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Measure and integration

Let X, T be topological spaces.
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Measure and integration

Let X, T be topological spaces. A map
f-X—=T

is called locally constant if for all x € X there exists an open
neighborhood U := U, C X such that the restriction f| is constant.

Lecture 8 3/53



Measure and integration
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is called locally constant if for all x € X there exists an open
neighborhood U := U, C X such that the restriction f| is constant.
Example: X = R, C. Locally constant implies constant.
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Measure and integration

Let X, T be topological spaces. A map
f-X—=T

is called locally constant if for all x € X there exists an open
neighborhood U := U, C X such that the restriction f| is constant.
Example: X = R, C. Locally constant implies constant.

Example: X =Z,,7 = Q,. Locally constant implies that f is a
finite linear combination of characteristic functions of compact open

subsets of the form
{a+p"Zp}.
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p-adic distributions

Recall that compact open subsets of Z, have the form a + p"Z,.
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p-adic distributions

Recall that compact open subsets of Z, have the form a + p"Z,.

A p-adic distribution g on X C Z, is an additive map from the set of
compact open subsets Y C X to Q,.
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p-adic distributions

Recall that compact open subsets of Z, have the form a + p"Z,.

A p-adic distribution g on X C Z, is an additive map from the set of
compact open subsets Y C X to Q,.

For all a+ pNZ, C X one has

N
L

pla+p"Zy) = >  p(a+bp" +p"Z,).
0

o
I
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Conversely, every such map defines a unique distribution.
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p-adic distributions

Recall that compact open subsets of Z, have the form a + p"Z,.

A p-adic distribution g on X C Z, is an additive map from the set of

compact open subsets Y C X to Q,.

For all a+ pNZ, C X one has

N
L

pla+p"Zy) = >  p(a+bp" +p"Z,).
0

o
I

Conversely, every such map defines a unique distribution.

This is called the distribution relation.
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p-adic distributions

Assume we have a distribution of the form
w(a+p"Z,) = PN(k_l)fk(piN)7 a=0,...,p"-1,

where f; is a (monic) polynomial of degree k.
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p-adic distributions

Assume we have a distribution of the form

a

p(a+ pNz,) = pNEIA(=), a=0,...

pN

where f; is a (monic) polynomial of degree k.
The distribution relation implies that

1%, xta
fil(x) =p ka( » )
a=0
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p-adic distributions

There is a unique such polynomial, for all kK > 1, namely, the
Bernoulli polynomial By(x), defined by

text i
1 Z Bk(X)ﬂ

k>0
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p-adic distributions

There is a unique such polynomial, for all kK > 1, namely, the
Bernoulli polynomial By(x), defined by

teXt tk
1 Z Bk(X)ﬂ

k>0

Recall, that

Bo(x) =1, Bi(x)=x—-1/2, By(x)=x>—x+1/6,...,
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p-adic distributions

Thus we have

_ a
neula+ ph2y) = pMIB( )
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p-adic distributions

Thus we have

_ a
neula+ ph2y) = pMIB( )
]
[tB,0 = [lHaar,  iNvariant under translations
o

tB1 = HMazur
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p-adic measures

A p-adic measure is a distribution p such that there exists a B > 0
with

[u(U)], < B
for all compact open U C X.
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p-adic measures

Let p be a p-adic measure on Z, and f : Z, — Q, a continuous
function.
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p-adic measures

Let p be a p-adic measure on Z, and f : Z, — Q, a continuous
function.Let

Svi= Y flan)u(a+pVZy),

0<a<pN—-1

where x, v € a+ pVZ,,.
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p-adic measures

Let p be a p-adic measure on Z, and f : Z, — Q, a continuous
function.Let

Svi= Y flan)u(a+pVZy),

0<a<pN—-1

where x, v € a+ pVZ,. Then there exists a limit

/VII—r;nOOSN =: /prdu
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p-adic measures

