## Lecture 8

Plan

- p-adic measures


## Plan

- p-adic measures
- Kummer congruences
- p-adic L-functions


## Measure and integration

Let $X, \mathcal{T}$ be topological spaces.

## Measure and integration

Let $X, \mathcal{T}$ be topological spaces. A map

$$
f: X \rightarrow \mathcal{T}
$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U:=U_{x} \subset X$ such that the restriction $\left.f\right|_{U}$ is constant.

## Measure and integration

Let $X, \mathcal{T}$ be topological spaces. A map

$$
f: X \rightarrow \mathcal{T}
$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U:=U_{x} \subset X$ such that the restriction $\left.f\right|_{U}$ is constant. Example: $X=\mathbb{R}, \mathbb{C}$. Locally constant implies constant.

## Measure and integration

Let $X, \mathcal{T}$ be topological spaces. A map

$$
f: X \rightarrow \mathcal{T}
$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U:=U_{x} \subset X$ such that the restriction $\left.f\right|_{U}$ is constant. Example: $X=\mathbb{R}, \mathbb{C}$. Locally constant implies constant.

Example: $X=\mathbb{Z}_{p}, \mathcal{T}=\mathbb{Q}_{p}$. Locally constant implies that $f$ is a finite linear combination of characteristic functions of compact open subsets of the form

$$
\left\{a+p^{N} \mathbb{Z}_{p}\right\}
$$

## $p$-adic distributions

Recall that compact open subsets of $\mathbb{Z}_{p}$ have the form $a+p^{n} \mathbb{Z}_{p}$.

## $p$-adic distributions

Recall that compact open subsets of $\mathbb{Z}_{p}$ have the form $a+p^{n} \mathbb{Z}_{p}$.

A $p$-adic distribution $\mu$ on $X \subset \mathbb{Z}_{p}$ is an additive map from the set of compact open subsets $Y \subseteq X$ to $\mathbb{Q}_{p}$.

## $p$-adic distributions

Recall that compact open subsets of $\mathbb{Z}_{p}$ have the form $a+p^{n} \mathbb{Z}_{p}$.

A $p$-adic distribution $\mu$ on $X \subset \mathbb{Z}_{p}$ is an additive map from the set of compact open subsets $Y \subseteq X$ to $\mathbb{Q}_{p}$.

For all $a+p^{N} \mathbb{Z}_{p} \subset X$ one has

$$
\mu\left(a+p^{N} \mathbb{Z}_{p}\right)=\sum_{b=0}^{p-1} \mu\left(a+b p^{N}+p^{N+1} \mathbb{Z}_{p}\right)
$$

## $p$-adic distributions

Recall that compact open subsets of $\mathbb{Z}_{p}$ have the form $a+p^{n} \mathbb{Z}_{p}$.
A $p$-adic distribution $\mu$ on $X \subset \mathbb{Z}_{p}$ is an additive map from the set of compact open subsets $Y \subseteq X$ to $\mathbb{Q}_{p}$.

For all $a+p^{N} \mathbb{Z}_{p} \subset X$ one has

$$
\mu\left(a+p^{N} \mathbb{Z}_{p}\right)=\sum_{b=0}^{p-1} \mu\left(a+b p^{N}+p^{N+1} \mathbb{Z}_{p}\right) .
$$

Conversely, every such map defines a unique distribution.

## $p$-adic distributions

Recall that compact open subsets of $\mathbb{Z}_{p}$ have the form $a+p^{n} \mathbb{Z}_{p}$.
A $p$-adic distribution $\mu$ on $X \subset \mathbb{Z}_{p}$ is an additive map from the set of compact open subsets $Y \subseteq X$ to $\mathbb{Q}_{p}$.

For all $a+p^{N} \mathbb{Z}_{p} \subset X$ one has

$$
\mu\left(a+p^{N} \mathbb{Z}_{p}\right)=\sum_{b=0}^{p-1} \mu\left(a+b p^{N}+p^{N+1} \mathbb{Z}_{p}\right) .
$$

Conversely, every such map defines a unique distribution.

This is called the distribution relation.

## $p$-adic distributions

Assume we have a distribution of the form

$$
\mu_{k}\left(a+p^{N} \mathbb{Z}_{p}\right)=p^{N(k-1)} f_{k}\left(\frac{a}{p^{N}}\right), \quad a=0, \ldots, p^{N}-1,
$$

where $f_{k}$ is a (monic) polynomial of degree $k$.

## $p$-adic distributions

Assume we have a distribution of the form

$$
\mu_{k}\left(a+p^{N} \mathbb{Z}_{p}\right)=p^{N(k-1)} f_{k}\left(\frac{a}{p^{N}}\right), \quad a=0, \ldots, p^{N}-1,
$$

where $f_{k}$ is a (monic) polynomial of degree $k$.
The distribution relation implies that

$$
f_{k}(x)=p^{k-1} \sum_{a=0}^{p-1} f_{k}\left(\frac{x+a}{p}\right)
$$

## $p$-adic distributions

There is a unique such polynomial, for all $k \geq 1$, namely, the Bernoulli polynomial $B_{k}(x)$, defined by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!}
$$

## $p$-adic distributions

There is a unique such polynomial, for all $k \geq 1$, namely, the Bernoulli polynomial $B_{k}(x)$, defined by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!}
$$

Recall, that

$$
\begin{gathered}
B_{0}(x)=1, \quad B_{1}(x)=x-1 / 2, \quad B_{2}(x)=x^{2}-x+1 / 6, \ldots \\
B_{k}(x)=x^{k}-\frac{k}{2} x^{k-1} \cdots
\end{gathered}
$$

## $p$-adic distributions

Thus we have

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

## $p$-adic distributions

Thus we have

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

$\mu_{B, 0}=\mu_{\text {Haar }}, \quad$ invariant under translations

$$
\mu_{B, 1}=\mu_{M a z u r}
$$

## p-adic measures

A $p$-adic measure is a distribution $\mu$ such that there exists a $B>0$ with

$$
|\mu(U)|_{p} \leq B
$$

for all compact open $U \subset X$.

## p-adic measures

Let $\mu$ be a $p$-adic measure on $\mathbb{Z}_{p}$ and $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ a continuous function.

## p-adic measures

Let $\mu$ be a $p$-adic measure on $\mathbb{Z}_{p}$ and $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ a continuous function. Let

$$
S_{N}:=\sum_{0 \leq a \leq p^{N}-1} f\left(x_{a, N}\right) \mu\left(a+p^{N} \mathbb{Z}_{p}\right)
$$

where $x_{a, N} \in a+p^{N} \mathbb{Z}_{p}$.

## p-adic measures

Let $\mu$ be a $p$-adic measure on $\mathbb{Z}_{p}$ and $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ a continuous function. Let

$$
S_{N}:=\sum_{0 \leq a \leq p^{N}-1} f\left(x_{a, N}\right) \mu\left(a+p^{N} \mathbb{Z}_{p}\right)
$$

where $x_{a, N} \in a+p^{N} \mathbb{Z}_{p}$. Then there exists a limit

$$
\lim _{N \rightarrow \infty} S_{N}=: \int_{\mathbb{Z}_{p}} f d \mu
$$

## p-adic measures

Proof: Note that

$$
a+p^{N} \mathbb{Z}_{p}=\sqcup_{0 \leq a ̃ \leq p^{M}-1, \tilde{a} \equiv a}\left(\bmod p^{N}\right)\left(\tilde{a}+p^{M} \mathbb{Z}_{p}\right)
$$

## p-adic measures

## Proof: Note that

$$
a+p^{N} \mathbb{Z}_{p}=\sqcup_{0 \leq \tilde{a} \leq p^{M}-1, \tilde{a} \equiv a}\left(\bmod p^{N}\right)\left(\tilde{a}+p^{M} \mathbb{Z}_{p}\right)
$$

We have
$\left|S_{N}-S_{M}\right|_{p}=|\sum_{0 \leq a \leq p^{M}-1}(\underbrace{f\left(x_{\tilde{a}, N}\right)-f\left(x_{a, M}\right)}_{\leq \epsilon}) \mu\left(a+p^{M} \mathbb{Z}_{p}\right)|_{p} \leq \epsilon \cdot B$
(since $\mathbb{Z}_{p}$ is compact, we have uniform continuity).

