Lecture 8

3

・ロト ・四ト ・ヨト ・ヨト

2

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

- *p*-adic measures
- Kummer congruences
- *p*-adic L-functions

イロト イポト イヨト イヨト

Measure and integration

Let X, \mathcal{T} be topological spaces.

イロト イボト イヨト イヨト

Measure and integration

Let X, \mathcal{T} be topological spaces. A map

$$f: X \to \mathcal{T}$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U := U_x \subset X$ such that the restriction $f|_U$ is constant.

Measure and integration

Let X, \mathcal{T} be topological spaces. A map

$$f: X \to \mathcal{T}$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U := U_x \subset X$ such that the restriction $f|_U$ is constant. **Example:** $X = \mathbb{R}, \mathbb{C}$. Locally constant implies constant. Let X, \mathcal{T} be topological spaces. A map

$$f: X \to \mathcal{T}$$

is called locally constant if for all $x \in X$ there exists an open neighborhood $U := U_x \subset X$ such that the restriction $f|_U$ is constant. **Example:** $X = \mathbb{R}, \mathbb{C}$. Locally constant implies constant.

Example: $X = \mathbb{Z}_p$, $\mathcal{T} = \mathbb{Q}_p$. Locally constant implies that f is a finite linear combination of characteristic functions of compact open subsets of the form

$$\{a+p^N\mathbb{Z}_p\}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Recall that compact open subsets of \mathbb{Z}_p have the form $a + p^n \mathbb{Z}_p$.

(日)

Recall that compact open subsets of \mathbb{Z}_p have the form $a + p^n \mathbb{Z}_p$.

A *p*-adic distribution μ on $X \subset \mathbb{Z}_p$ is an additive map from the set of compact open subsets $Y \subseteq X$ to \mathbb{Q}_p .

く 何 ト く ヨ ト く ヨ ト

Recall that compact open subsets of \mathbb{Z}_p have the form $a + p^n \mathbb{Z}_p$.

A *p*-adic distribution μ on $X \subset \mathbb{Z}_p$ is an additive map from the set of compact open subsets $Y \subseteq X$ to \mathbb{Q}_p .

For all $a + p^N \mathbb{Z}_p \subset X$ one has $\mu(a + p^N \mathbb{Z}_p) = \sum_{b=0}^{p-1} \mu(a + bp^N + p^{N+1} \mathbb{Z}_p).$

Recall that compact open subsets of \mathbb{Z}_p have the form $a + p^n \mathbb{Z}_p$.

A *p*-adic distribution μ on $X \subset \mathbb{Z}_p$ is an additive map from the set of compact open subsets $Y \subseteq X$ to \mathbb{Q}_p .

For all $a + p^N \mathbb{Z}_p \subset X$ one has

$$\mu(a+p^N\mathbb{Z}_p)=\sum_{b=0}^{p-1}\mu(a+bp^N+p^{N+1}\mathbb{Z}_p).$$

Conversely, every such map defines a unique distribution.

(4回) (4回) (4回) (回)

Recall that compact open subsets of \mathbb{Z}_p have the form $a + p^n \mathbb{Z}_p$.

A *p*-adic distribution μ on $X \subset \mathbb{Z}_p$ is an additive map from the set of compact open subsets $Y \subseteq X$ to \mathbb{Q}_p .

For all $a + p^N \mathbb{Z}_p \subset X$ one has

$$\mu(a+p^N\mathbb{Z}_p)=\sum_{b=0}^{p-1}\mu(a+bp^N+p^{N+1}\mathbb{Z}_p).$$

Conversely, every such map defines a unique distribution.

This is called the distribution relation.

Assume we have a distribution of the form

$$\mu_k(a+p^N\mathbb{Z}_p)=p^{N(k-1)}f_k(\frac{a}{p^N}), \quad a=0,\ldots,p^N-1,$$

where f_k is a (monic) polynomial of degree k.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume we have a distribution of the form

$$\mu_k(a+p^N\mathbb{Z}_p)=p^{N(k-1)}f_k(\frac{a}{p^N}), \quad a=0,\ldots,p^N-1,$$

where f_k is a (monic) polynomial of degree k. The distribution relation implies that

$$f_k(x) = p^{k-1} \sum_{a=0}^{p-1} f_k(\frac{x+a}{p})$$

A B A A B A

There is a unique such polynomial, for all $k \ge 1$, namely, the Bernoulli polynomial $B_k(x)$, defined by

$$\frac{te^{xt}}{e^t-1} = \sum_{k\geq 0} B_k(x) \frac{t^k}{k!}$$

A B A A B A

There is a unique such polynomial, for all $k \ge 1$, namely, the Bernoulli polynomial $B_k(x)$, defined by

$$\frac{te^{xt}}{e^t-1} = \sum_{k\geq 0} B_k(x) \frac{t^k}{k!}$$

Recall, that

$$B_0(x) = 1, \quad B_1(x) = x - 1/2, \quad B_2(x) = x^2 - x + 1/6, \dots,$$

 $B_k(x) = x^k - \frac{k}{2}x^{k-1}\cdots$

A B b A B b

Thus we have

$$\mu_{B,k}(a+p^N\mathbb{Z}_p):=p^{N(k-1)}B_k(\frac{a}{p^N})$$

э

イロト イヨト イヨト イヨト

Thus we have

۲

$$\mu_{B,k}(a+p^N\mathbb{Z}_p):=p^{N(k-1)}B_k(\frac{a}{p^N})$$

 $\mu_{B,0} = \mu_{Haar},$ invariant under translations

 $\mu_{B,1} = \mu_{Mazur}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A p-adic measure is a distribution μ such that there exists a B>0 with

$$|\mu(U)|_p \leq B$$

for all compact open $U \subset X$.

