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Plan

Complex analytic tools (entire functions with prescribed zeroes)
More about I'(s)
Zero-free region of ((s)

Tauberian theorems

® 6 6 o o

Prime Number Theorem
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Analytic tools

Consider an open subset 2 C C.
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Analytic tools

Consider an open subset 2 C C.

A function g : Q — C is called analytic (holomorphic) iff

g(z) = Z apz".
It is called entire if VQ2 C C bounded,

gla s analytic.
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Lemma

Consider
u(s) = (1 + un(s)).
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Lemma
Consider

u(s) = (1 + un(s)).
It converges if # 0, and
@ Uy(s)#—-1VseQ, n>1
@ |un(s)| < apand ) a, < oo
= u(s) is holomorphic in Q, u(s) # 0 for all s € Q.
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Lemma
Consider
u(s) = (1 + un(s)).
It converges if # 0, and
@ uys)#—-1VseQ, n>1
@ |un(s)| < apand ) a, < oo
= u(s) is holomorphic in Q, u(s) # 0 for all s € Q.

Our goal will be to write down entire functions with prescribed zeros.
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Lemma

o Consider a sequence aj, a,,... € C
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Lemma

o Consider a sequence aj, a,,... € C
e 0< o <|a| <+

@ lim,,1/]a,| =0

= 3 an entire function
g:C—-C

such that {a,} are its zeroes, with multiplicities.
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Proof
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Proof

Put
Q,:={seC | |s| <(1—¢)lanl}
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Proof

Put
Q,:={seC | |s| <(1—¢)lanl}

We have

In(u,(s)) = In(1 — —

v
&li—l
QJl(n
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Proof

Put
Q,:={seC | |s| <(1—¢)lanl}
We have
1 00
1 s 1 5
| n(1-2) > o (5
n(u(5)) = g iGY=-25G

j=r
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Proof

We consider r > n. We claim absolute convergence:
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Proof

We consider r > n. We claim absolute convergence:

E3 () e

r=n j=r

Indeed,
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We consider r > n. We claim absolute convergence:

E3 () e

r=n j=r

Indeed,
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It follows that u(s) is holomorphic in €,. Since

lim Q,=C

n—o0

we get the claim.
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It follows that u(s) is holomorphic in €,. Since

lim Q,=C

n—o0

we get the claim.

If

then

ad S P lisyj
g(s)ZH(l—a—)e =15 GY

n=1

is holomorphic with prescribed zeroes.
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Theorem
Every entire function has the form

=t [ (122

n=1

with h(s) entire.
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Theorem
Every entire function has the form

1= o (1 2)en

n=1

with h(s) entire.

Proof:

entire, no zeroes = h(s) also entire.
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Let g : C — C be an entire function. Put

i) o= el
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Definition, |

Let g : C — C be an entire function. Put

i) o= el

o = o(g) = inf{a| mg(r) < e}
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Definition

Let g : C — C be an entire function. Put

mg(r) := ‘Tlif‘g(s”
o = o(g) = inf{a| mg(r) < e}

B = pB(g) :=inf{b | Zﬁ<oo} or 0o

n>1
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Let g : C — C be an entire function, g(0) # 0, a < co. Then
o <
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Let g : C — C be an entire function, g(0) # 0, a < co. Then
o <«
e heCls|, deg(h) < «
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Let g : C — C be an entire function, g(0) # 0, a < co. Then
o <«
e heCls|, deg(h) < «
e o = max([3,deg(h))
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Theorem
Let g : C — C be an entire function, g(0) # 0, a < co. Then
o <«
e heCls|, deg(h) < «
e o = max([3,deg(h))
ol/f 4 n,....r, ... — 00 with

then
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The sin function

Previously, we have established

o0 2
sin(ms) = seh®) H <1 - S—) , h(s)=as+b

n=1
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The sin function

Previously, we have established

o0 2
sin(ms) = seh®) H <1 - S—) , h(s)=as+b

n=1

Taking the logarithmic derivative, log(-)’, we find

B RS
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The sin function
Previously, we have established
sin(ms) = seh®) H <1 - —) , h(s)=as+b
n=1

Taking the logarithmic derivative, log(-)’, we find

. C.OS(7T5) 1 +H(s) _ii

2 _ 2
sin(rs) s cn?—s

Taking the limit s — 0, we conclude that a = 0, so that

e (-3)

taking the limit s — 0, we find that ¢ = 7.