Proof: Note that

a+p"Zy = Uocscpm_15=0 (mod vy (3+ P"Zp)
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p-adic measures

Proof: Note that

a+p"Zy = Uocscpm_15=0 (mod vy (3+ P"Zp)

We have

Su=Sulp=1 > | fln) = flam) | nla+pZy), < e B

0<a<pM—1 2’6

(since Z, is compact, we have uniform continuity).
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p-adic measures

Proof: Note that
a+p"Zy = Uocscpm_15=0 (mod vy (3+ P"Zp)

We have

Su=Sulp=1 > | fln) = flam) | nla+pZy), < e B

0<a<pM—1 e

(since Z, is compact, we have uniform continuity). Thus, we have a
Cauchy sequence, and a limit in @Q,, independent of the choice of

Xg’N.
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Haar “measure”

1
MHaar(pNZP) =— T translation invariance, i.e.,
p
Nz = 2y
fiHaar(2 + P p) = p—N, a.

Lecture 8 11/53



Haar “measure”

1
,uHaa,(pNZ,,) = — + translation invariance, i.e.,
p
NZ,) = L v
ﬂHaar(a + p p) - P_N’ a.

This satisfies the distribution relation, i.e., iy, is a distribution.
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Haar “measure”

Problems: Let

-
XnN
11
x N

)
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Haar “measure”

Problems: Let

Write
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Haar “measure”

Problems: Let

Write N
Lp = ngal(a +p"Z,)

pN-1

X,
Shon) = D Flan)u(a+phzy) = =7

a=0 a
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Haar “measure”

For x,n :=a € a+ p"Z, we get
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Haar “measure”

For x,n :=a € a+ p"Z, we get

N_1
1A N_1)pVN 1 N_1q 1
_NZaZ(P )P ._N:P T
p = 2 p 2 2

For one a, choose x, y := a+ aop™ € a+ p"Z,, with some ay # 0.
Then we have

pN-1

1 Lyl 1
_Nza + agp N T +ay — —= + ao-
p a=0 p 2 2
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Haar “measure”

For x,n :=a € a+ p"Z, we get

N_1
1A N_1)pVN 1 N_1q 1
_NZaZ(P )P ._N:P T
p = 2 p 2 2

For one a, choose x, y := a+ aop™ € a+ p"Z,, with some ay # 0.

Then we have

N_

1 Lyl 1
_Nza + agp N T +ay — —= + ao-
p a=0 p 2 2

So even simple continuous functions f are not integrable on the
compact Zp.
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p-adic measures

-~ a
pgi(a+ pVzy) = pM ”Bk<p—~>
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p-adic measures

_ a
pgi(a+ pVzy) = pM ”Bk<p—~>

As we saw, these are distributions.
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p-adic measures

_ a
pgi(a+ pVzy) = pM ”Bk<,,—~>

As we saw, these are distributions. There is a way to regularize them,
i.e., turn them into measures.
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p-adic measures

_ a
pgi(a+ pVzy) = pM ”Bk<,,—~>

As we saw, these are distributions. There is a way to regularize them,
i.e., turn them into measures.

For a fixed a € QN Z*, define

fika(U) == ppk(U) — rex(@V)

ak
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p-adic measures

k.o IS @ measure for all k > 1. \
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p-adic measures

k.o IS @ measure for all k > 1. \

Proof: First, we show that

a(a+p"Z,), <1, YN >1.
Indeed, by definition,
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p-adic measures

Fora e QN Z;, the element is in Z,,.

Lecture 8 16 /53



p-adic measures

Fora e QN Z;, the element is in Z,,.

Since any U is a finite (disjoint) union of sets of the form a; + p"iZ,,
lp1,6(U)]p < max...

and we obtain the result.
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p-adic measures

Fora e QN Z;, the element is in Z,,.

Since any U is a finite (disjoint) union of sets of the form a; + p"iZ,,
lp1,6(U)]p < max...

and we obtain the result.