• • = • • = •

Let μ be a *p*-adic measure on \mathbb{Z}_p and $f : \mathbb{Z}_p \to \mathbb{Q}_p$ a continuous function.

< 回 > < 三 > < 三 >

Let μ be a p-adic measure on \mathbb{Z}_p and $f:\mathbb{Z}_p\to\mathbb{Q}_p$ a continuous function.Let

$$S_N := \sum_{0 \le a \le p^N - 1} f(x_{a,N}) \mu(a + p^N \mathbb{Z}_p),$$

where $x_{a,N} \in a + p^N \mathbb{Z}_p$.

く 何 ト く ヨ ト く ヨ ト

Let μ be a p-adic measure on \mathbb{Z}_p and $f:\mathbb{Z}_p\to\mathbb{Q}_p$ a continuous function.Let

$$S_N := \sum_{0 \le a \le p^N - 1} f(x_{a,N}) \mu(a + p^N \mathbb{Z}_p),$$

where $x_{a,N} \in a + p^N \mathbb{Z}_p$. Then there exists a limit

$$\lim_{N\to\infty}S_N=:\int_{\mathbb{Z}_p}f\,d\mu$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof: Note that

$$a + p^N \mathbb{Z}_p = \sqcup_{0 \leq \tilde{a} \leq p^M - 1, \tilde{a} \equiv a \pmod{p^N}} \left(\tilde{a} + p^M \mathbb{Z}_p \right)$$

3

<ロト <回ト < 回ト < 回ト -

Proof: Note that

$$a + p^N \mathbb{Z}_p = \sqcup_{0 \leq ilde{a} \leq p^M - 1, ilde{a} \equiv a \pmod{p^N}} \, \left(ilde{a} + p^M \mathbb{Z}_p
ight)$$

We have

$$|S_N - S_M|_p = |\sum_{0 \le a \le p^M - 1} \left(\underbrace{f(x_{\tilde{a},N}) - f(x_{a,M})}_{\le \epsilon} \right) \mu(a + p^M \mathbb{Z}_p)|_p \le \epsilon \cdot B$$

(since \mathbb{Z}_p is compact, we have uniform continuity).

э

(日)

Proof: Note that

$$a + p^N \mathbb{Z}_p = \sqcup_{0 \leq \widetilde{a} \leq p^M - 1, \widetilde{a} \equiv a \pmod{p^N}} \left(\widetilde{a} + p^M \mathbb{Z}_p
ight)$$

We have

$$|S_N - S_M|_p = |\sum_{0 \le a \le p^M - 1} \left(\underbrace{f(x_{\tilde{a},N}) - f(x_{a,M})}_{\le \epsilon} \right) \mu(a + p^M \mathbb{Z}_p)|_p \le \epsilon \cdot B$$

(since \mathbb{Z}_p is compact, we have uniform continuity). Thus, we have a Cauchy sequence, and a limit in \mathbb{Q}_p , independent of the choice of $x_{\tilde{a},N}$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$\mu_{Haar}(p^N \mathbb{Z}_p) = rac{1}{p^N} + ext{translation invariance, i.e.,}$$
 $\mu_{Haar}(a + p^N \mathbb{Z}_p) = rac{1}{p^N}, \quad orall a.$

イロト イ部ト イヨト イヨト 一日

$$\mu_{Haar}(p^N \mathbb{Z}_p) = rac{1}{p^N} + ext{translation invariance, i.e.,}$$
 $\mu_{Haar}(a + p^N \mathbb{Z}_p) = rac{1}{p^N}, \quad \forall a.$

This satisfies the distribution relation, i.e., μ_{Haar} is a distribution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Problems: Let

$$\begin{array}{rccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ & x & \mapsto & x \end{array}$$

3

イロト イヨト イヨト イヨト

Problems: Let

$$\begin{array}{rccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ & x & \mapsto & x \end{array}$$

Write

$$\mathbb{Z}_p = \sqcup_{a=0}^{p^N-1}(a+p^N\mathbb{Z}_p)$$

3

イロン イ理 とく ヨン イ ヨン

Problems: Let

$$\begin{array}{rccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ & x & \mapsto & x \end{array}$$

Write

$$\mathbb{Z}_p = \sqcup_{a=0}^{p^N-1} (a + p^N \mathbb{Z}_p)$$

$$S_{N,\{x_{a,N}\}} = \sum_{a=0}^{p^{N}-1} f(x_{a,N}) \mu(a+p^{N}\mathbb{Z}_{p}) = \sum_{a} \frac{x_{a,N}}{p^{N}}$$