Lecture 8
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The sin function

It follows that

sin(7s —wsH(1——).
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Gamma function

Definition
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Gamma function

Definition

%zs-e”-f[(l—i—%)e—i

This is an entire function.
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Properties of the Gamma function

with
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Properties of the Gamma function

Proof: From the definition, we have

1 _ T s
ey =5 m H(”;)
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Properties of the Gamma function

Proof: From the definition, we have
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Properties of the Gamma function

Proof: From the definition, we have

as claimed —0
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Properties of the Gamma function

L 1-2---(n—=1)n
F(S)_,,I'_>r205(5+1)---(s+n—1)
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Properties of the Gamma function

(3)
M(s+1)=s-T(s) eg,M(n+1)=n!
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Properties of the Gamma function

(3)
M(s+1)=s-T(s) eg,M(n+1)=n!

(4) Fors e C\Z

M(s)-T(1—s)= S ()

Proof: Use the definition to obtain

) T(~s) =~ -] (l_s_z)‘lz_ "

s - sin(ms)

Now use
M1—s)=—-s-T(-s).
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Properties of the Gamma function

(5)

N =
Il
)

Lecture 8 19 /59



Properties of the Gamma function

(5)
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Properties of the Gamma function

(5)
(6)

(7) arg(s) e [-m+,m—4], 0 >0 =

log(I'(s)) = (s — %) log(s) — s+ log(v/271) + (’)(—|)

(Stirling)

19/59



Properties of the Gamma function

It follows that, for 0y < o < 07,

. Tt H - ]-
[(o+it) = toFHt2 . e~ 5 —itHi5(0=2) /o7 (1 + O(?))
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Properties of the Gamma function

It follows that, for 0y < o < 07,

o
Mo+ it) = t7Ht72 . e~ 2 ~tH5(3) /o (1 + O(%))
° (s) 1
S
= log(s) + O(—), for|arg(s)| < .
10 (s) (,5|) | arg(s)]
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Properties of the Gamma function

Conclusion: I(s)™! is entire, with a = 1,
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Properties of the Gamma function

Conclusion: I(s)™! is entire, with o = 1, and with the following
estimate

, . 1
r(o_ + It) _ ta+/t—1/2e—rrt/2—/t+/(a—1)7r/2\/%{1 +0 (m>}’

for og < 0 < 0;.
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Applications to ((s)
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Applications to ((s)

Proved:
{(s) =¢&(1—5s)

@ ((s) #0 for R(s) >1=&(s) #0 = &(s) # 0 for R(s) < 0.
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Applications to ((s)

Proved:
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@ ((s) #0 for R(s) >1=&(s) #0 = &(s) # 0 for R(s) < 0.
° £(0)=¢(1) #0
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Applications to ((s)

Proved:
{(s) =¢&(1—5s)

@ ((s) #0 for R(s) >1=&(s) #0 = &(s) # 0 for R(s) < 0.
° £(0)=¢(1) #0

e trivial zeroes of ((s) at s = —2, —4,... coming from poles of
r(2) at s € 2N,
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Riemann zeta function

e Every nontrivial zero of ((s) has real part in [0, 1].
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Riemann zeta function

e Every nontrivial zero of ((s) has real part in [0, 1].

1 1
— =00, — <00, Ve>0
2o P pwier
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Proof

@ a(&)7? Using Abel summation

N
1 N1 p(u)
S N — NS LNl
¢(s) 2 n5+s—1 > +s/us+1du
It follows that
[<(s)] = O([s]).
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Proof

@ a(&)7? Using Abel summation

N
1 N1 p(u)
S N — NS LNl
¢(s) 2 n5+s—1 > +s/us+1du
It follows that
[<(s)] = O([s]).

o F(s)] < el = a() <1
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Proof

@ a(&)7? Using Abel summation

((s) = L N —%N‘ﬂ—s/@du

nf s—1
n=1

It follows that

C(s)] = O([s])-

o ()] < e=lstnl) = a(e) < 1.
@ Fors — oo, In(l(s)) ~s-In(s) = a(¢) =1
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Proof