Thus, 1,4 is @ measure on Z,.
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Now we treat k > 2.
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p-adic measures

Now we treat kK > 2. Let d, be the lcm of denominators of
coefficients of By(x), so that dxBk(x) € Z[x].
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p-adic measures

Now we treat kK > 2. Let d, be the lcm of denominators of
coefficients of By(x), so that dxBk(x) € Z[x].

=2, d=6 di=2,...
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p-adic measures

Now we treat kK > 2. Let d, be the lcm of denominators of
coefficients of By(x), so that dxBk(x) € Z[x].

=2, d=6 di=2,...

We will show that

1
o+ P2l < mx (e inala 2,
p
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p-adic measures

Recall,
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p-adic measures

We compute dypikq(a + pNZ,) as follows:

a 1 aa
= (805 - 85)
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p-adic measures

We compute dypikq(a + pNZ,) as follows:
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p-adic measures

We compute dypikq(a + pNZ,) as follows:

_ a 1 aa k, a*t 1 aa,,
\E,_, d pN(k 1) (( N)k_J(_N)k 2( =y k(_N)k 1)
o~ p p ok’ p
Writing
aa  aa [aa]
pN o pN TpNT

substituting, and simplifying, we obtain:

1 1
=d, - k-a" < aa] /O‘ )de'k'aklul,a(a+pNZp)
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What were we doing?

Over R: Sk
di = kx*71 pufa, b] = b* — a*
Ix
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What were we doing?

Over R: Sk
di = kx*71 pufa, b] = b* — a*
Ix

im Mk([av b]) . ak—l
iz b)) "
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What were we doing?

Over R: sk
Ix
dx k71 pula, b] = b* — &
jim P28
b—a ul([a, b])
Over Qy:
(a+ PUZy) e

,ul(a + PNZP)
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What were we doing?

Over R: sk
dL = k<", pyla, b] = b* — 3
Ix

ella )
iz b)) "

Over Qy:

o+ PV2p) e

,ul(a + PNZP)

ka < Mk
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p-adic measures

Consider
|/ — Z,

x = xk1
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p-adic measures

Consider
|/ — Z,
x = xk1

Let X C Z, be a compact open subset. Then

/,Uk,a - k/ fllfl,a
X X
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p-adic measures

Consider
|/ — Z,
x = xk1

Let X C Z, be a compact open subset. Then

/ Hk,oo = k- / fllfl,a

X X

1 / / k-1

- Hka = X Hia-
k 7. 7%

p p

In particular,
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p-adic measures
Consider
|/ — Z,
x = xkt

Let X C Z, be a compact open subset. Then

/ Hk,oo = k- / fllfl,a

X X

- Hk,oo = X H1,0-
k Z Z

5
Proof: It suffices to consider a + pNZ,. We have

In particular,
X
P

,uk,oc(a + PNZP) =k- ak_lyl,a(a + pNZP) (mod 'DN_Vp(dk))7

take N — oo.
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p-adic measures

/ Hk,oo =
ZX

P

= tra(Zp) — pik,a(PZp)

= (HB,k(Zp) - —MB’k((:ZP)) - <MB,k(PZp) - —MB’k(OZpZP))

«
B B
= (B~ —p) — (Be-pt = =E
«
1 k—1
= Bu(1- )1 - p7)

Lecture 8 22 /53



p-adic measures

/ Hk,oo =
ZX

P

= tra(Zp) — pik,a(PZp)

= (HB,k(Zp) - —MB’k((:ZP)) - <MB,k(PZp) - —MB’k(OZpZP))

Q «
By k1 Bt
= (B = —) = (B P = — 5—)
1

= Bi(1— )1 - p)

Thus, 5
1
1_k—1__k: / k—la
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Back to interpolation

Let S:={s=s (mod (p—1))} C Z,. Itis dense.
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Back to interpolation

Let S:={s=s (mod (p—1))} C Z,. Itis dense.