## p-adic measures

Proof: Note that

$$
a+p^{N} \mathbb{Z}_{p}=\sqcup_{0 \leq \tilde{a} \leq p^{M}-1, \tilde{a} \equiv a}\left(\bmod p^{N}\right)\left(\tilde{a}+p^{M} \mathbb{Z}_{p}\right)
$$

We have
$\left|S_{N}-S_{M}\right|_{p}=|\sum_{0 \leq a \leq p^{M}-1}(\underbrace{f\left(x_{\tilde{a}, N}\right)-f\left(x_{a, M}\right)}_{\leq \epsilon}) \mu\left(a+p^{M} \mathbb{Z}_{p}\right)|_{p} \leq \epsilon \cdot B$
(since $\mathbb{Z}_{p}$ is compact, we have uniform continuity). Thus, we have a Cauchy sequence, and a limit in $\mathbb{Q}_{p}$, independent of the choice of $x_{a}^{a}, N$.

## Haar "measure"

$$
\begin{gathered}
\mu_{\text {Haar }}\left(p^{N} \mathbb{Z}_{p}\right)=\frac{1}{p^{N}}+\quad \text { translation invariance, i.e., } \\
\mu_{\text {Haar }}\left(a+p^{N} \mathbb{Z}_{p}\right)=\frac{1}{p^{N}}, \quad \forall a .
\end{gathered}
$$

## Haar "measure"

$$
\begin{gathered}
\mu_{\text {Haar }}\left(p^{N} \mathbb{Z}_{p}\right)=\frac{1}{p^{N}}+\quad \text { translation invariance, i.e., } \\
\mu_{\text {Haar }}\left(a+p^{N} \mathbb{Z}_{p}\right)=\frac{1}{p^{N}}, \quad \forall a .
\end{gathered}
$$

This satisfies the distribution relation, i.e., $\mu_{\text {Haar }}$ is a distribution.

## Haar "measure"

## Problems: Let

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{p} \\
x & \mapsto x
\end{aligned}
$$

## Haar "measure"

## Problems: Let

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{p} \\
x & \mapsto x
\end{aligned}
$$

Write

$$
\mathbb{Z}_{p}=\sqcup_{a=0}^{p^{N}-1}\left(a+p^{N} \mathbb{Z}_{p}\right)
$$

## Haar "measure"

## Problems: Let

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \mathbb{Z}_{p} \\
x & \mapsto x
\end{aligned}
$$

Write

$$
\begin{gathered}
\mathbb{Z}_{p}=\sqcup_{a=0}^{\rho^{N}-1}\left(a+p^{N} \mathbb{Z}_{p}\right) \\
S_{N,\left\{x_{a, N}\right\}}=\sum_{a=0}^{p^{N}-1} f\left(x_{a, N}\right) \mu\left(a+p^{N} \mathbb{Z}_{p}\right)=\sum_{a} \frac{x_{a, N}}{p^{N}}
\end{gathered}
$$

## Haar "measure"

For $x_{a, N}:=a \in a+p^{N} \mathbb{Z}_{p}$ we get

$$
\frac{1}{p^{N}} \sum_{a=0}^{p^{N}-1} a=\frac{\left(p^{N}-1\right) p^{N}}{2} \cdot \frac{1}{p^{N}}=\frac{p^{N}-1}{2} \rightarrow-\frac{1}{2}
$$

## Haar "measure"

For $x_{a, N}:=a \in a+p^{N} \mathbb{Z}_{p}$ we get

$$
\frac{1}{p^{N}} \sum_{a=0}^{p^{N}-1} a=\frac{\left(p^{N}-1\right) p^{N}}{2} \cdot \frac{1}{p^{N}}=\frac{p^{N}-1}{2} \rightarrow-\frac{1}{2}
$$

For one $a$, choose $x_{a, N}:=a+a_{0} p^{N} \in a+p^{N} \mathbb{Z}_{p}$, with some $a_{0} \neq 0$. Then we have

$$
\left(\frac{1}{p^{N}} \sum_{a=0}^{p^{N}-1} a\right)+a_{0} p^{N} \cdot \frac{1}{p^{N}}=\frac{p^{N}-1}{2}+a_{0} \rightarrow-\frac{1}{2}+a_{0}
$$

## Haar "measure"

For $x_{a, N}:=a \in a+p^{N} \mathbb{Z}_{p}$ we get

$$
\frac{1}{p^{N}} \sum_{a=0}^{p^{N}-1} a=\frac{\left(p^{N}-1\right) p^{N}}{2} \cdot \frac{1}{p^{N}}=\frac{p^{N}-1}{2} \rightarrow-\frac{1}{2}
$$

For one $a$, choose $x_{a, N}:=a+a_{0} p^{N} \in a+p^{N} \mathbb{Z}_{p}$, with some $a_{0} \neq 0$. Then we have

$$
\left(\frac{1}{p^{N}} \sum_{a=0}^{p^{N}-1} a\right)+a_{0} p^{N} \cdot \frac{1}{p^{N}}=\frac{p^{N}-1}{2}+a_{0} \rightarrow-\frac{1}{2}+a_{0} .
$$

So even simple continuous functions $f$ are not integrable on the compact $\mathbb{Z}_{p}$.

## p-adic measures

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

## p-adic measures

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

As we saw, these are distributions.

## p-adic measures

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

As we saw, these are distributions. There is a way to regularize them, i.e., turn them into measures.

## p-adic measures

$$
\mu_{B, k}\left(a+p^{N} \mathbb{Z}_{p}\right):=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right)
$$

As we saw, these are distributions. There is a way to regularize them, i.e., turn them into measures.

For a fixed $\alpha \in \mathbb{Q} \cap \mathbb{Z}_{p}^{\times}$, define

$$
\mu_{k, \alpha}(U):=\mu_{B, k}(U)-\frac{\mu_{B, k}(\alpha U)}{\alpha^{k}}
$$

## p-adic measures

## Theorem <br> $\mu_{k, \alpha}$ is a measure for all $k \geq 1$.

## p-adic measures

## Theorem

$\mu_{k, \alpha}$ is a measure for all $k \geq 1$.
Proof: First, we show that

$$
\left|\mu_{1, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)\right|_{p} \leq 1, \quad \forall N \geq 1
$$

Indeed, by definition,

$$
\begin{aligned}
\mu_{1, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right) & =\frac{a}{p^{N}}-\frac{1}{2}-\frac{1}{\alpha}\left(\frac{\overline{\alpha a}}{p^{N}}-\frac{1}{2}\right) \\
& =\frac{1 / \alpha-1}{2}+\frac{a}{p^{N}}-\frac{1}{\alpha}\left(\frac{\alpha a}{p^{N}}-\left[\frac{\alpha a}{p^{N}}\right]\right) \\
& =\frac{1 / \alpha-1}{2}+\underbrace{\frac{1}{\alpha}\left[\frac{\alpha a}{p^{N}}\right]}_{\in \mathbb{Z}_{p}}
\end{aligned}
$$

## p-adic measures

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_{p}^{\times}$, the element is in $\mathbb{Z}_{p}$.

## p-adic measures

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_{p}^{\times}$, the element is in $\mathbb{Z}_{p}$.
Since any $U$ is a finite (disjoint) union of sets of the form $a_{i}+p^{N_{i}} \mathbb{Z}_{p}$,

$$
\left|\mu_{1, \alpha}(U)\right|_{p} \leq \max \ldots
$$

and we obtain the result.