3

イロン イ理 とく ヨン イ ヨン

For $x_{a,N} := a \in a + p^N \mathbb{Z}_p$ we get

$$\frac{1}{p^{N}}\sum_{a=0}^{p^{N}-1}a = \frac{(p^{N}-1)p^{N}}{2} \cdot \frac{1}{p^{N}} = \frac{p^{N}-1}{2} \to -\frac{1}{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $x_{a,N} := a \in a + p^N \mathbb{Z}_p$ we get

$$\frac{1}{p^{N}}\sum_{a=0}^{p^{N}-1}a = \frac{(p^{N}-1)p^{N}}{2} \cdot \frac{1}{p^{N}} = \frac{p^{N}-1}{2} \to -\frac{1}{2}$$

For one *a*, choose $x_{a,N} := a + a_0 p^N \in a + p^N \mathbb{Z}_p$, with some $a_0 \neq 0$. Then we have

$$\left(\frac{1}{p^{N}}\sum_{a=0}^{p^{N}-1}a\right) + a_{0}p^{N}\cdot\frac{1}{p^{N}} = \frac{p^{N}-1}{2} + a_{0} \to -\frac{1}{2} + a_{0}$$

<ロト <問ト < 注ト < 注ト = 注

For $x_{a,N} := a \in a + p^N \mathbb{Z}_p$ we get

$$\frac{1}{p^{N}}\sum_{a=0}^{p^{N}-1}a = \frac{(p^{N}-1)p^{N}}{2} \cdot \frac{1}{p^{N}} = \frac{p^{N}-1}{2} \to -\frac{1}{2}$$

For one *a*, choose $x_{a,N} := a + a_0 p^N \in a + p^N \mathbb{Z}_p$, with some $a_0 \neq 0$. Then we have

$$\left(rac{1}{p^N}\sum_{a=0}^{p^N-1}a
ight)+a_0p^N\cdotrac{1}{p^N}=rac{p^N-1}{2}+a_0 o -rac{1}{2}+a_0.$$

So even simple continuous functions f are not integrable on the compact \mathbb{Z}_{p} .

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

$$\mu_{B,k}(a+p^N\mathbb{Z}_p):=p^{N(k-1)}B_k(\frac{a}{p^N})$$

3

イロト イヨト イヨト イヨト

$$\mu_{B,k}(\boldsymbol{a} + \boldsymbol{p}^N \mathbb{Z}_{\boldsymbol{p}}) := \boldsymbol{p}^{N(k-1)} B_k(\frac{\boldsymbol{a}}{\boldsymbol{p}^N})$$

As we saw, these are distributions.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$$\mu_{B,k}(a+p^N\mathbb{Z}_p):=p^{N(k-1)}B_k(\frac{a}{p^N})$$

As we saw, these are distributions. There is a way to regularize them, i.e., turn them into measures.

• • = • • = •
$$\mu_{B,k}(a+p^N\mathbb{Z}_p):=p^{N(k-1)}B_k(\frac{a}{p^N})$$

As we saw, these are distributions. There is a way to regularize them, i.e., turn them into measures.

For a fixed $\alpha \in \mathbb{Q} \cap \mathbb{Z}_p^{\times}$, define

$$\mu_{k,\alpha}(U) := \mu_{B,k}(U) - \frac{\mu_{B,k}(\alpha U)}{\alpha^k}$$

• • = • • = •

Theorem

 $\mu_{k,\alpha}$ is a measure for all $k \ge 1$.

æ

<ロト <回ト < 回ト < 回ト < 回ト -

Theorem

 $\mu_{k,\alpha}$ is a measure for all $k \geq 1$.

Proof: First, we show that

$$|\mu_{1,\alpha}(\boldsymbol{a}+\boldsymbol{p}^{N}\mathbb{Z}_{\boldsymbol{p}})|_{\boldsymbol{p}}\leq 1, \quad \forall N\geq 1.$$

Indeed, by definition,

$$\mu_{1,\alpha}(\mathbf{a} + \mathbf{p}^{N}\mathbb{Z}_{\mathbf{p}}) = \frac{\mathbf{a}}{\mathbf{p}^{N}} - \frac{1}{2} - \frac{1}{\alpha}\left(\frac{\overline{\alpha \mathbf{a}}}{\mathbf{p}^{N}} - \frac{1}{2}\right)$$
$$= \frac{1/\alpha - 1}{2} + \frac{\mathbf{a}}{\mathbf{p}^{N}} - \frac{1}{\alpha}\left(\frac{\alpha \mathbf{a}}{\mathbf{p}^{N}} - \left[\frac{\alpha \mathbf{a}}{\mathbf{p}^{N}}\right]\right)$$
$$= \frac{1/\alpha - 1}{2} + \underbrace{\frac{1}{\alpha}\left[\frac{\alpha \mathbf{a}}{\mathbf{p}^{N}}\right]}_{\in\mathbb{Z}_{\mathbf{p}}}$$

A B M A B M

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_p^{\times}$, the element is in \mathbb{Z}_p .