For all 5,5’ € S with |s — §'|, — 0 we have |[n* — n*'|, — 0.

Proof: already did this.
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Back to interpolation

Let S:={s=s (mod (p—1))} C Z,. Itis dense.

For all 5,5’ € S with |s — §'|, — 0 we have |[n* — n*'|, — 0. J

Proof: already did this.
Thus there is a continuous function that interpolates n®.
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Interpolation

For all k = k' (mod (p — 1)p") we have

/_ f—
XK1 — XK Vx €Z,.
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Interpolation

For all k = k' (mod (p — 1)p") we have

k-1 k—1 X
X=X £ g VX EZg.
p
It follows that
K —1 k—1 1
| X Hi,a / X M17a| = TN+1
Zy Zy

Lecture 8
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Interpolation

For all k = k' (mod (p — 1)p") we have

k' — k—

It follows that

K -1 k-1
| X THa —/ X < W
zZ z

X
) p
Thus,

1
ki | X = —/ 110
7 k Jzx

is interpolates to a continuous function on Z,.

Lecture 8
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Kummer congruences

Theorem (Kummer / Clausen-von Staudt)

Q@ p—ltk=|%<1
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Kummer congruences

Theorem (Kummer / Clausen-von Staudt)
Q@ p—ltk=|%<1
Q@ p-—1tkand k=K (mod (p—1)p") =

By 1. By
(1- )7 =(1-p" 1)7 (mod p"*)
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Kummer congruences

Theorem (Kummer / Clausen-von Staudt)
Q@ p—ltk=|%<1
Q@ p-—1tkand k=K (mod (p—1)p") =

By 1. By
(1- )7 =(1-p" 1)7 (mod p"*)

@p>2(p—1)| k= pBi=-1 (mod p)
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Kummer congruences

Proof: We will assume p > 2. Let a be a primitive root modulo p
(generator of (Z/pZ)*).
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Kummer congruences

Proof: We will assume p > 2. Let a be a primitive root modulo p
(generator of (Z/pZ)*). For k =1 we have

B, 1

2o == 5lp =1

and we are done.
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Kummer congruences

Proof: We will assume p > 2. Let a be a primitive root modulo p
(generator of (Z/pZ)*). For k =1 we have

B, 1

2o == 5lp =1

and we are done. For kK > 2, we have

‘Tlp:’ak—l‘p.l(l—pk_l)’p.‘ ZXX Ml,a|p

P
|/X Xk_lﬂl,oc|p <L
zZ

p
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Kummer congruences

Proof: We will assume p > 2. Let a be a primitive root modulo p
(generator of (Z/pZ)*). For k =1 we have

B, 1

2o == 5lp =1

and we are done. For kK > 2, we have

1%l = gl [y lo ] [ ¥ sl
_p: P p- — P p. 17ap
k af—1 (1—-p1) zx

| Xk_lﬂl,oc|p <L

2

This proves the first point.
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Kummer congruences

To show the second point, it suffices to establish

1 / k—1 1 / k' —1 N+1
——— | X T'ma=—7F— X "a (mod p"*?)
(0 k — 1 Z;; « -1 Z;
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Kummer congruences

To show the second point, it suffices to establish

1 / k—1 1 / k' —1 N+1
——— | X T'ma=—7F— X "a (mod p"*?)
(0 k — 1 Z;; « -1 Z;

With our assumptions, we have
o (¥ —1)1=(a ¥ -1)"t (mod p"*') &

k k'

o =aX  (mod p")
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Kummer congruences

To show the second point, it suffices to establish

1 / k—1 1 / k' —1 N+1
——— | X T'ma=—7F— X "a (mod p"*?)
(0 k — 1 Z;; « -1 Z;

With our assumptions, we have
o (¥ —1)1=(a ¥ -1)"t (mod p"*') &

k k'

o =aX  (mod p")

k=1 — k'—1

o x71 = xK=1 (mod pN*1)
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Kummer congruences