## p-adic measures

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_{p}^{\times}$, the element is in $\mathbb{Z}_{p}$.
Since any $U$ is a finite (disjoint) union of sets of the form $a_{i}+p^{N_{i}} \mathbb{Z}_{p}$,

$$
\left|\mu_{1, \alpha}(U)\right|_{p} \leq \max \ldots
$$

and we obtain the result.
Thus, $\mu_{1, \alpha}$ is a measure on $\mathbb{Z}_{p}$.

## p-adic measures

Now we treat $k \geq 2$.

## p-adic measures

Now we treat $k \geq 2$. Let $d_{k}$ be the Icm of denominators of coefficients of $B_{k}(x)$, so that $d_{k} B_{k}(x) \in \mathbb{Z}[x]$.

## p-adic measures

Now we treat $k \geq 2$. Let $d_{k}$ be the Icm of denominators of coefficients of $B_{k}(x)$, so that $d_{k} B_{k}(x) \in \mathbb{Z}[x]$.

$$
d_{1}=2, \quad d_{2}=6, \quad d_{3}=2, \ldots
$$

## p-adic measures

Now we treat $k \geq 2$. Let $d_{k}$ be the Icm of denominators of coefficients of $B_{k}(x)$, so that $d_{k} B_{k}(x) \in \mathbb{Z}[x]$.

$$
d_{1}=2, \quad d_{2}=6, \quad d_{3}=2, \ldots
$$

We will show that

$$
\left|\mu_{k, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)\right|_{p} \leq \max \left(\frac{1}{\left|d_{k}\right|_{p}},\left|\mu_{1, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)\right|_{p}\right)
$$

## p-adic measures

Recall,

$$
B_{k}(x)=x^{k}-\frac{k}{2} x^{k-1}+\cdots
$$

## p-adic measures

We compute $d_{k} \mu_{k, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)$ as follows:

$$
=d_{k} p^{N(k-1)}\left(B_{k}\left(\frac{a}{p^{N}}\right)-\frac{1}{\alpha^{k}} B_{k}\left(\frac{\overline{\alpha a}}{p^{N}}\right)\right)
$$

## p -adic measures

We compute $d_{k} \mu_{k, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)$ as follows:

$$
\begin{gathered}
=d_{k} p^{N(k-1)}\left(B_{k}\left(\frac{a}{p^{N}}\right)-\frac{1}{\alpha^{k}} B_{k}\left(\frac{\overline{\alpha a}}{p^{N}}\right)\right) \\
\underbrace{\equiv}_{\left(\bmod p^{N}\right)} d_{k} p^{N(k-1)}\left(\left(\frac{a}{p^{N}}\right)^{k}-\frac{1}{\alpha^{k}}\left(\frac{\overline{\alpha a}}{p^{N}}\right)^{k}-\frac{k}{2}\left(\frac{a^{k-1}}{p^{N(k-1)}}-\frac{1}{\alpha^{k}}\left(\frac{\overline{\alpha a}}{p^{N}}\right)^{k-1}\right)\right.
\end{gathered}
$$

## p-adic measures

We compute $d_{k} \mu_{k, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)$ as follows:

$$
\begin{gathered}
=d_{k} p^{N(k-1)}\left(B_{k}\left(\frac{a}{p^{N}}\right)-\frac{1}{\alpha^{k}} B_{k}\left(\frac{\overline{\alpha a}}{p^{N}}\right)\right) \\
\underbrace{\equiv}_{\left(\bmod p^{N}\right)} d_{k} p^{N(k-1)}\left(\left(\frac{a}{p^{N}}\right)^{k}-\frac{1}{\alpha^{k}}\left(\frac{\overline{\alpha a}}{p^{N}}\right)^{k}-\frac{k}{2}\left(\frac{a^{k-1}}{p^{N(k-1)}}-\frac{1}{\alpha^{k}}\left(\frac{\overline{\alpha a}}{p^{N}}\right)^{k-1}\right)\right.
\end{gathered}
$$

Writing

$$
\frac{\overline{\alpha a}}{p^{N}}=\frac{\alpha a}{p^{N}}-\left[\frac{\alpha a}{p^{N}}\right]
$$

substituting, and simplifying, we obtain:

$$
\equiv d_{k} \cdot k \cdot a^{k-1}\left(\frac{1}{\alpha}\left[\frac{\alpha a}{p^{N}}\right]+\frac{1 / \alpha-1}{2}\right)=d_{k} \cdot k \cdot a^{k-1} \mu_{1, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right)
$$

## What were we doing?

Over $\mathbb{R}$ :

$$
\frac{d x^{k}}{d x}=k x^{k-1}, \quad \mu_{k}[a, b]=b^{k}-a^{k}
$$

## What were we doing?

Over $\mathbb{R}$ :

$$
\begin{gathered}
\frac{d x^{k}}{d x}=k x^{k-1}, \quad \mu_{k}[a, b]=b^{k}-a^{k} \\
\lim _{b \rightarrow a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])}=k \cdot a^{k-1}
\end{gathered}
$$

## What were we doing?

Over $\mathbb{R}$ :

$$
\begin{gathered}
\frac{d x^{k}}{d x}=k x^{k-1}, \quad \mu_{k}[a, b]=b^{k}-a^{k} \\
\lim _{b \rightarrow a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])}=k \cdot a^{k-1}
\end{gathered}
$$

Over $\mathbb{Q}_{p}$ :

$$
\frac{\mu_{k}\left(a+p^{N} \mathbb{Z}_{p}\right)}{\mu_{1}\left(a+p^{N} \mathbb{Z}_{p}\right)}=k \cdot a^{k-1}
$$

## What were we doing?

Over $\mathbb{R}$ :

$$
\begin{gathered}
\frac{d x^{k}}{d x}=k x^{k-1}, \quad \mu_{k}[a, b]=b^{k}-a^{k} \\
\lim _{b \rightarrow a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])}=k \cdot a^{k-1}
\end{gathered}
$$

Over $\mathbb{Q}_{p}$ :

$$
\begin{gathered}
\frac{\mu_{k}\left(a+p^{N} \mathbb{Z}_{p}\right)}{\mu_{1}\left(a+p^{N} \mathbb{Z}_{p}\right)}=k \cdot a^{k-1} \\
d x^{k} \quad \Leftrightarrow \quad \mu_{k, \alpha}
\end{gathered}
$$

## p-adic measures

Consider

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \\
x & \mapsto x^{k-1}
\end{aligned}
$$

## p-adic measures

Consider

$$
f: \mathbb{Z}_{p} \quad \rightarrow \quad \mathbb{Z}_{p}
$$

Let $X \subset \mathbb{Z}_{p}$ be a compact open subset. Then

$$
\int_{X} \mu_{k, \alpha}=k \cdot \int_{X} f \mu_{1, \alpha}
$$

## p-adic measures

Consider

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \\
x & \mapsto x^{k-1}
\end{aligned}
$$

Let $X \subset \mathbb{Z}_{p}$ be a compact open subset. Then

$$
\int_{X} \mu_{k, \alpha}=k \cdot \int_{X} f \mu_{1, \alpha}
$$

In particular,

$$
\frac{1}{k} \int_{\mathbb{Z}_{\rho}^{\times}} \mu_{k, \alpha}=\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} .
$$

## $p$-adic measures

Consider

$$
\begin{aligned}
f: \mathbb{Z}_{p} & \rightarrow \\
x & \mapsto x^{k-1}
\end{aligned}
$$

Let $X \subset \mathbb{Z}_{p}$ be a compact open subset. Then

$$
\int_{X} \mu_{k, \alpha}=k \cdot \int_{X} f \mu_{1, \alpha}
$$

In particular,

$$
\frac{1}{k} \int_{\mathbb{Z}_{\rho}^{\times}} \mu_{k, \alpha}=\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} .
$$

Proof: It suffices to consider $a+p^{N} \mathbb{Z}_{p}$. We have

$$
\mu_{k, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right) \equiv k \cdot a^{k-1} \mu_{1, \alpha}\left(a+p^{N} \mathbb{Z}_{p}\right) \quad\left(\bmod p^{N-\nu_{p}\left(d_{k}\right)}\right)
$$

take $N \rightarrow \infty$.

