x)2^{\sigma}\sum_{\frac{x}{2}< n<2x}|\log\left(\frac{N+\frac{1}{2}}{n}\right)|^{-1}$$

On the other hand,

$$\Sigma_2 := \sum_{rac{x}{2} < n < 2x} |a_n| \left(rac{x}{n}
ight)^{\sigma} T^{-1} \log\left(rac{x}{n}
ight)^{-1}$$

$$\leq T^{-1}A(2x)2^{\sigma}\sum_{\frac{x}{2}< n<2x}|\log\left(\frac{N+\frac{1}{2}}{n}\right)|^{-1}$$

We have $\mathcal{O}(x)$ terms, and the largest contribution comes from n = N - 1, N, N + 1.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

On the other hand,

$$\Sigma_2 := \sum_{rac{x}{2} < n < 2x} |a_n| \left(rac{x}{n}
ight)^{\sigma} T^{-1} \log(rac{x}{n})^{-1}$$

$$\leq T^{-1}A(2x)2^{\sigma}\sum_{\frac{x}{2}< n<2x}|\log\left(\frac{N+\frac{1}{2}}{n}\right)|^{-1}$$

We have $\mathcal{O}(x)$ terms, and the largest contribution comes from n = N - 1, N, N + 1. So the sum is comparable to

$$\int_{x/2}^{N-1} \log \left(\frac{N + \frac{1}{2}}{n} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)$$

1 D 1 D 1 E 1 E 1 D 4 C 1

On the other hand.

$$\Sigma_2 := \sum_{\frac{x}{2} < n < 2x} |a_n| \left(\frac{x}{n}\right)^{\sigma} T^{-1} \log\left(\frac{x}{n}\right)^{-1}$$

$$\leq T^{-1}A(2x)2^{\sigma}\sum_{\frac{x}{2}< n<2x}|\log\left(\frac{N+\frac{1}{2}}{n}\right)|^{-1}$$

We have $\mathcal{O}(x)$ terms, and the largest contribution comes from n = N - 1, N, N + 1. So the sum is comparable to

$$\int_{x/2}^{N-1} \log \left(\frac{N + \frac{1}{2}}{n} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}} \right)^{-1} du + \int_{N+1}^{2x} \log \left(\frac{u}{N + \frac{1}{2}$$

which is

$$\mathcal{O}(x\log(x))$$
.

Application to the Prime Number Theorem

Theorem

$$\psi(x) := \sum_{n \in \mathbb{N}} \Lambda(n) = x + \mathcal{O}\left(x \cdot e^{-c\sqrt{\log(x)}}\right)$$

Using the Tauberian theorem, we have

$$\psi(x) = \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \, ds + \mathcal{O}\left(\frac{x \log^2(x)}{T} \right)$$

Using the Tauberian theorem, we have

$$\psi(x) = \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \, ds + \mathcal{O}\left(\frac{x \log^2(x)}{T} \right)$$

Put

$$x := N + 1/2 \ge 100, \quad A(n) := \log(n),$$

Using the Tauberian theorem, we have

$$\psi(x) = \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \, ds + \mathcal{O}\left(\frac{x \log^2(x)}{T} \right)$$

Put

$$x := N + 1/2 \ge 100, \quad A(n) := \log(n),$$

$$T := e^{\sqrt{\log(x)}}, \quad \sigma := 1 + \frac{1}{\log(x)}$$

Choose a contour

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_2 \cup \Gamma_4,$$

with horizontal Γ_1 and Γ_3 , completely contained in the zero-free region of $\zeta(s)$.

Choose a contour

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_2 \cup \Gamma_4,$$

with horizontal Γ_1 and Γ_3 , completely contained in the zero-free region of $\zeta(s)$. When the imaginary part of s gets larger, the rectangle gets narrower and narrower.