@ a(&)7? Using Abel summation

1 N1 p(u)
S N — NS LNl
¢(s) 2 n5+s—1 > +s/us+1du
It follows that
[<(s)] = O([s]).

o [T(s)] < echshnls) = a(e) < 1.
@ Fors — oo, In(l'(s)) ~s-In(s) = ()= 1. This implies

that
1
DRI
‘pn‘

i.e., ¢ has infinitely many nontrivial zeroes. Furthermore,

1
ZW<OO, Ve >0
Pnl" T
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Basic identity

Thus we have

gs)=et ] (1 _ i) .-

n>1 Pn

and also symmetry with respect to R(s) = 7 and J(s) = 0.
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Basic identity

Thus we have

gs)=et ] (1 _ i) .-

n>1 Pn

and also symmetry with respect to R(s) = 7 and J(s) = 0.

Lecture 8
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Put p, := Bn + ivn, T > 2. We have

> 1
Z T (T =) < clog(T).

n=1
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Put p, := Bn + ivn, T > 2. We have

> 1

n=1

Before we start the proof, some recollections regarding the von
Mangoldt function.
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von Mangoldt function

An) = {'n(p) n=p*

0 otherwise
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von Mangoldt function

An) = {'n(p) n=p*

0 otherwise

Properties:

Z A(d) = log(n
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von Mangoldt function

An) = {'n(p) n=p*

0 otherwise
Properties:
°
Z A(d) = log(n
°

Z,u )log(n/d)  Moebius inversion
d|n
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von Mangoldt function

otherwise
Properties:
°
Z A(d) = log(n

°

Z,u )log(n/d)  Moebius inversion

d|n
°

27 /59



Proof of the Lemma

Puts:=2-+1iT.
°

1 1
— —| < clog(T
|Zs—i—2n 2n’_COOg( )

n>1

Lecture 8
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Proof of the Lemma

Puts:=2-+1iT.

1 1
— —| < clog(T
|;s—|—2n 2n’_COOg( )

#(59)-2(3-2-Z(5-2)
(T ()

< clog(T) — R (; (5—1pn +%)>
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Proof

With our choice the LHS

A(n)
Z T @
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Proof

With our choice the LHS

A(n)
Z T @

It follows that
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Proof

With our choice the LHS

A(n)
Z T @

It follows that

Now observe that

1 1 Bn
| | >

el ) |_ - ZO
S—Pn 1+(T_7n)2 pnl ﬁ2+7n

This concludes the proof.

Lecture 8
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#{n |

T <|S(pn)] < T+ 1} < log(T).

«O> < Fr «=)r «=)» DA



Lero-free region

Theorem (Vallee-Poussin)

Let s = o + it. There exists a constant ¢ > 0 such that

((s) #0,

for all s with
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Lero-free region

Theorem (Vallee-Poussin)

Let s = o + it. There exists a constant ¢ > 0 such that
((s) #0,
for all s with c
R(s)>1 — ———.
(s) = log(|t]) + 2

We cannot hope to get R(s) > 1 — ¢, but the given shape suffices for
the Prime Number Theorem.
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Lero-free region

32/59
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Proof

Pn = Bn+ Y Yo =70, R(s) =0 >1

C6) 5~
o w 2

— E . /tlog
na

Lecture 8
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A(n
X5

— - cos(t log(n))

34 /59



Proof

n (YN A toe(n
() -2 ot

Basic identity

3 + 4 cos(¢) + cos(2¢) = 2(1 + cos(¢))? > 0
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It follows:

() (o (Gr)) + (n (G5 =0




Proof: Assume that 1 < o < 2.

W ¢'(0)
ROREE

+ ¢
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Proof: Assume that 1 < o < 2.

W ¢'(0)
ROREE

+ ¢

(2)

=({R) samren-gx(Z )

k>1

with 0 < 6, < 1,
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Proof: Assume that 1 < o < 2.

(1)

('(o)
RCRE=
(2)
('(o +it)
_%<C(O'—|—I't)) o log(|t| +2) — ;%( p—
with 0 < 8, < 1; note that
R(—) = o — B >0,

s—p (7= B (=P

1
pk

)
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Proof: Assume that 1 < o < 2.