## p-adic measures

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} \mu_{k, \alpha}= \\
& =\mu_{k, \alpha}\left(\mathbb{Z}_{p}\right)-\mu_{k, \alpha}\left(p \mathbb{Z}_{p}\right) \\
& =\left(\mu_{B, k}\left(\mathbb{Z}_{p}\right)-\frac{\mu_{B, k}\left(\alpha \mathbb{Z}_{p}\right)}{\alpha^{k}}\right)-\left(\mu_{B, k}\left(p \mathbb{Z}_{p}\right)-\frac{\mu_{B, k}\left(\alpha p \mathbb{Z}_{p}\right)}{\alpha^{k}}\right) \\
& =\left(B_{k}-\frac{B_{k}}{\alpha^{k}}\right)-\left(B_{k} \cdot p^{k-1}-\frac{B_{k} p^{k-1}}{\alpha^{k}}\right) \\
& =B_{k}\left(1-\frac{1}{\alpha^{k}}\right)\left(1-p^{k-1}\right)
\end{aligned}
$$

## p-adic measures

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}^{k}} \mu_{k, \alpha}= \\
& =\mu_{k, \alpha}\left(\mathbb{Z}_{p}\right)-\mu_{k, \alpha}\left(p \mathbb{Z}_{p}\right) \\
& =\left(\mu_{B, k}\left(\mathbb{Z}_{p}\right)-\frac{\mu_{B, k}\left(\alpha \mathbb{Z}_{p}\right)}{\alpha^{k}}\right)-\left(\mu_{B, k}\left(p \mathbb{Z}_{p}\right)-\frac{\mu_{B, k}\left(\alpha p \mathbb{Z}_{p}\right)}{\alpha^{k}}\right) \\
& =\left(B_{k}-\frac{B_{k}}{\alpha^{k}}\right)-\left(B_{k} \cdot p^{k-1}-\frac{B_{k} p^{k-1}}{\alpha^{k}}\right) \\
& =B_{k}\left(1-\frac{1}{\alpha^{k}}\right)\left(1-p^{k-1}\right)
\end{aligned}
$$

Thus,

$$
\left(1-p^{k-1}\right)\left(-\frac{B_{k}}{k}\right)=\frac{1}{\alpha^{-k}-1} \cdot \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

## Back to interpolation

Let $S:=\left\{s \equiv s_{0}(\bmod (p-1))\right\} \subset \mathbb{Z}_{p}$. It is dense.

## Back to interpolation

Let $S:=\left\{s \equiv s_{0}(\bmod (p-1))\right\} \subset \mathbb{Z}_{p}$. It is dense.

For all $s, s^{\prime} \in S$ with $\left|s-s^{\prime}\right|_{p} \rightarrow 0$ we have $\left|n^{s}-n^{s^{\prime}}\right|_{p} \rightarrow 0$.
Proof: already did this.

## Back to interpolation

Let $S:=\left\{s \equiv s_{0}(\bmod (p-1))\right\} \subset \mathbb{Z}_{p}$. It is dense.

For all $s, s^{\prime} \in S$ with $\left|s-s^{\prime}\right|_{p} \rightarrow 0$ we have $\left|n^{s}-n^{s^{\prime}}\right|_{p} \rightarrow 0$.
Proof: already did this.
Thus there is a continuous function that interpolates $n^{s}$.

## Interpolation

For all $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right)$ we have

$$
\left|x^{k^{\prime}-1}-x^{k-1}\right|_{p} \leq \frac{1}{p^{N+1}}, \quad \forall x \in \mathbb{Z}_{p}^{\times}
$$

## Interpolation

For all $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right)$ we have

$$
\left|x^{k^{\prime}-1}-x^{k-1}\right|_{p} \leq \frac{1}{p^{N+1}}, \quad \forall x \in \mathbb{Z}_{p}^{\times}
$$

It follows that

$$
\left|\int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha}-\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}\right| \leq \frac{1}{p^{N+1}}
$$

## Interpolation

For all $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right)$ we have

$$
\left|x^{k^{\prime}-1}-x^{k-1}\right|_{p} \leq \frac{1}{p^{N+1}}, \quad \forall x \in \mathbb{Z}_{p}^{\times}
$$

It follows that

$$
\left|\int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha}-\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}\right| \leq \frac{1}{p^{N+1}}
$$

Thus,

$$
k \mapsto \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}=\frac{1}{k} \int_{\mathbb{Z}_{P}^{\times}} 1 \mu_{1, \alpha}
$$

is interpolates to a continuous function on $\mathbb{Z}_{p}$.

## Kummer congruences

Theorem (Kummer / Clausen-von Staudt)
(1) $p-1 \nmid k \Rightarrow\left|\frac{B_{k}}{k}\right|_{p} \leq 1$

## Kummer congruences

## Theorem (Kummer / Clausen-von Staudt)

(1) $p-1 \nmid k \Rightarrow\left|\frac{B_{k}}{k}\right|_{p} \leq 1$
(2) $p-1 \nmid k$ and $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right) \Rightarrow$

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k^{\prime}}}{k^{\prime}} \quad\left(\bmod p^{N+1}\right)
$$

## Kummer congruences

## Theorem (Kummer / Clausen-von Staudt)

(1) $p-1 \nmid k \Rightarrow\left|\frac{B_{k}}{k}\right|_{p} \leq 1$
(2) $p-1 \nmid k$ and $k \equiv k^{\prime}\left(\bmod (p-1) p^{N}\right) \Rightarrow$

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k^{\prime}}}{k^{\prime}} \quad\left(\bmod p^{N+1}\right)
$$

(3) $p>2,(p-1) \mid k \Rightarrow p B_{k} \equiv-1(\bmod p)$

## Kummer congruences

Proof: We will assume $p>2$. Let $\alpha$ be a primitive root modulo $p$ (generator of $\left.(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$.

## Kummer congruences

Proof: We will assume $p>2$. Let $\alpha$ be a primitive root modulo $p$ (generator of $\left.(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$. For $k=1$ we have

$$
\left|\frac{B_{1}}{1}\right|_{p}=\left|-\frac{1}{2}\right|_{p}=1
$$

and we are done.

## Kummer congruences

Proof: We will assume $p>2$. Let $\alpha$ be a primitive root modulo $p$ (generator of $\left.(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$. For $k=1$ we have

$$
\left|\frac{B_{1}}{1}\right|_{\rho}=\left|-\frac{1}{2}\right|_{\rho}=1
$$

and we are done. For $k \geq 2$, we have

$$
\begin{aligned}
& \left|\frac{B_{k}}{k}\right|_{p}=\left|\frac{1}{\alpha^{k}-1}\right|_{p} \cdot\left|\frac{1}{\left(1-p^{k-1}\right)}\right|_{p} \cdot\left|\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}\right|_{p} \\
& \quad\left|\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}\right|_{p} \leq 1 .
\end{aligned}
$$

## Kummer congruences

Proof: We will assume $p>2$. Let $\alpha$ be a primitive root modulo $p$ (generator of $\left.(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$. For $k=1$ we have

$$
\left|\frac{B_{1}}{1}\right|_{\rho}=\left|-\frac{1}{2}\right|_{\rho}=1
$$

and we are done. For $k \geq 2$, we have

$$
\begin{aligned}
& \left|\frac{B_{k}}{k}\right|_{p}=\left|\frac{1}{\alpha^{k}-1}\right|_{p} \cdot\left|\frac{1}{\left(1-p^{k-1}\right)}\right|_{p} \cdot\left|\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \mu_{1, \alpha}\right|_{p} \\
& \quad\left|\int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}\right|_{p} \leq 1 .
\end{aligned}
$$

This proves the first point.