æ

イロン イ理 とくほとう ほんし

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_p^{\times}$, the element is in \mathbb{Z}_p .

Since any U is a finite (disjoint) union of sets of the form $a_i + p^{N_i}\mathbb{Z}_p$,

 $|\mu_{1,\alpha}(U)|_{p} \leq \max \dots$

and we obtain the result.

<ロト <問ト < 注ト < 注ト = 注

For $\alpha \in \mathbb{Q} \cap \mathbb{Z}_p^{\times}$, the element is in \mathbb{Z}_p .

Since any U is a finite (disjoint) union of sets of the form $a_i + p^{N_i} \mathbb{Z}_p$,

$$|\mu_{1,lpha}(U)|_{p} \leq \max \dots$$

and we obtain the result.

Thus, $\mu_{1,\alpha}$ is a measure on \mathbb{Z}_p .

- 本間 ト イヨ ト イヨ ト 三 ヨ

Now we treat $k \geq 2$.

æ

イロト イヨト イヨト イヨト

Now we treat $k \ge 2$. Let d_k be the lcm of denominators of coefficients of $B_k(x)$, so that $d_k B_k(x) \in \mathbb{Z}[x]$.

Now we treat $k \ge 2$. Let d_k be the lcm of denominators of coefficients of $B_k(x)$, so that $d_k B_k(x) \in \mathbb{Z}[x]$.

$$d_1 = 2, \quad d_2 = 6, \quad d_3 = 2, \ldots$$

Now we treat $k \ge 2$. Let d_k be the lcm of denominators of coefficients of $B_k(x)$, so that $d_k B_k(x) \in \mathbb{Z}[x]$.

$$d_1 = 2, \quad d_2 = 6, \quad d_3 = 2, \ldots$$

We will show that

$$|\mu_{k,lpha}(a+p^{N}\mathbb{Z}_{p})|_{p}\leq \max\left(rac{1}{|d_{k}|_{p}},|\mu_{1,lpha}(a+p^{N}\mathbb{Z}_{p})|_{p}
ight)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall,

$$B_k(x) = x^k - \frac{k}{2}x^{k-1} + \cdots$$

2

イロト イヨト イヨト イヨト

We compute $d_k \mu_{k,\alpha}(a + p^N \mathbb{Z}_p)$ as follows:

$$= d_k p^{N(k-1)} \left(B_k(\frac{a}{p^N}) - \frac{1}{\alpha^k} B_k(\frac{\overline{\alpha a}}{p^N}) \right)$$

3

イロト イヨト イヨト イヨト

We compute $d_k \mu_{k,\alpha}(a + p^N \mathbb{Z}_p)$ as follows:

$$= d_k p^{N(k-1)} \left(B_k(\frac{a}{p^N}) - \frac{1}{\alpha^k} B_k(\frac{\overline{\alpha a}}{p^N}) \right)$$
$$\underset{(\text{mod } p^N)}{\equiv} d_k p^{N(k-1)} \left(\left(\frac{a}{p^N}\right)^k - \frac{1}{\alpha^k} \left(\frac{\overline{\alpha a}}{p^N}\right)^k - \frac{k}{2} \left(\frac{a^{k-1}}{p^{N(k-1)}} - \frac{1}{\alpha^k} \left(\frac{\overline{\alpha a}}{p^N}\right)^{k-1} \right)$$

э

(日)

We compute $d_k \mu_{k,\alpha}(a + p^N \mathbb{Z}_p)$ as follows:

$$= d_k p^{N(k-1)} \left(B_k \left(\frac{a}{p^N} \right) - \frac{1}{\alpha^k} B_k \left(\frac{\overline{\alpha a}}{p^N} \right) \right)$$
$$\underset{(\text{mod } p^N)}{=} d_k p^{N(k-1)} \left(\left(\frac{a}{p^N} \right)^k - \frac{1}{\alpha^k} \left(\frac{\overline{\alpha a}}{p^N} \right)^k - \frac{k}{2} \left(\frac{a^{k-1}}{p^{N(k-1)}} - \frac{1}{\alpha^k} \left(\frac{\overline{\alpha a}}{p^N} \right)^{k-1} \right)$$

Writing

$$\frac{\overline{\alpha a}}{p^{N}} = \frac{\alpha a}{p^{N}} - [\frac{\alpha a}{p^{N}}],$$

substituting, and simplifying, we obtain:

$$\equiv d_k \cdot k \cdot a^{k-1} \left(\frac{1}{\alpha} [\frac{\alpha a}{p^N}] + \frac{1/\alpha - 1}{2} \right) = d_k \cdot k \cdot a^{k-1} \mu_{1,\alpha} (a + p^N \mathbb{Z}_p)$$

3

Over \mathbb{R} :

$$\frac{dx^k}{dx} = kx^{k-1}, \quad \mu_k[a, b] = b^k - a^k$$

2

Over \mathbb{R} :

$$\frac{dx^{k}}{dx} = kx^{k-1}, \quad \mu_{k}[a, b] = b^{k} - a^{k}$$
$$\lim_{b \to a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])} = k \cdot a^{k-1}$$