W ('(o)
g
—m< 0_1+C1
(2)
('(o +it) 1
_%<C(O'—|—I't)) o log(|t| +2) — ;%( p— pk)
with 0 < 8, < 1; note that
I o — Bk 1 B
§R(s—pk)—(U—ﬁk)“r(t—w)z>0’ %(pk) Bk+vk>0
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Proof

It follows that

C/(S) U_Bn
_3%( _E ) < ¢ log(|t| +2) — R e e
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Proof

It follows that

C/(S) U_Bn
_3%( _E ) < ¢ log(|t| +2) — R e e

9 (C(a + 2it)

CEST: ) < ¢ log(|t| + 2).
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Proof

Substituting everything into the trigonometric identity

3 + 4 cos(¢) + cos(2¢) > 0
we find

3 _ O'_Bn
N N RN R

for all t,|t| > v, and all o € (1,2].

5 + cslog([t] +2) >0,
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Proof

Substituting everything into the trigonometric identity

3 + 4 cos(¢) + cos(2¢) > 0
we find

3 o — bn
—4 + c t|+2)>0

for all t,|t| > 7o, and all o € (1,2]. Let t = ~,. Then we find
4
g — /Bn

+ s log(|va| + 2).
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Proof

Substituting everything into the trigonometric identity

3 + 4 cos(¢) + cos(2¢) > 0
we find

3 o — bn
—4 + c t|+2)>0

for all t,|t| > 7o, and all o € (1,2]. Let t = ~,. Then we find
4
g — /Bn

This already implies that /3, # 1: there are no zeroes on the line
R(s) =1.

+ s log(|va| + 2).

Lecture 8

37/59



Proof

Substituting everything into the trigonometric identity

3 + 4 cos(¢) + cos(2¢) > 0
we find

3 o — bn
—4 + c t|+2)>0

for all t,|t| > 7o, and all o € (1,2]. Let t = ~,. Then we find
4
g — /Bn

This already implies that /3, # 1: there are no zeroes on the line
R(s) = 1. Write 8, =1 —6,. Put

+ s log(|va| + 2).

o:=1+cb,, 6,€(0,1]
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Proof

We find that
4
<
1+cé,—1+6, — 1+co,—1

+ ¢z log(|va| + 2).
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Proof

We find that
4
<
1+cé,—1+6, — 1+co,—1

+ ¢z log(|va| + 2).

4

3
m . + czlog(|7a| + 2).
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Proof

We find that
1+C5n4— 1+, < 1t e —1 + ¢z log(|va| + 2).
ﬁ :; + 3 log(|7a| +2).
= (5-3) <amelnul +2

For ¢ = 4, we find that

1 1
]-_ané

n Z : 5
20c3  log(|va| + 2)

thus
1

log(|va| +2)

Lecture 8
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Tauberian theorems

Idea:

0 0<x<xl1
— —ds=6(x):=<¢1/2 x=1
1 x>1
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Tauberian theorems

Idea:

0 O<xxl1
X
1 x>1

1 o+ico s

This is a kind of d-function.

To prove this identity we shift contour of integration.
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Tauberian theorems

We will use a slightly different result

1 o+iT Xs

(T) = — X ds = 5(x) + O (x" min(1, %))

27TI o—iT S
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Tauberian theorems

How is this done? Pick different contours of integration [ and f,
which are rectangles given by S(s) = £ T, R(s) = o, and where the
fourth side is given by R(s) = 0_ < 0, for I, respectively,

R(s) =0y — +o0, for .
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Tauberian theorems

How is this done? Pick different contours of integration [ and f,
which are rectangles given by S(s) = £ T, R(s) = o, and where the
fourth side is given by R(s) = 0_ < 0, for I, respectively,

R(s) =0y — +o0, for .

For x > 1, we integrate

1 S
-— X—dS:].,
21l Jr s

(the residue at s = 0).
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Tauberian theorems

How is this done? Pick different contours of integration [ and f,
which are rectangles given by S(s) = £ T, R(s) = o, and where the
fourth side is given by R(s) = 0_ < 0, for I, respectively,

R(s) =0y — +o0, for .