To show the second point, it suffices to establish

1 / k—1 1 / k' —1 N+1
——— | X T'ma=—7F— X "a (mod p"*?)
(0 k — 1 Z;; « -1 Z;

With our assumptions, we have
o (¥ —1)1=(a ¥ -1)"t (mod p"*') &

k k'

o =aX  (mod p")

k=1 — k-1

xK=1 (mod pN*1)

@ X

@ same for the integral.
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Kummer congruences

To prove the third point, put « = p+ 1. Then

—kp _ _
pBix = —kP(—T) = m(l - p* l)/zx X

p
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Kummer congruences

To prove the third point, put « = p+ 1. Then

—kp _ _
pBix = —kP(—T) =1 1(1 - p~ 1)/ Xy g
_ o

p

Let d = vp(k). Then
(e =1)=0+p)* —1=—kp (mod p?™?)
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Kummer congruences

To prove the third point, put « = p+ 1. Then

—kp _ _
pBix = —kP(—T) =1 1(1 - p~ 1)/ Xy g
_ o

p

Let d = vp(k). Then

(e =1)=0+p)* —1=—kp (mod p?™?)
We have

Lecture 8

28 /53



Kummer congruences

To prove the third point, put « = p+ 1. Then

—kp _ _
pBix = —kP(—T) =1 1(1 - p~ 1)/ Xy g
_ o

p

Let d = vp(k). Then

(e =1)=0+p)* —1=—kp (mod p?™?)
We have

(1-p1) =1 (mod p)

Lecture 8
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Kummer congruences

Since (p — 1) | k, we have

Then

PBkE/ Xkl/h,aE/ x g
7 7

P p
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Kummer congruences

Since (p — 1) | k, we have
xk"1=x"1 (mod p)

Then

kaE/
z

the last congruence by direct computation.

Xy o = / x e =1 (mod p),
z

X X
P p
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Bernoulli numbers

IRREGULAR PRIMES TO TWO BILLION

WILLIAM HART, DAVID HARVEY, AND WILSON ONG

ABSTRACT. We compute all irregular primes less than 231 = 2147 483 648. We
verify the Kummer—Vandiver conjecture for each of these primes, and we check
that the p-part of the class group of Q({p) has the simplest possible structure
consistent with the index of irregularity of p. Our method for computing the
irregular indices saves a constant factor in time relative to previous methods,
by adapting Rader’s algorithm for evaluating discrete Fourier transforms.

1. INTRODUCTION AND SUMMARY OF RESULTS

For each of the 105097564 odd primes less than 23! = 2147483648, we per-
formed the following tasks:

(1) We computed the irregular indices for p, that is, the integersr € {2,4,...,p—3}
for which B, =0 (mod p), where B, is the r-th Bernoulli number. A pair (p,r),
with r as above, is called an irregular pair, and such an integer r is called an
irreqular index for p. The number of such r is called the index of irregularity
of p, denoted ip,. A prime p is called regular if i, = 0, and irregular if i, > 0.
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Bernoulli numbers

The total running time of our computation was approximately 8.6
million core-hours (almost 1000 core-years).
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Bernoulli numbers

The total running time of our computation was approximately 8.6
million core-hours (almost 1000 core-years).

We found many new primes with i, = 7, four primes with i, = 8,
namely

p = 381348997, 717636389, 778090129, 1496216791,

and exactly one prime with i, = 9, namely p = 1767218027. For this
last p, we found that B, = 0 (mod p) for the following nine values of

r:
63562190, 274233542, 290632386, 619227758, 902737892,

1279901568, 1337429618, 1603159110, 1692877044.
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Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012.
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Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012. Any computation is
susceptible to errors; in a computation of this magnitude it would be
a great surprise if nothing went wrong. Consequently, we took careful
precautions to maximize the chance of detecting any problems.
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Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012. Any computation is
susceptible to errors; in a computation of this magnitude it would be
a great surprise if nothing went wrong. Consequently, we took careful
precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade
machines in the Condor pool tended to have lower quality RAM, and
on a handful of them the checksum test would reliably fail several
times a day. The other systems had high-quality error-correcting
RAM modules, and we did not detect any errors on them except for
one problematic node on Katana. If any machine exhibited even a
single checksum error, we excluded it from all computations and
reprocessed all primes that had been handled on that machine.
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Bernoulli numbers