## Kummer congruences

To show the second point, it suffices to establish

$$
\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \frac{1}{\alpha^{-k^{\prime}}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha} \quad\left(\bmod p^{N+1}\right)
$$

## Kummer congruences

To show the second point, it suffices to establish

$$
\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \frac{1}{\alpha^{-k^{\prime}}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha} \quad\left(\bmod p^{N+1}\right)
$$

With our assumptions, we have

- $\left(\alpha^{-k}-1\right)^{-1} \equiv\left(\alpha^{-k^{\prime}}-1\right)^{-1}\left(\bmod p^{N+1}\right) \Leftrightarrow$

$$
\alpha^{k} \equiv \alpha^{k^{\prime}} \quad\left(\bmod p^{N+1}\right)
$$

## Kummer congruences

To show the second point, it suffices to establish

$$
\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \frac{1}{\alpha^{-k^{\prime}}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha} \quad\left(\bmod p^{N+1}\right)
$$

With our assumptions, we have

- $\left(\alpha^{-k}-1\right)^{-1} \equiv\left(\alpha^{-k^{\prime}}-1\right)^{-1}\left(\bmod p^{N+1}\right) \Leftrightarrow$

$$
\alpha^{k} \equiv \alpha^{k^{\prime}} \quad\left(\bmod p^{N+1}\right)
$$

- $x^{k-1} \equiv x^{k^{\prime}-1}\left(\bmod p^{N+1}\right)$


## Kummer congruences

To show the second point, it suffices to establish

$$
\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \frac{1}{\alpha^{-k^{\prime}}-1} \int_{\mathbb{Z}_{\rho}^{\times}} x^{k^{\prime}-1} \mu_{1, \alpha} \quad\left(\bmod p^{N+1}\right)
$$

With our assumptions, we have

- $\left(\alpha^{-k}-1\right)^{-1} \equiv\left(\alpha^{-k^{\prime}}-1\right)^{-1}\left(\bmod p^{N+1}\right) \Leftrightarrow$

$$
\alpha^{k} \equiv \alpha^{k^{\prime}} \quad\left(\bmod p^{N+1}\right)
$$

- $x^{k-1} \equiv x^{k^{\prime}-1}\left(\bmod p^{N+1}\right)$
- same for the integral.


## Kummer congruences

To prove the third point, put $\alpha=p+1$. Then

$$
p B_{k}=-k p\left(-\frac{B_{k}}{k}\right)=\frac{-k p}{\alpha^{-k}-1}\left(1-p^{k-1}\right) \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

## Kummer congruences

To prove the third point, put $\alpha=p+1$. Then

$$
p B_{k}=-k p\left(-\frac{B_{k}}{k}\right)=\frac{-k p}{\alpha^{-k}-1}\left(1-p^{k-1}\right) \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

Let $d=\nu_{p}(k)$. Then

$$
\left(\alpha^{-k}-1\right)=(1+p)^{-k}-1 \equiv-k p \quad\left(\bmod p^{d+2}\right)
$$

## Kummer congruences

To prove the third point, put $\alpha=p+1$. Then

$$
p B_{k}=-k p\left(-\frac{B_{k}}{k}\right)=\frac{-k p}{\alpha^{-k}-1}\left(1-p^{k-1}\right) \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

Let $d=\nu_{p}(k)$. Then

$$
\left(\alpha^{-k}-1\right)=(1+p)^{-k}-1 \equiv-k p \quad\left(\bmod p^{d+2}\right)
$$

We have

- $\left(\alpha^{-k}-1\right)=(1+p)^{-k}-1 \equiv-k p\left(\bmod p^{\nu_{\rho}(d)+2}\right)$, thus

$$
1 \equiv \frac{-k p}{\alpha^{-k}-1} \quad(\bmod p)
$$

## Kummer congruences

To prove the third point, put $\alpha=p+1$. Then

$$
p B_{k}=-k p\left(-\frac{B_{k}}{k}\right)=\frac{-k p}{\alpha^{-k}-1}\left(1-p^{k-1}\right) \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

Let $d=\nu_{p}(k)$. Then

$$
\left(\alpha^{-k}-1\right)=(1+p)^{-k}-1 \equiv-k p \quad\left(\bmod p^{d+2}\right)
$$

We have

- $\left(\alpha^{-k}-1\right)=(1+p)^{-k}-1 \equiv-k p\left(\bmod p^{\nu_{\rho}(d)+2}\right)$, thus

$$
1 \equiv \frac{-k p}{\alpha^{-k}-1} \quad(\bmod p)
$$

$$
\left(1-p^{k-1}\right) \equiv 1 \quad(\bmod p)
$$

## Kummer congruences

Since $(p-1) \mid k$, we have

$$
x^{k-1} \equiv x^{-1} \quad(\bmod p)
$$

Then

$$
p B_{k} \equiv \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \int_{\mathbb{Z}_{\rho}^{\times}} x^{-1} \mu_{1, \alpha}
$$

## Kummer congruences

Since $(p-1) \mid k$, we have

$$
x^{k-1} \equiv x^{-1} \quad(\bmod p)
$$

Then

$$
p B_{k} \equiv \int_{\mathbb{Z}_{\rho}^{\times}} x^{k-1} \mu_{1, \alpha} \equiv \int_{\mathbb{Z}_{\rho}^{\times}} x^{-1} \mu_{1, \alpha} \equiv-1 \quad(\bmod p),
$$

the last congruence by direct computation.

## Bernoulli numbers

# IRREGULAR PRIMES TO TWO BILLION 

WILLIAM HART, DAVID HARVEY, AND WILSON ONG


#### Abstract

We compute all irregular primes less than $2^{31}=2147483648$. We verify the Kummer-Vandiver conjecture for each of these primes, and we check that the $p$-part of the class group of $\mathbf{Q}\left(\zeta_{p}\right)$ has the simplest possible structure consistent with the index of irregularity of $p$. Our method for computing the irregular indices saves a constant factor in time relative to previous methods, by adapting Rader's algorithm for evaluating discrete Fourier transforms.


## 1. Introduction and summary of results

For each of the 105097564 odd primes less than $2^{31}=2147483648$, we performed the following tasks:
(1) We computed the irregular indices for $p$, that is, the integers $r \in\{2,4, \ldots, p-3\}$ for which $B_{r}=0(\bmod p)$, where $B_{r}$ is the $r$-th Bernoulli number. A pair $(p, r)$, with $r$ as above, is called an irregular pair, and such an integer $r$ is called an irregular index for $p$. The number of such $r$ is called the index of irregularity of $p$, denoted $i_{p}$. A prime $p$ is called regular if $i_{p}=0$, and irregular if $i_{p}>0$.

## Bernoulli numbers

The total running time of our computation was approximately 8.6 million core-hours (almost 1000 core-years).

## Bernoulli numbers

The total running time of our computation was approximately 8.6 million core-hours (almost 1000 core-years).

We found many new primes with $i_{p}=7$, four primes with $i_{p}=8$, namely

$$
p=381348997,717636389,778090129,1496216791,
$$

and exactly one prime with $i_{p}=9$, namely $p=1767218027$. For this last p , we found that $B_{r}=0(\bmod p)$ for the following nine values of r:

63562190, 274233542, 290632386, 619227758, 902737892,
1279901568, 1337429618, 1603159110, 1692877044.

## Bernoulli numbers

The main irregular prime computation was performed over a period of about ten months, starting in late 2012.