2

Over \mathbb{R} :

$$\frac{dx^{k}}{dx} = kx^{k-1}, \quad \mu_{k}[a, b] = b^{k} - a^{k}$$
$$\lim_{b \to a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])} = k \cdot a^{k-1}$$

Over \mathbb{Q}_p :

$$\frac{\mu_k(a+p^N\mathbb{Z}_p)}{\mu_1(a+p^N\mathbb{Z}_p)}=k\cdot a^{k-1}$$

2

イロト イヨト イヨト イヨト

Over \mathbb{R} :

$$\frac{dx^{k}}{dx} = kx^{k-1}, \quad \mu_{k}[a, b] = b^{k} - a^{k}$$
$$\lim_{b \to a} \frac{\mu_{k}([a, b])}{\mu_{1}([a, b])} = k \cdot a^{k-1}$$

Over \mathbb{Q}_p :

$$\frac{\mu_k(a+p^N\mathbb{Z}_p)}{\mu_1(a+p^N\mathbb{Z}_p)} = k \cdot a^{k-1}$$
$$dx^k \iff \mu_{k,\alpha}$$

2

イロン イ理 とくほとう ほんし

Consider

 $\begin{array}{cccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ x & \mapsto x^{k-1} \end{array}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Consider

$$\begin{array}{cccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ x & \mapsto x^{k-1} \end{array}$$

Let $X \subset \mathbb{Z}_p$ be a compact open subset. Then

$$\int_{X} \mu_{k,\alpha} = k \cdot \int_{X} f \, \mu_{1,\alpha}$$

э

イロト イポト イヨト イヨト

Consider

$$\begin{array}{cccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ x & \mapsto x^{k-1} \end{array}$$

Let $X \subset \mathbb{Z}_p$ be a compact open subset. Then

$$\int_X \mu_{k,\alpha} = k \cdot \int_X f \, \mu_{1,\alpha}$$

In particular,

$$\frac{1}{k}\int_{\mathbb{Z}_{\rho}^{\times}}\mu_{k,\alpha}=\int_{\mathbb{Z}_{\rho}^{\times}}x^{k-1}\mu_{1,\alpha}.$$

э

- (四) - (三) - ((-)) - (

Consider

$$\begin{array}{cccc} f:\mathbb{Z}_p & \to & \mathbb{Z}_p \\ x & \mapsto x^{k-1} \end{array}$$

Let $X \subset \mathbb{Z}_p$ be a compact open subset. Then

$$\int_X \mu_{k,\alpha} = k \cdot \int_X f \, \mu_{1,\alpha}$$

In particular,

$$\frac{1}{k}\int_{\mathbb{Z}_{\rho}^{\times}}\mu_{k,\alpha}=\int_{\mathbb{Z}_{\rho}^{\times}}x^{k-1}\mu_{1,\alpha}.$$

Proof: It suffices to consider $a + p^N \mathbb{Z}_p$. We have

$$\mu_{k,\alpha}(\mathbf{a} + \mathbf{p}^N \mathbb{Z}_p) \equiv k \cdot \mathbf{a}^{k-1} \mu_{1,\alpha}(\mathbf{a} + \mathbf{p}^N \mathbb{Z}_p) \pmod{\mathbf{p}^{N-\nu_p(d_k)}},$$

take $N \to \infty$.

(本語) ト (本語) ト (本語) ト

$$\begin{split} &\int_{\mathbb{Z}_p^{\times}} \mu_{k,\alpha} = \\ &= \mu_{k,\alpha}(\mathbb{Z}_p) - \mu_{k,\alpha}(p\mathbb{Z}_p) \\ &= \left(\mu_{B,k}(\mathbb{Z}_p) - \frac{\mu_{B,k}(\alpha\mathbb{Z}_p)}{\alpha^k}\right) - \left(\mu_{B,k}(p\mathbb{Z}_p) - \frac{\mu_{B,k}(\alpha p\mathbb{Z}_p)}{\alpha^k}\right) \\ &= (B_k - \frac{B_k}{\alpha^k}) - (B_k \cdot p^{k-1} - \frac{B_k p^{k-1}}{\alpha^k}) \\ &= B_k(1 - \frac{1}{\alpha^k})(1 - p^{k-1}) \end{split}$$

3

イロト イヨト イヨト イヨト

$$\begin{split} &\int_{\mathbb{Z}_p^{\times}} \mu_{k,\alpha} = \\ &= \mu_{k,\alpha}(\mathbb{Z}_p) - \mu_{k,\alpha}(p\mathbb{Z}_p) \\ &= \left(\mu_{B,k}(\mathbb{Z}_p) - \frac{\mu_{B,k}(\alpha\mathbb{Z}_p)}{\alpha^k} \right) - \left(\mu_{B,k}(p\mathbb{Z}_p) - \frac{\mu_{B,k}(\alpha p\mathbb{Z}_p)}{\alpha^k} \right) \\ &= (B_k - \frac{B_k}{\alpha^k}) - (B_k \cdot p^{k-1} - \frac{B_k p^{k-1}}{\alpha^k}) \\ &= B_k(1 - \frac{1}{\alpha^k})(1 - p^{k-1}) \end{split}$$

Thus,

$$(1-p^{k-1})(-\frac{B_k}{k}) = \frac{1}{\alpha^{-k}-1} \cdot \int_{\mathbb{Z}_p^{\times}} x^{k-1} \mu_{1,\alpha}$$

Back to interpolation

Let $S := \{s \equiv s_0 \pmod{(p-1)}\} \subset \mathbb{Z}_p$. It is dense.