Choose a contour

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_2 \cup \Gamma_4,$$

with horizontal Γ_1 and Γ_3 , completely contained in the zero-free region of $\zeta(s)$. When the imaginary part of s gets larger, the rectangle gets narrower and narrower.

We will use the fact that

$$-rac{\zeta'(s)}{\zeta(s)}$$

has only one pole inside Γ , at s=1; this is precisely were we need the zero-free region.

As before, the estimates over horizontal pieces are easy

$$|\Gamma_{1}|, |\Gamma_{3}| \leq |\int_{\sigma_{1}+iT}^{\sigma+iT} \left(-\frac{\zeta'(s)}{\zeta(s)}\right) \frac{x^{s}}{s} ds$$

$$\leq |\int_{\sigma_{1}}^{\sigma} \underbrace{\frac{|\zeta'(u+iT)|}{|\zeta(u+iT)|} \frac{x^{u}}{T}}_{\mathcal{O}(x^{\frac{\log^{2}(T)}{T}})} du$$

As before, the estimates over horizontal pieces are easy

$$\begin{aligned} |\Gamma_{1}|, |\Gamma_{3}| &\leq |\int_{\sigma_{1}+iT}^{\sigma+iT} \left(-\frac{\zeta'(s)}{\zeta(s)}\right) \frac{x^{s}}{s} ds \\ &\leq |\int_{\sigma_{1}}^{\sigma} \underbrace{\frac{|\zeta'(u+iT)|}{|\zeta(u+iT)|} \frac{x^{u}}{T}}_{\mathcal{O}(x^{\frac{\log^{2}(T)}{T}})} du \end{aligned}$$

Recall the basic estimate

$$|rac{\zeta'(s)}{\zeta(s)}| = \mathcal{O}(\log(|t|)^2).$$

We have

$$|\int_{\Gamma_2}|\leq \frac{1}{2\pi}\int_{-T}^{T}|\frac{\zeta'(\sigma_1+it)}{\zeta(\sigma_1+it)}|\cdot|\frac{x^{\sigma_1+it}}{\sigma_1+it}|\,dt$$

We have

$$|\int_{\Gamma_2}| \leq rac{1}{2\pi} \int_{-T}^{T} |rac{\zeta'(\sigma_1+it)}{\zeta(\sigma_1+it)}| \cdot |rac{x^{\sigma_1+it}}{\sigma_1+it}| dt$$

$$= \mathcal{O}\left(x^{\sigma_1} \log^2(T) \left(\int_0^1 rac{dt}{\sigma_1} + \int_1^T rac{dt}{t}
ight)
ight)$$

We have

$$egin{aligned} &|\int_{\Gamma_2}| \leq rac{1}{2\pi} \int_{-T}^{T} |rac{\zeta'(\sigma_1+it)}{\zeta(\sigma_1+it)}| \cdot |rac{x^{\sigma_1+it}}{\sigma_1+it}| \, dt \ &= \mathcal{O}\left(x^{\sigma_1} \log^2(T) \left(\int_0^1 rac{dt}{\sigma_1} + \int_1^T rac{dt}{t}
ight)
ight) \ &= \mathcal{O}\left(x^{\sigma_1} \log^3(T)
ight) \end{aligned}$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

We have

$$egin{aligned} |\int_{\Gamma_2}| & \leq rac{1}{2\pi} \int_{-T}^{T} |rac{\zeta'(\sigma_1+it)}{\zeta(\sigma_1+it)}| \cdot |rac{x^{\sigma_1+it}}{\sigma_1+it}| \, dt \ & = \mathcal{O}\left(x^{\sigma_1}\log^2(T)\left(\int_0^1 rac{dt}{\sigma_1} + \int_1^T rac{dt}{t}
ight)
ight) \ & = \mathcal{O}\left(x^{\sigma_1}\log^3(T)
ight) \end{aligned}$$

The next step is to extract primes, i.e., $\pi(x)$, from $\psi(x)$.