## Bernoulli numbers

The main irregular prime computation was performed over a period of about ten months, starting in late 2012. Any computation is susceptible to errors; in a computation of this magnitude it would be a great surprise if nothing went wrong. Consequently, we took careful precautions to maximize the chance of detecting any problems.

## Bernoulli numbers

The main irregular prime computation was performed over a period of about ten months, starting in late 2012. Any computation is susceptible to errors; in a computation of this magnitude it would be a great surprise if nothing went wrong. Consequently, we took careful precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade machines in the Condor pool tended to have lower quality RAM, and on a handful of them the checksum test would reliably fail several times a day. The other systems had high-quality error-correcting RAM modules, and we did not detect any errors on them except for one problematic node on Katana. If any machine exhibited even a single checksum error, we excluded it from all computations and reprocessed all primes that had been handled on that machine.

## Bernoulli numbers

- There are infinitely many irregular primes.


## Bernoulli numbers

- There are infinitely many irregular primes.
- It is unknown whether or not there are infinitely many regular primes.


## Special values of $\zeta(s)$

We compute special values formally - we gave a rigorous computation previously.

## Special values of $\zeta(s)$

We compute special values formally - we gave a rigorous computation previously.

$$
\begin{aligned}
\zeta(1-k) & =\left.\sum_{n \geq 1}\left(\frac{d}{d t}\right)^{k-1} e^{n t}\right|_{t=0} \\
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(\sum_{n \geq 1} e^{n t}\right)\right|_{t=0} \\
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(\frac{1}{1-e^{t}}-1\right)\right|_{t=0} \\
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(\frac{1}{1-e^{t}}\right)\right|_{t=0}
\end{aligned}
$$

## Special values of $\zeta(s)$

$$
\begin{aligned}
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(-\frac{1}{t} \cdot\left(\sum_{k \geq 1} B_{k} \frac{t^{k}}{k!}\right)\right)\right|_{t=0} \\
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(\sum_{k \geq 1}\left(-\frac{B_{k}}{k}\right) \frac{t^{k-1}}{(k-1)!}\right)\right|_{t=0}
\end{aligned}
$$

## Special values of $\zeta(s)$

$$
\begin{aligned}
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(-\frac{1}{t} \cdot\left(\sum_{k \geq 1} B_{k} \frac{t^{k}}{k!}\right)\right)\right|_{t=0} \\
& =\left.\left(\frac{d}{d t}\right)^{k-1}\left(\sum_{k \geq 1}\left(-\frac{B_{k}}{k}\right) \frac{t^{k-1}}{(k-1)!}\right)\right|_{t=0}
\end{aligned}
$$

It follows that

$$
\zeta(1-k)=-\frac{B_{k}}{k}
$$

## Special values of $\zeta(s)$

Now put

$$
\zeta_{p}(1-k):=\left(1-p^{k-1}\right)\left(-\frac{B_{k}}{k}\right)
$$

## Special values of $\zeta(s)$

Now put

$$
\zeta_{p}(1-k):=\left(1-p^{k-1}\right)\left(-\frac{B_{k}}{k}\right)=\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{P}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

## Special values of $\zeta(s)$

Now put

$$
\zeta_{p}(1-k):=\left(1-p^{k-1}\right)\left(-\frac{B_{k}}{k}\right)=\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \mu_{1, \alpha}
$$

As before, it can be interpolated for $k \equiv s_{0}(\bmod p-1)$, and gives a continuous function from $\mathbb{Z}_{p}$ to $\mathbb{Q}_{p}$, (independent of $\alpha$ ).

## Back to Bernoulli

Let $\chi$ be a Dirichlet character of conductor $f=f_{\chi}$.

$$
F_{\chi}(t, x):=\sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x) t}}{e^{f t}-1}=
$$

## Back to Bernoulli

Let $\chi$ be a Dirichlet character of conductor $f=f_{\chi}$.

$$
F_{\chi}(t, x):=\sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x) t}}{e^{f t}-1}=\sum_{n \geq 0} B_{n, \chi}(x) \frac{t^{n}}{n!}
$$

## Back to Bernoulli

Let $\chi$ be a Dirichlet character of conductor $f=f_{\chi}$.

$$
F_{\chi}(t, x):=\sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x) t}}{e^{f t}-1}=\sum_{n \geq 0} B_{n, \chi}(x) \frac{t^{n}}{n!}
$$

Put

$$
B_{n, \chi}:=B_{n, \chi}(0)
$$

## Back to Bernoulli

We have:

- $B_{n, \chi}(x) \in \mathbb{Q}(\chi)[x]$, where $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(a), a \in \mathbb{Z})$ is the smallest field containing all the indicated roots of 1 ,


## Back to Bernoulli

We have:

- $B_{n, \chi}(x) \in \mathbb{Q}(\chi)[x]$, where $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(a), a \in \mathbb{Z})$ is the smallest field containing all the indicated roots of 1 ,
- $B_{0, \chi}=\frac{1}{f} \sum_{a=1}^{f} \chi(a)=0$, for $\chi \neq \chi_{0}$; it follows that $\operatorname{deg}\left(B_{n, \chi}\right)<n$,


## Back to Bernoulli

We have:

- $B_{n, \chi}(x) \in \mathbb{Q}(\chi)[x]$, where $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(a), a \in \mathbb{Z})$ is the smallest field containing all the indicated roots of 1 ,
- $B_{0, \chi}=\frac{1}{f} \sum_{a=1}^{f} \chi(a)=0$, for $\chi \neq \chi_{0}$; it follows that $\operatorname{deg}\left(B_{n, \chi}\right)<n$,
- $B_{n, \chi}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k, \chi} x^{n-k}$.


## Back to Bernoulli

Since

$$
F_{\chi}(-t,-x)=\sum_{a=1}^{f} \chi(a) \cdot(-t) \cdot \frac{e^{-(a-x) t}}{e^{-f t}-1}=
$$

## Back to Bernoulli

Since

$$
F_{\chi}(-t,-\chi)=\sum_{a=1}^{f} \chi(a) \cdot(-t) \cdot \frac{e^{-(a-x) t}}{e^{-f t}-1}=\sum_{a=1}^{f} \chi(-1) \chi(f-a) t \cdot \frac{e^{(f-a+x) t}}{e^{f t}-1},
$$

## Back to Bernoulli

Since
$F_{\chi}(-t,-\chi)=\sum_{a=1}^{f} \chi(a) \cdot(-t) \cdot \frac{e^{-(a-\chi) t}}{e^{-f t}-1}=\sum_{a=1}^{f} \chi(-1) \chi(f-a) t \cdot \frac{e^{(f-a+x) t}}{e^{f t}-1}$,
we have

$$
F_{\chi}(-t,-x)=\chi(-1) F_{\chi}(t, x), \quad \chi \neq \chi_{0},
$$

## Back to Bernoulli

Since
$F_{\chi}(-t,-\chi)=\sum_{a=1}^{f} \chi(a) \cdot(-t) \cdot \frac{e^{-(a-\chi) t}}{e^{-f t}-1}=\sum_{a=1}^{f} \chi(-1) \chi(f-a) t \cdot \frac{e^{(f-a+x) t}}{e^{f t}-1}$,
we have

$$
F_{\chi}(-t,-x)=\chi(-1) F_{\chi}(t, x), \quad \chi \neq \chi_{0},
$$

and

$$
(-1)^{n} B_{n, \chi}(-x)=\chi(-1) B_{n, \chi}(x), \quad n \geq 0 .
$$

## Back to Bernoulli

We have

$$
B_{n, \chi}=0, \quad \chi \neq \chi_{0}, \quad n \not \equiv \delta_{\chi} \quad(\bmod 2)
$$

where

$$
\delta_{\chi}:= \begin{cases}0 & \chi(-1)=1 \\ 1 & \chi(-1)=-1\end{cases}
$$

## Back to Bernoulli

We can express these new numbers through classical Bernoulli numbers.