For x > 1, we integrate

1 S
-— X—dS:].,
21l Jr s

(the residue at s = 0). For x € (0,1) we integrate

1 S

— [Zds—o,
2mi Ji s

(there are no poles to the right of £(s) = o).
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Tauberian theorems

It remains to estimate contributions over the other 3 sides of the
rectangle.
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Tauberian theorems

It remains to estimate contributions over the other 3 sides of the
rectangle. We have

o

X

R Y A
M 3 M

where these are horizontal segments of the respective contours.

Lecture 8

27r/,/T2+ 2 Tlog

)
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Tauberian theorems

For the horizontal segments, we have:

<5 / A dt = O(x),

which goes to zero for x > 1 and u — .

Lecture 8

43 /59



Tauberian theorems

For the horizontal segments, we have:

|<—

<o / A dt = O(x),

which goes to zero for x > 1 and u — oco. Similarly,

<o / s dt = O(x).

which goes to zero for x € (0,1) and u — 0.

Lecture 8
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Applications

Let
f(s) = =

nS
n

satisfy
@ absolutely convergent R(s) > 1,
o |as| < A(n), A(n+1) > A(n)

° o),

for c — 1 and some a > 0.

continued ...
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Applications

Then:
For all o € (1,00] and x = N +1/2,

N(x) = Za,,

n<x
1 [oriT x® X7
= — f(s):—ds + O | =——
210 J it ) s @ " ( T(o— 1)a>

+o<x.A(2x)-@)

Lecture 8

45 /59



Proof

We have

1 o+iT Xs 1 o+iT X\ § dS
LT e (L [T () &
27TI o—iT S (S) ° Z; d (271—/ /O'iT n S )
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Proof

We have
1 o+iT Xs 1 o+iT X\ § dS
LT e (L [T () &
27TI o—iT S (S) ° ;a (271—/ /O'iT n S)
Yaiw
n<x

remainder term.
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Proof

We have

(Zm( ) T og(C >1>
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Proof

We have
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Proof

We have

In this domain, we have

and

o7y

the first O in the statement of the theorem.
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Proof

On the other hand,

D= Y ladl(5) T iog()

X
§<n<2x
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Proof

On the other hand,

D= Y ladl(5) T iog()

X
§<n<2x

N+ 1
< T A4 Y ||og< +2)|1

n
3 <n<2x
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Proof
On the other hand,

X\ X
= ol (Z) T llog(Z)t
X<§<j2 2l (5) T log(%)

2 n X

N+ 1
< T A4 Y ||og< +2)|1

n
3 <n<2x

We have O(x) terms, and the largest contribution comes from
n=N-1NN+1.
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Proof
On the other hand,

X\ X
= ol (Z) T llog(Z)t
X<§<j2 2l (5) T log(%)

2 n X

N+ 1
< T A4 Y ||og< +2)|1
n

3 <n<2x

We have O(x) terms, and the largest contribution comes from
n=N-—1,N,N+1. So the sum is comparable to

N—1 N4+ 1 -1 2x u
lo 2 du —i—/ lo ( )
/x/z & ( n ) & N+ %

N+1
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Proof
On the other hand,

X\ X
= ol (Z) T llog(Z)t
X<§<j2 2l (5) T log(%)

2 n X

N+ 1
< T A4 Y ||og< +2)|1
n

3 <n<2x

We have O(x) terms, and the largest contribution comes from
n=N-—1,N,N+1. So the sum is comparable to

N—1 N4+ 1 -1 2x u
lo 2 du —i—/ lo ( )
/x/z & ( n ) & N+ %

which is

N+1

O(x log(x)).
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Application to the Prime Number Theorem
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Proof

Using the Tauberian theorem, we have

DTG IRC S
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Proof

Using the Tauberian theorem, we have
L[0T (s) x° x log?(x)
=g [ (Cag) sero (757

x:=N+1/2>100, A(n):=log(n),

Put
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Proof

Using the Tauberian theorem, we have
L[0T (s) x° x log?(x)
=g [ (Cag) sero (757

x:=N+1/2>100, A(n):=log(n),

Put

T .=eVis™ 5.=14+ L
log(x)
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Proof

Choose a contour
I_:|_1UF2UI_2UF4,

with horizontal I'; and '3, completely contained in the zero-free
region of ((s).
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Proof

Choose a contour
I_:|_1UF2U|_2UF4,

with horizontal I'; and '3, completely contained in the zero-free
region of ((s). When the imaginary part of s gets larger, the
rectangle gets narrower and narrower.