@ There are infinitely many irregular primes.
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Bernoulli numbers

@ There are infinitely many irregular primes.

@ It is unknown whether or not there are infinitely many regular
primes.
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Special values of ((s)

We compute special values formally — we gave a rigorous
computation previously.
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Special values of ((s)

We compute special values formally — we gave a rigorous
computation previously.

1K) = D) e

n>1

— (%)kl (Z ent) |t:0

n>1

(5 (12~ 1) o
(5 (125 o
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Special values of ((s)

d w1 1 tk
S (5e)) -
- (E) (; (—7) m) |e=0
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Special values of ((s)

r~|-||—t

d
=& ( (—7) m) =0

It follows that
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Special values of ((s)

Now put

(ol —k) == (1—p“1) (_%)
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Special values of ((s)

Now put

B 1
Cp(l—k) = (1~ pkil) (_Tk> = a-k_1 /ZX inl/il,a

P
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Special values of ((s)

Now put

B 1
_ — k[ Pk k—1
G(l—k):=(1-p") ( P > R /ZP X

As before, it can be interpolated for k = sy (mod p — 1), and gives a
continuous function from Z, to Q,, (independent of «).
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Back to Bernoulli

Let x be a Dirichlet character of conductor f = f,.

f
e(a+x)t

X(tvx) ::ZX(3)~1'- ot _ 1 =

a=1
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Back to Bernoulli

Let x be a Dirichlet character of conductor f = f,.

—Zan

a=1 n>0

e(a+x
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Back to Bernoulli

Let x be a Dirichlet character of conductor f = f,.

—Zan

a=1 n>0

f (a+x

Put
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Back to Bernoulli

We have:

® B, (x) € Q(x)[x], where Q(x) = Q(x(a),a € Z) is the
smallest field containing all the indicated roots of 1,
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Back to Bernoulli

We have:

® B, (x) € Q(x)[x], where Q(x) = Q(x(a),a € Z) is the
smallest field containing all the indicated roots of 1,

° Boy = %22:1 x(a) =0, for x # xo; it follows that
deg(Bny) < n,
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Back to Bernoulli

We have:

® B, (x) € Q(x)[x], where Q(x) = Q(x(a),a € Z) is the
smallest field containing all the indicated roots of 1,

° Boy = %22:1 x(a) =0, for x # xo; it follows that
deg(Bny) < n,

0 Bur(x) = Tio (7) Berx™
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Back to Bernoulli

Since
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Back to Bernoulli

Since

e(f—a+x)t

Fl—t.=x) = Y x(@ () —— = D x(-Dx(f-a)t-——
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Back to Bernoulli

Since
f et T
a=1 a=1
we have
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Back to Bernoulli

Since
f e—(a—x)t f
Fl=t=x) =Y _x(a) (=) —— = > _x(-1)x(f-a)t
a=1 a=1
we have
Fy(—t,—x) = x(=1)F(t,x), X # Xo,
and
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Back to Bernoulli

We have

Bn,x - Oa X 7& X0, n % 5)( (mOd 2)7

_Jo x(-1)=1
e {1 X(-1)=-1

where

Lecture 8 40/53



Back to Bernoulli

We can express these new numbers through classical Bernoulli
numbers.
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Back to Bernoulli
We can express these new numbers through classical Bernoulli

numbers. Starting with

f

Rt = 2 S x(@)F (L)

we obtain

f

Ba = 7 Y X()f"Bo(

a=1

a—f
f )
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Back to Bernoulli

Consider -
Snx(k) ==Y x(a)a", n>0,
a=1
k—1
Sa(k) := Z a".
a=1
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Back to Bernoulli