## Back to Bernoulli

We can express these new numbers through classical Bernoulli numbers. Starting with

$$
F_{\chi}(t, x)=\frac{1}{f} \sum_{a=1}^{f} \chi(a) F\left(f t, \frac{a-f+x}{f}\right)
$$

we obtain

$$
B_{n, \chi}(x)=\frac{1}{f} \sum_{a=1}^{f} \chi(a) f^{n} B_{n}\left(\frac{a-f+x}{f}\right), \quad n \geq 0
$$

and in particular

$$
B_{n, \chi}=\frac{1}{f} \sum_{a=1}^{f} \chi(a) f^{n} B_{n}\left(\frac{a-f}{f}\right), \quad n \geq 0 .
$$

## Back to Bernoulli

## Consider

$$
\begin{gathered}
S_{n, \chi}(k):=\sum_{a=1}^{k-1} \chi(a) a^{n}, \quad n \geq 0 \\
S_{n}(k):=\sum_{a=1}^{k-1} a^{n}
\end{gathered}
$$

## Back to Bernoulli

Consider

$$
\begin{gathered}
S_{n, \chi}(k):=\sum_{a=1}^{k-1} \chi(a) a^{n}, \quad n \geq 0 \\
S_{n}(k):=\sum_{a=1}^{k-1} a^{n}
\end{gathered}
$$

E.g.,

$$
S_{1}(k)=\frac{k(k-1)}{2}
$$

## Back to Bernoulli

Consider

$$
\begin{gathered}
S_{n, \chi}(k):=\sum_{a=1}^{k-1} \chi(a) a^{n}, \quad n \geq 0 \\
S_{n}(k):=\sum_{a=1}^{k-1} a^{n}
\end{gathered}
$$

E.g.,

$$
S_{1}(k)=\frac{k(k-1)}{2}
$$

These were computed by Bernoulli, in closed form. Before that, people published books (!), with tables of these numbers.

## Back to Bernoulli

$$
F_{\chi}(t, x)-F_{\chi}(t, x-f)=\sum a=1^{f} \chi(a) t e^{(a+x-f) t}
$$

so that

$$
B_{n, \chi}(x)-B_{n, \chi}(x-f)=n \sum_{a=1}^{f} \chi(a)(a+x-f)^{n-1}
$$

## Back to Bernoulli

$$
F_{\chi}(t, x)-F_{\chi}(t, x-f)=\sum a=1^{f} \chi(a) t e^{(a+x-f) t},
$$

so that

$$
B_{n, \chi}(x)-B_{n, \chi}(x-f)=n \sum_{a=1}^{f} \chi(a)(a+x-f)^{n-1} .
$$

Now, replace $n \mapsto n+1$, and sum over $x=f, 2 f, \ldots, k f$.

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

From this we can compute

$$
B_{n, \chi}=\lim _{h \rightarrow \infty} S_{n, \chi}\left(p^{h} f\right)
$$

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

From this we can compute

$$
B_{n, \chi}=\lim _{h \rightarrow \infty} S_{n, \chi}\left(p^{h} f\right)
$$

and also

$$
S_{n}(k)=\frac{1}{n+1}\left(B_{n+1}(k)-B_{n+1}(0)\right)
$$

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

From this we can compute

$$
B_{n, \chi}=\lim _{h \rightarrow \infty} S_{n, \chi}\left(p^{h} f\right)
$$

and also

$$
\begin{gathered}
S_{n}(k)=\frac{1}{n+1}\left(B_{n+1}(k)-B_{n+1}(0)\right) \\
B_{n}=\lim _{h \rightarrow \infty} S_{n}\left(p^{h}\right),
\end{gathered}
$$

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

From this we can compute

$$
B_{n, \chi}=\lim _{h \rightarrow \infty} S_{n, \chi}\left(p^{h} f\right),
$$

and also

$$
\begin{gathered}
S_{n}(k)=\frac{1}{n+1}\left(B_{n+1}(k)-B_{n+1}(0)\right) \\
B_{n}=\lim _{h \rightarrow \infty} S_{n}\left(p^{h}\right),
\end{gathered}
$$

In particular,
$S_{1}(k)=\frac{1}{2}\left(B_{2}(k)-B_{2}(0)\right)$

## Back to Bernoulli

We obtain

$$
S_{n, \chi}(k f)=\frac{1}{n+1}\left(B_{n+1, \chi}(k f)-B_{n+1, \chi}(0)\right)
$$

From this we can compute

$$
B_{n, \chi}=\lim _{h \rightarrow \infty} S_{n, \chi}\left(p^{h} f\right),
$$

and also

$$
\begin{gathered}
S_{n}(k)=\frac{1}{n+1}\left(B_{n+1}(k)-B_{n+1}(0)\right) \\
B_{n}=\lim _{h \rightarrow \infty} S_{n}\left(p^{h}\right),
\end{gathered}
$$

In particular,
$S_{1}(k)=\frac{1}{2}\left(B_{2}(k)-B_{2}(0)\right)=\frac{1}{2}\left(\left(k^{2}-k+\frac{1}{6}\right)-\frac{1}{6}\right)=\frac{1}{2} k(k-1)$.

## Generalized Kummer congruences

## Theorem

Let $\chi$ be a Dirichlet character, and

$$
\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}, \quad p \geq 3
$$

Put $\chi_{n}:=\chi \cdot \omega^{-n}$.

## Generalized Kummer congruences

## Theorem

Let $\chi$ be a Dirichlet character, and

$$
\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}, \quad p \geq 3
$$

Put $\chi_{n}:=\chi \cdot \omega^{-n}$. Then there exists a power series $A=A_{\chi} \in K[[x]]$, such that

- $K$ is a finite extension of $\mathbb{Q}_{p}$,


## Generalized Kummer congruences

## Theorem

Let $\chi$ be a Dirichlet character, and

$$
\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}, \quad p \geq 3
$$

Put $\chi_{n}:=\chi \cdot \omega^{-n}$. Then there exists a power series $A=A_{\chi} \in K[[x]]$, such that

- $K$ is a finite extension of $\mathbb{Q}_{p}$,
- the radius of convergence $r_{A} \geq p^{\frac{p}{p-1}}$


## Generalized Kummer congruences

## Theorem

Let $\chi$ be a Dirichlet character, and

$$
\omega:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{C}, \quad p \geq 3
$$

Put $\chi_{n}:=\chi \cdot \omega^{-n}$. Then there exists a power series $A=A_{\chi} \in K[[x]]$, such that

- $K$ is a finite extension of $\mathbb{Q}_{p}$,
- the radius of convergence $r_{A} \geq p^{\frac{p}{p-1}}$

$$
A_{\chi}(n)=\left(1-\chi_{n}(p) p^{n-1}\right) B_{n, \chi_{n}}
$$

## Proof

Let $K / \mathbb{Q}_{p}$ be a finite extension.

## Proof

Let $K / \mathbb{Q}_{p}$ be a finite extension.

## Theorem

Let $A, B \in K[[x]]$, with $r_{A}, r_{B}>0$. Let $\left\{x_{n}\right\}$ be a sequence with $\lim x_{n}=0$. Assume that $A\left(x_{n}\right)=B\left(x_{n}\right)$ for all $n$.

## Proof

Let $K / \mathbb{Q}_{p}$ be a finite extension.
Theorem
Let $A, B \in K[[x]]$, with $r_{A}, r_{B}>0$. Let $\left\{x_{n}\right\}$ be a sequence with $\lim x_{n}=0$. Assume that $A\left(x_{n}\right)=B\left(x_{n}\right)$ for all $n$. Then

$$
A=B
$$

## Proof

Let $K / \mathbb{Q}_{p}$ be a finite extension.