We have

$$egin{aligned} &|\int_{\Gamma_2}| \leq rac{1}{2\pi} \int_{-T}^{T} |rac{\zeta'(\sigma_1+it)}{\zeta(\sigma_1+it)}| \cdot |rac{x^{\sigma_1+it}}{\sigma_1+it}| \, dt \ &= \mathcal{O}\left(x^{\sigma_1} \log^2(T) \left(\int_0^1 rac{dt}{\sigma_1} + \int_1^T rac{dt}{t}
ight)
ight) \ &= \mathcal{O}\left(x^{\sigma_1} \log^3(T)
ight) \end{aligned}$$

The next step is to extract primes, i.e., $\pi(x)$, from $\psi(x)$. This is done with Abel's summation.

Let

$$f \in C^1([a,b]), \quad S(x) := \sum_{a \le n \le x} c_n.$$

Let

$$f \in C^1([a,b]), \quad S(x) := \sum_{a \le n \le x} c_n.$$

Then

$$\sum_{a < n \le b} c_n f(n) = -\int_a^b S(x) f'(x) dx + S(b) f(b).$$

Apply:

$$c_n = \Lambda(n), \qquad f(x) := \frac{1}{\log(x)}$$

$$S(x) := \sum_{n \le x} \frac{\Lambda(n)}{\log(n)}$$

$$= \underbrace{\pi(x)}_{\#\{p \le x\}} + \sum_{n=p^k, k \ge 2} \frac{\Lambda(n)}{\log(n)}$$

To understand the error term, note that $k \leq \log(x)$ and the number of summands is $\leq \sqrt{x}$. We get for the error term:

$$O(\sqrt{x}\log(x)).$$

To understand the error term, note that $k \leq \log(x)$ and the number of summands is $\leq \sqrt{x}$. We get for the error term:

$$O(\sqrt{x}\log(x)).$$

It follows that

$$S(x) = \int_2^x \frac{\psi(u)}{u \log^2(u)} du + \frac{\psi(x)}{\log(x)}$$

To understand the error term, note that $k \leq \log(x)$ and the number of summands is $\leq \sqrt{x}$. We get for the error term:

$$O(\sqrt{x}\log(x)).$$

It follows that

$$S(x) = \int_2^x \frac{\psi(u)}{u \log^2(u)} du + \frac{\psi(x)}{\log(x)}$$

$$S(x) = \int_2^x \frac{du}{\log^2(u)} + \frac{x}{\log(x)} + \mathcal{R}$$

where \mathcal{R} is the remainder term.

Using

$$\psi(x) = x + \mathcal{O}(xe^{-c\sqrt{\log(x)}})$$

we find that

$$\mathcal{R} = \mathcal{O}\left(\int_{x}^{2} e^{-c\sqrt{\log(x)}} \frac{du}{\log^{2}(u)}\right)$$

Prime number theorem

Going back to

$$S = \int_2^x \frac{du}{\log^2(u)} + \frac{x}{\log(x)} + \cdots$$

we find

$$S = -\frac{u}{\log(u)}|_2^x + \int_2^x \frac{du}{\log(u)} + \frac{x}{\log(x)} + \dots$$
$$S = \int_2^x \frac{du}{\log(u)} + \frac{2}{\log(x)} + \dots$$

Prime number theorem

Going back to

$$S = \int_2^x \frac{du}{\log^2(u)} + \frac{x}{\log(x)} + \cdots$$

we find

$$S = -\frac{u}{\log(u)}\Big|_{2}^{x} + \int_{2}^{x} \frac{du}{\log(u)} + \frac{x}{\log(x)} + \dots$$
$$S = \int_{2}^{x} \frac{du}{\log(u)} + \frac{2}{\log(x)} + \dots$$

This is the Prime Number Theorem.

Prime number theorem

$$\#\{p \le x\} = \pi(x) \sim \frac{x}{\log(x)} + \text{ Error term}$$