Consider -
Snx(k) ==Y x(a)a", n>0,
a=1
k—1
Sa(k) := Z a".
a=1
E.g.
k(k—1
51(k) = ( 5 )
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Back to Bernoulli

Consider -
Snx(k) ==Y x(a)a", n>0,
a=1
k—1
Sa(k) := Z a".
a=1
Eg.,
k(k—1

These were computed by Bernoulli, in closed form. Before that,
people published books (1), with tables of these numbers.
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Back to Bernoulli

Fx(t, X) - FX(t,X — f) = Z 3= 1fX(a)te(a+xff)t’
so that

Bhy(x) = Boy(x — f) = nz x(a)(a+x—f)" L

a=1
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Back to Bernoulli

Fx(t, X) - FX(t,X — f) = Z 3= 1fX(a)te(a+xff)t’
so that

Bhy(x) = Boy(x — f) = nz x(a)(a+x—f)" L

a=1

Now, replace n+— n+ 1, and sum over x = f,2f, ..., kf.
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Back to Bernoulli

We obtain

Sox(kf) =

2 (Bria k) — Byia(0))

n—+
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Back to Bernoulli

We obtain

Sox(kf) =

2 (Bria k) — Byia(0))

n—+
From this we can compute

By = lim S, (p""),
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Back to Bernoulli

We obtain

Sn,x(kf) = 1 (Bn+1,x(kf) - Bn+1,x(0))

n—+
From this we can compute

By = lim S, (p""),

and also
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Back to Bernoulli

We obtain

Sn,x(kf) = 1 (Bn+1,x(kf) - Bn+1,x(0))

n—+
From this we can compute

By = lim S, (p""),

and also
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Back to Bernoulli
We obtain

Sox(kf) =

= (Bria (k) = Bri11(0))

n—+
From this we can compute

By = lim S, (p""),

and also 1
S2(K) = —= (Basa(K) — Bay1(0))
B, = lim S,(p"),
In particular,
Su(K) = 5 (Bu(k) ~ B:(0))

Lecture 8

44 /53



Back to Bernoulli
We obtain

Sox(kf) =

7 (Borix(Kf) = Bnya,1(0))

n—+
From this we can compute

Box = hli—[go Sn,x(th)a

and also
Snlk) = i - (Brsa (k) = Bra(0))
B, = lim S,(p"),
In particular,
Si(k) = %(Bz(k) — B(0)) = % ((k2 k4 %) _ %) _

Lecture 8

k(k — 1).
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Generalized Kummer congruences

Let x be a Dirichlet character, and

w:(Z/pZ)* — C, p=>3.

n

Put x, = x-w™".
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Generalized Kummer congruences

Let x be a Dirichlet character, and
w:(Z/pZ)* — C, p=>3.

n

Put x, = x-w™
such that

. Then there exists a power series A= A, € K[[x]],

o K is a finite extension of Qp,
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Generalized Kummer congruences

Let x be a Dirichlet character, and
w:(Z/pZ)* — C, p=>3.

n

Put x, = x-w™
such that

. Then there exists a power series A= A, € K[[x]],

o K is a finite extension of Qp,

o _P_
@ the radius of convergence ry > pr-1
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Generalized Kummer congruences

Let x be a Dirichlet character, and
w:(Z/pZ)* — C, p=>3.

n

Put x, = x-w™
such that

. Then there exists a power series A= A, € K[[x]],

o K is a finite extension of Qp,

o _P_
@ the radius of convergence ry > pr-1
°

A(n) = (1 = xa(P)P" ) Bn .
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Let K/Q, be a finite extension.

«O> < Fr «=)r «=)» DA



Proof

Let K/Q, be a finite extension.