æ

イロト 不得 トイヨト イヨト

Let $S := \{s \equiv s_0 \pmod{(p-1)}\} \subset \mathbb{Z}_p$. It is dense.

For all
$$s, s' \in S$$
 with $|s - s'|_p \to 0$ we have $|n^s - n^{s'}|_p \to 0$.

Proof: already did this.

э

Let $S := \{s \equiv s_0 \pmod{(p-1)}\} \subset \mathbb{Z}_p$. It is dense.

For all
$$s,s' \in S$$
 with $|s-s'|_p
ightarrow 0$ we have $|n^s - n^{s'}|_p
ightarrow 0.$

Proof: already did this.

Thus there is a continuous function that interpolates n^s .

- 4 回 ト 4 三 ト 4 三 ト

Interpolation

For all $k \equiv k' \pmod{(p-1)p^N}$ we have

$$|x^{k'-1}-x^{k-1}|_p\leq rac{1}{p^{N+1}},\quad \forall x\in\mathbb{Z}_p^{ imes}.$$

2

イロト イヨト イヨト イヨト

Interpolation

For all $k \equiv k' \pmod{(p-1)p^N}$ we have

$$|x^{k'-1}-x^{k-1}|_{p}\leq rac{1}{p^{N+1}},\quad \forall x\in\mathbb{Z}_{p}^{ imes}.$$

It follows that

$$|\int_{\mathbb{Z}_p^{ imes}} x^{k'-1} \mu_{1,lpha} - \int_{\mathbb{Z}_p^{ imes}} x^{k-1} \mu_{1,lpha}| \leq rac{1}{p^{N+1}}.$$

3

イロン イ理 とくほとう ほんし

Interpolation

For all $k \equiv k' \pmod{(p-1)p^N}$ we have

$$|x^{k'-1}-x^{k-1}|_p\leq rac{1}{p^{N+1}},\quad \forall x\in\mathbb{Z}_p^{ imes}.$$

It follows that

$$|\int_{\mathbb{Z}_{p}^{\times}} x^{k'-1} \mu_{1,\alpha} - \int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \mu_{1,\alpha}| \leq \frac{1}{p^{N+1}}.$$

Thus,

$$k\mapsto \int_{\mathbb{Z}_p^{ imes}} x^{k-1} \mu_{1,lpha} = rac{1}{k} \int_{\mathbb{Z}_p^{ imes}} 1 \mu_{1,lpha}$$

is interpolates to a continuous function on \mathbb{Z}_p .

3

イロン イヨン イヨン

Theorem (Kummer / Clausen-von Staudt)

$$p-1 \nmid k \Rightarrow |\frac{B_k}{k}|_p \le 1$$

æ

<<p>・日本

1

Theorem (Kummer / Clausen-von Staudt)

$$p - 1 \nmid k \Rightarrow |\frac{B_k}{k}|_p \le 1$$

$$p - 1 \nmid k \text{ and } k \equiv k' \pmod{(p - 1)p^N} \Rightarrow$$

$$(1 - p^{k-1})\frac{B_k}{k} \equiv (1 - p^{k'-1})\frac{B_{k'}}{k'} \pmod{p^{N+1}}$$

æ

<<p>・日本

Theorem (Kummer / Clausen-von Staudt)

•
$$p-1 \nmid k \Rightarrow |\frac{B_k}{k}|_p \leq 1$$

• $p-1 \nmid k \text{ and } k \equiv k' \pmod{(p-1)p^N} \Rightarrow$

• $(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \pmod{p^{N+1}}$

• $p > 2, (p-1) \mid k \Rightarrow pB_k \equiv -1 \pmod{p}$

個 と くき とくき とう

Kummer congruences

Proof: We will assume p > 2. Let α be a primitive root modulo p (generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$).

(日)

Kummer congruences

Proof: We will assume p > 2. Let α be a primitive root modulo p (generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$). For k = 1 we have

$$|\frac{B_1}{1}|_p = |-\frac{1}{2}|_p = 1$$

and we are done.