## Theorem

Let $A, B \in K[[x]]$, with $r_{A}, r_{B}>0$. Let $\left\{x_{n}\right\}$ be a sequence with $\lim x_{n}=0$. Assume that $A\left(x_{n}\right)=B\left(x_{n}\right)$ for all $n$. Then

$$
A=B
$$

Proof: Consider the difference $A(x)-B(x)=\sum c_{n} x^{n}$, let $c_{n_{0}}$ be the first nonzero coefficient.

## Proof

Let $K / \mathbb{Q}_{p}$ be a finite extension.

## Theorem

Let $A, B \in K[[x]]$, with $r_{A}, r_{B}>0$. Let $\left\{x_{n}\right\}$ be a sequence with $\lim x_{n}=0$. Assume that $A\left(x_{n}\right)=B\left(x_{n}\right)$ for all $n$. Then

$$
A=B
$$

Proof: Consider the difference $A(x)-B(x)=\sum c_{n} x^{n}$, let $c_{n_{0}}$ be the first nonzero coefficient. We have

$$
-c_{n_{0}}=\underbrace{x_{i}}_{\rightarrow 0} \cdot \underbrace{\sum_{n>n_{0}} c_{n} x_{i}^{n-n_{0}-1}}_{\text {bounded }}, \quad \forall x_{i}
$$

## Proof

## Put

$$
\|A\|=\sup _{n}\left(\left|a_{n}\right|_{p}\right)
$$

## Proof

## Put

$$
\|A\|=\sup _{n}\left(\left|a_{n}\right|_{p}\right)
$$

and let

$$
\mathcal{P}_{K}:=\{A \in K[[x]] \mid\|A\|<\infty\}
$$

## Proof

Put

$$
\|A\|=\sup _{n}\left(\left|a_{n}\right|_{p}\right)
$$

and let

$$
\mathcal{P}_{K}:=\{A \in K[[x]] \mid\|A\|<\infty\}
$$

## Theorem

This is a norm and $\mathcal{P}_{K}$ is complete, i.e., a Banach algebra over the local field $K$.

## Reminder

$$
c_{n}:=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} b_{i}
$$

## Reminder

$$
\begin{gathered}
c_{n}:=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} b_{i} \\
b_{n}:=\sum_{i=0}^{n}\binom{n}{i} c_{i}
\end{gathered}
$$

## Reminder

$$
\begin{gathered}
c_{n}:=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} b_{i} \\
b_{n}:=\sum_{i=0}^{n}\binom{n}{i} c_{i} \\
\|n!\|_{p} \geq p^{\frac{n}{p-1}}
\end{gathered}
$$

## Power series

Let $0<r<|p|^{\frac{1}{p-1}}$ and $\left|c_{n}\right|_{p} \leq C r^{n}, \quad \forall n$, and some $C>0$.

## Power series

Let $0<r<|p|^{\frac{1}{\rho-1}}$ and $\left|c_{n}\right|_{p} \leq C r^{n}, \quad \forall n$, and some $C>0$. Then there exists a unique $A \in \mathcal{P}_{K}$ such that

- $r_{A} \geq|p|_{p}^{\frac{1}{p-1}} r^{-1}$,
- $A(n)=b_{n}$, for all $n$.


## Application

$$
\begin{gathered}
b_{n}:=\left(1-\chi_{n}(p) p^{n-1}\right) B_{n, \chi n} \\
c_{n}:=\sum_{i=0}^{n}\binom{n}{i} b_{i}
\end{gathered}
$$

## Application

$$
\begin{gathered}
b_{n}:=\left(1-\chi_{n}(p) p^{n-1}\right) B_{n, \chi_{n}} \\
c_{n}:=\sum_{i=0}^{n}\binom{n}{i} b_{i}
\end{gathered}
$$

So the basic estimate one has to show is:

$$
\left|c_{n}\right|_{p} \leq\left|p^{-2} f^{-1}\right| \cdot|p|_{p}^{n}, \quad \forall n
$$

## Analysis on the $p$-adics

We have looked at functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$.

## Analysis on the $p$-adics

We have looked at functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$. But we can also study functions

$$
f: \mathbb{Q}_{p} \rightarrow \mathbb{C}
$$

## Analysis on the $p$-adics

We have looked at functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$. But we can also study functions

$$
f: \mathbb{Q}_{p} \rightarrow \mathbb{C}
$$

Basic examples:

- characteristic functions $\chi_{U}$ of $U:=\left\{a+p^{N} \mathbb{Z}_{p}\right\}$,


## Analysis on the $p$-adics

We have looked at functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$. But we can also study functions

$$
f: \mathbb{Q}_{p} \rightarrow \mathbb{C}
$$

Basic examples:

- characteristic functions $\chi_{U}$ of $U:=\left\{a+p^{N} \mathbb{Z}_{p}\right\}$,
- $|x|_{p}^{s}$, for $s \in \mathbb{C}$


## Integration

Now we can consider

$$
\int_{\mathbb{Q}_{p}} f(x) d x_{p}
$$

where $d x_{p}=\mu_{p}$ is the Haar measure, i.e., translation invariant measure,

## Integration

Now we can consider

$$
\int_{\mathbb{Q}_{p}} f(x) d x_{p}
$$

where $d x_{p}=\mu_{p}$ is the Haar measure, i.e., translation invariant measure, normalized by

$$
\int_{\mathbb{Z}_{p}} d x_{p}=1
$$

## Basic computation

$$
\int_{\mathbb{Q}_{p}} \chi_{\mathbb{Z}_{p}}(x) \cdot|x|_{p}^{s-1} d x_{p}
$$

## Basic computation

$$
\begin{aligned}
& \int_{\mathbb{Q}_{p}} x_{\mathbb{Z}_{\rho}}(x) \cdot|x|_{\rho}^{s-1} d x_{\rho}=\sum_{n \geq 0} p^{-n(s-1)} \cdot \int_{p^{n} Z_{Z} \mid p^{n+1}} d Z_{Z_{p}} \\
& =\sum_{n \geq 0} p^{-n(s-1)} \frac{1}{p^{n}} \cdot\left(1-\frac{1}{p}\right)
\end{aligned}
$$

## Basic computation

$$
\begin{aligned}
& \int_{\mathbb{Q}_{p}} x_{\mathbb{Z}_{p}}(x) \cdot|x|_{p}^{s-1} d x_{\rho}=\sum_{n \geq 0} p^{-n(s-1)} \cdot \int_{p^{n} Z_{\mathcal{L} \mid p^{n+1}}} d x_{Z_{p}} \\
& =\sum_{n \geq 0} p^{-n(s-1)} \frac{1}{p^{n}} \cdot\left(1-\frac{1}{p}\right)=\frac{1}{1-p^{-s}} \cdot\left(1-\frac{1}{p}\right)
\end{aligned}
$$

## Basic computation

$$
\begin{aligned}
& \int_{\mathbb{Q}_{p}} \chi_{\mathbb{Z}_{\rho}}(x) \cdot|x|_{\rho}^{s-1} d x_{\rho}=\sum_{n \geq 0} p^{-n(s-1)} \cdot \int_{p^{n} Z_{Z_{1} \mid p^{n+1}}} d x_{Z_{p}} \\
& =\sum_{n \geq 0} p^{-n(s-1)} \frac{1}{p^{n}} \cdot\left(1-\frac{1}{p}\right)=\frac{1}{1-p^{-s}} \cdot\left(1-\frac{1}{p}\right)
\end{aligned}
$$

So we can formally write

$$
\zeta(s)=\prod_{p} \int_{\mathbb{Q}_{p}} \chi_{\mathbb{Z}_{p}}(x) \cdot|x|_{p}^{s-1} d x_{p} \cdot \prod_{p}\left(1-\frac{1}{p}\right)^{-1}
$$