Let A, B € K|[[x]], with ra,rg > 0. Let {x,} be a sequence with
limx, = 0. Assume that A(x,) = B(x,) for all n.
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Proof

Let K/Q, be a finite extension.

Let A, B € K|[[x]], with ra,rg > 0. Let {x,} be a sequence with
limx, = 0. Assume that A(x,) = B(x,) for all n. Then

A=B.
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Proof

Let K/Q, be a finite extension.

Let A, B € K|[[x]], with ra,rg > 0. Let {x,} be a sequence with
limx, = 0. Assume that A(x,) = B(x,) for all n. Then

A=B.

Proof: Consider the difference A(x) — B(x) = >_ c,x", let c,, be the
first nonzero coefficient.
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Proof

Let K/Q, be a finite extension.

Let A, B € K|[[x]], with ra,rg > 0. Let {x,} be a sequence with
limx, = 0. Assume that A(x,) = B(x,) for all n. Then

A=B.

Proof: Consider the difference A(x) — B(x) = >_ c,x", let c,, be the
first nonzero coefficient. We have

_ 2 : n—np—1
- no - XI CnX 3 VX,'

O n>ng

bounded
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Put

[[All = sup(lanlp),

«O>» «F>r «=»r «=>» E A



Proof

Put
|All = sup(|anl,),

and let
Pk :={A € K[[x]] | [[All <oo}.
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Proof

Put
|All = sup(|anl,),

and let
Pk :={A € K[[x]] | [[All <oo}.

This is a norm and Pk is complete, i.e., a Banach algebra over the
local field K.
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Reminder
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Reminder
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Power series

Let 0 < r< |p|ﬁ and |¢,|, < Cr", Vn, and some C > 0.
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Power series

Let 0 < r< |p|ﬁ and |c,|, < Cr", Vn, and some C > 0. Then
there exists a unique A € Pk such that

a2 |P!p BT
e A(n) = by, for all n.
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Application
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Application

by := (1 = xa(P)P" 1) Bnx,

n

n

Cp = Z </) b;
i=0

So the basic estimate one has to show is:

|Cn‘p < |p_2f_1| ’ |P|g7 Vn
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50 /53



Analysis on the p-adics

We have looked at functions f : Z, — Q,.
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Analysis on the p-adics

We have looked at functions f : Z, — Q,. But we can also study
functions
f:Q,—C.
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Analysis on the p-adics

We have looked at functions f : Z, — Q,. But we can also study
functions
f:Q,—C.

Basic examples:

e characteristic functions xy of U := {a+ p"Z,},
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Analysis on the p-adics

We have looked at functions f : Z, — Q,. But we can also study
functions
f:Q,—C.

Basic examples:
e characteristic functions xy of U := {a+ p"Z,},
o |x|5, fors e C
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Integration

Now we can consider

/ F(x) d,

P
where dx, = p,, is the Haar measure, i.e., translation invariant
measure,
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Integration

Now we can consider

/ F(x) d,

P
where dx, = p,, is the Haar measure, i.e., translation invariant
measure, normalized by

dx, = 1.
Zp
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Basic computation

[ by o,

Qo

Lecture 8 53 /53



Basic computation

/ Xzp(x) - XI5 dxp = Zpin(kl) . / dx,

o n=>0 pP"Zp\p"1Zy

-5 b 51)1 (1_%)

n>0
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Basic computation

/ Xzp(x) - XI5 dxp = Zpin(kl) . / dx,

o n=>0 pP"Zp\p"1Zy

1 1 1 1
Sy (1) s ()
n>0 p p —p p
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Basic computation

/ Xzp(x) - XI5 dxp = Zpin(kl) . / dx,

o n=>0 pP"Zp\p"1Zy

T () e ()
n>0 P 1—p p

So we can formally write

H/ Xz, (%) - |x[5 7 dx, - H(l—%)_l.

p
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