Kummer congruences

Proof: We will assume p > 2. Let α be a primitive root modulo p (generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$). For k = 1 we have

$$|\frac{B_1}{1}|_p = |-\frac{1}{2}|_p = 1$$

and we are done. For $k \ge 2$, we have

$$egin{aligned} &|rac{B_k}{k}|_{m{p}} = |rac{1}{lpha^k - 1}|_{m{p}} \cdot |rac{1}{(1 - p^{k - 1})}|_{m{p}} \cdot |\int_{\mathbb{Z}_p^{ imes}} x^{k - 1} \mu_{1, lpha}|_{m{p}} \ &|\int_{\mathbb{Z}_p^{ imes}} x^{k - 1} \mu_{1, lpha}|_{m{p}} \leq 1. \end{aligned}$$
Proof: We will assume p > 2. Let α be a primitive root modulo p (generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$). For k = 1 we have

$$|\frac{B_1}{1}|_p = |-\frac{1}{2}|_p = 1$$

and we are done. For $k \ge 2$, we have

$$egin{aligned} &|rac{B_k}{k}|_{\mathcal{P}} = |rac{1}{lpha^k - 1}|_{\mathcal{P}} \cdot |rac{1}{(1 - \mathcal{P}^{k - 1})}|_{\mathcal{P}} \cdot |\int_{\mathbb{Z}_{\mathcal{P}}^{ imes}} x^{k - 1} \mu_{1, lpha}|_{\mathcal{P}} \ &|\int_{\mathbb{Z}_{\mathcal{P}}^{ imes}} x^{k - 1} \mu_{1, lpha}|_{\mathcal{P}} \leq 1. \end{aligned}$$

This proves the first point.

To show the second point, it suffices to establish

$$\frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_p^{\times}}x^{k-1}\mu_{1,\alpha}\equiv \frac{1}{\alpha^{-k'}-1}\int_{\mathbb{Z}_p^{\times}}x^{k'-1}\mu_{1,\alpha} \pmod{p^{N+1}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

To show the second point, it suffices to establish

$$\frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_p^{\times}}x^{k-1}\mu_{1,\alpha}\equiv \frac{1}{\alpha^{-k'}-1}\int_{\mathbb{Z}_p^{\times}}x^{k'-1}\mu_{1,\alpha} \pmod{p^{N+1}}$$

With our assumptions, we have

•
$$(\alpha^{-k} - 1)^{-1} \equiv (\alpha^{-k'} - 1)^{-1} \pmod{p^{N+1}}$$

 $\alpha^k \equiv \alpha^{k'} \pmod{p^{N+1}}$

イロト イボト イヨト イヨト

To show the second point, it suffices to establish

$$\frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_p^{\times}}x^{k-1}\mu_{1,\alpha}\equiv\frac{1}{\alpha^{-k'}-1}\int_{\mathbb{Z}_p^{\times}}x^{k'-1}\mu_{1,\alpha}\pmod{p^{N+1}}$$

With our assumptions, we have

•
$$(\alpha^{-k} - 1)^{-1} \equiv (\alpha^{-k'} - 1)^{-1} \pmod{p^{N+1}}$$

 $\alpha^k \equiv \alpha^{k'} \pmod{p^{N+1}}$

•
$$x^{k-1} \equiv x^{k'-1} \pmod{p^{N+1}}$$

イロト 不得下 イヨト イヨト

To show the second point, it suffices to establish

$$\frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_p^{\times}}x^{k-1}\mu_{1,\alpha}\equiv\frac{1}{\alpha^{-k'}-1}\int_{\mathbb{Z}_p^{\times}}x^{k'-1}\mu_{1,\alpha}\pmod{p^{N+1}}$$

With our assumptions, we have

•
$$(\alpha^{-k} - 1)^{-1} \equiv (\alpha^{-k'} - 1)^{-1} \pmod{p^{N+1}}$$

 $\alpha^k \equiv \alpha^{k'} \pmod{p^{N+1}}$

•
$$x^{k-1} \equiv x^{k'-1} \pmod{p^{N+1}}$$

• same for the integral.

• • = • • = •

To prove the third point, put $\alpha = p + 1$. Then

$$pB_k = -kp(-rac{B_k}{k}) = rac{-kp}{lpha^{-k}-1}(1-p^{k-1})\int_{\mathbb{Z}_p^{\times}} x^{k-1}\mu_{1,\alpha}$$

э

イロト イポト イヨト イヨト

To prove the third point, put $\alpha = p + 1$. Then

$$pB_k = -kp(-\frac{B_k}{k}) = \frac{-kp}{\alpha^{-k}-1}(1-p^{k-1})\int_{\mathbb{Z}_p^{\times}} x^{k-1}\mu_{1,\alpha}$$

Let $d = \nu_p(k)$. Then

$$(\alpha^{-k}-1) = (1+p)^{-k}-1 \equiv -kp \pmod{p^{d+2}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To prove the third point, put $\alpha = p + 1$. Then

$$pB_k = -kp(-\frac{B_k}{k}) = \frac{-kp}{\alpha^{-k}-1}(1-p^{k-1})\int_{\mathbb{Z}_p^{\times}} x^{k-1}\mu_{1,\alpha}$$

Let $d = \nu_p(k)$. Then

$$(\alpha^{-k} - 1) = (1 + p)^{-k} - 1 \equiv -kp \pmod{p^{d+2}}$$

We have

•
$$(\alpha^{-k}-1) = (1+p)^{-k}-1 \equiv -kp \pmod{p^{\nu_p(d)+2}}$$
, thus
 $1 \equiv \frac{-kp}{\alpha^{-k}-1} \pmod{p}$