Lecture 8

51 /59



Proof

Choose a contour
I_:|_1UF2U|_2UF4,

with horizontal I'; and '3, completely contained in the zero-free
region of ((s). When the imaginary part of s gets larger, the
rectangle gets narrower and narrower.

We will use the fact that

¢'(s)

¢(s)
has only one pole inside I', at s = 1; this is precisely were we need
the zero-free region.
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Proof

As before, the estimates over horizontal pieces are easy
o+iT / s
s)\ x
<t [ (<58) S e
o1+iT C(S) S
T\ (w+iT)[ X"
o |C(u41iT)] T’

og2
o(xe 7))

<| du
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Proof

As before, the estimates over horizontal pieces are easy

o+iT C/(S)) XS
M, M| < S Xy
Ful, 1) < | Ulm( ) < o

7w+ i) x"

<| . ,du
o [Cu+iT)| T
O(X|0g27_(T))
Recall the basic estimate
('(s) 2
= Ol t|)?).
| = Olog((t)?)
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We have

/

T

T

C/(Ul + it)

Xo’1+it

((oq + it)
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Proof

We have

|/|< L /T|CI(Ul+it)’ \Xal+it\dt
b 21 ) ¢ ((ou+it) ‘or+it

—O(x"llog2(T) (/:%ﬁ/f%))
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Proof

We have

1 [T oy +it),  xotit
|/r2|§2_/T|C(01+/t)"‘01+it‘dt
T
o (eeen ([ 7+ [ 7))

= O (x"*log*(T))
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Proof

We have

|/|< L /T|CI(Ul+it)’ \Xal+it\dt
b 21 ) ¢ ((ou+it) ‘or+it

—O(x"llog2(T) (/:%ﬁ/f%))

=0 (x"1 |og3(T))

The next step is to extract primes, i.e., 7(x), from ¥(x).
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Proof

We have

|/|< L /T|C/(Ul+it)’ \Xal+it\dt
b 21 ) ¢ ((ou+it) ‘or+it

—O(x"llog2(T) (/:%ﬁ/f%))

=0 (x"1 |og3(T))

The next step is to extract primes, i.e., 7(x), from ¢(x). This is
done with Abel’s summation.
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Abel’'s summation

Let

feC(lab]), S(x)= > cn

a<n<x
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Abel’'s summation

Let

feC(lab]), S(x)= > cn

a<n<x

Then
S Gf(n) = —/ S(x)F(x) dx + S(b)F(b).

a<n<b
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Abel’'s summation

Apply:
cn = N(n), f(x)
_ v A
) = < log(n)
= m(x) + Z | (n)
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Abel’'s summation

To understand the error term, note that k < log(x) and the number
of summands is < y/x. We get for the error term:

O(v/x log(x)).
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To understand the error term, note that k < log(x) and the number
of summands is < y/x. We get for the error term:

O(v/x log(x)).

It follows that

Lecture 8 56 /59



Abel’'s summation

To understand the error term, note that k < log(x) and the number
of summands is < y/x. We get for the error term:

O(v/x log(x)).
It follows that

s [®) v

2 ulog?(u) log(x)
X du X
S() :/2 log?(u) * log(x) R

where R is the remainder term.

Lecture 8 56 /59



Abel’'s summation

Using
P(x) = x+ O(xe™ € I°g(x))

R= O(/ R~ ))

we find that
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Prime number theorem

Going back to

we find
du X

5= Tlog(a) +/2 jog(u) " log(x)
X du N 2 n
» log(u) ~ log(x)
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Prime number theorem

Going back to

> = /log =rk

we find

5——L|X+/X du_ X
log(u)? * J, log(u) * log(x)

X du 2
5:/2 og(u) * Tog(x) |

This is the Prime Number Theorem.
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Prime number theorem

#{p < x} =7(x) ~ Iog)zx) + Error term J
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