12

イロト 不得 トイヨト イヨト

To prove the third point, put $\alpha = p + 1$. Then

$$pB_k = -kp(-\frac{B_k}{k}) = \frac{-kp}{\alpha^{-k}-1}(1-p^{k-1})\int_{\mathbb{Z}_p^{\times}} x^{k-1}\mu_{1,\alpha}$$

Let $d = \nu_p(k)$. Then

$$(\alpha^{-k} - 1) = (1 + p)^{-k} - 1 \equiv -kp \pmod{p^{d+2}}$$

We have

•
$$(\alpha^{-k}-1) = (1+p)^{-k}-1 \equiv -kp \pmod{p^{\nu_p(d)+2}}$$
, thus
 $1 \equiv \frac{-kp}{\alpha^{-k}-1} \pmod{p}$

$$(1-p^{k-1}) \equiv 1 \pmod{p}$$

Since $(p-1) \mid k$, we have

$$x^{k-1} \equiv x^{-1} \pmod{p}$$

Then

$$\rho B_k \equiv \int_{\mathbb{Z}_p^{\times}} x^{k-1} \mu_{1,\alpha} \equiv \int_{\mathbb{Z}_p^{\times}} x^{-1} \mu_{1,\alpha}$$

æ

イロト イヨト イヨト イヨト

Since $(p-1) \mid k$, we have

$$x^{k-1} \equiv x^{-1} \pmod{p}$$

Then

$$pB_k \equiv \int_{\mathbb{Z}_p^{\times}} x^{k-1} \mu_{1,\alpha} \equiv \int_{\mathbb{Z}_p^{\times}} x^{-1} \mu_{1,\alpha} \equiv -1 \qquad (\text{mod } p),$$

the last congruence by direct computation.

æ

イロト 不得 トイヨト イヨト

IRREGULAR PRIMES TO TWO BILLION

WILLIAM HART, DAVID HARVEY, AND WILSON ONG

ABSTRACT. We compute all irregular primes less than $2^{31} = 2\,147\,483\,648$. We verify the Kummer–Vandiver conjecture for each of these primes, and we check that the *p*-part of the class group of $\mathbf{Q}(\zeta_p)$ has the simplest possible structure consistent with the index of irregularity of *p*. Our method for computing the irregular indices saves a constant factor in time relative to previous methods, by adapting Rader's algorithm for evaluating discrete Fourier transforms.

1. INTRODUCTION AND SUMMARY OF RESULTS

For each of the 105 097 564 odd primes less than $2^{31} = 2147483648$, we performed the following tasks:

(1) We computed the *irregular indices* for p, that is, the integers $r \in \{2, 4, \ldots, p-3\}$ for which $B_r = 0 \pmod{p}$, where B_r is the r-th Bernoulli number. A pair (p, r), with r as above, is called an *irregular pair*, and such an integer r is called an *irregular index* for p. The number of such r is called the *index of irregularity* of p, denoted i_p . A prime p is called *regular* if $i_p = 0$, and *irregular* if $i_p > 0$.

The total running time of our computation was approximately 8.6 million core-hours (almost 1000 core-years).

• • = • • = •

The total running time of our computation was approximately 8.6 million core-hours (almost 1000 core-years).

We found many new primes with $i_p = 7$, four primes with $i_p = 8$, namely

p = 381348997, 717636389, 778090129, 1496216791,

and exactly one prime with $i_p = 9$, namely p = 1767218027. For this last p, we found that $B_r = 0 \pmod{p}$ for the following nine values of r:

63562190, 274233542, 290632386, 619227758, 902737892,

1279901568, 1337429618, 1603159110, 1692877044.

・ロト ・ 同ト ・ ヨト ・ ヨト

The main irregular prime computation was performed over a period of about ten months, starting in late 2012.

A B K A B K

The main irregular prime computation was performed over a period of about ten months, starting in late 2012. Any computation is susceptible to errors; in a computation of this magnitude it would be a great surprise if nothing went wrong. Consequently, we took careful precautions to maximize the chance of detecting any problems.

The main irregular prime computation was performed over a period of about ten months, starting in late 2012. Any computation is susceptible to errors; in a computation of this magnitude it would be a great surprise if nothing went wrong. Consequently, we took careful precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade machines in the Condor pool tended to have lower quality RAM, and on a handful of them the checksum test would reliably fail several times a day. The other systems had high-quality error-correcting RAM modules, and we did not detect any errors on them except for one problematic node on Katana. If any machine exhibited even a single checksum error, we excluded it from all computations and reprocessed all primes that had been handled on that machine.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

• There are infinitely many irregular primes.

э

イロト イボト イヨト イヨト

- There are infinitely many irregular primes.
- It is unknown whether or not there are infinitely many regular primes.

• • = • • = •

We compute special values formally – we gave a rigorous computation previously.

A (10) N (10)

We compute special values formally – we gave a rigorous computation previously.

$$\begin{split} \zeta(1-k) &= \sum_{n \ge 1} (\frac{d}{dt})^{k-1} e^{nt} |_{t=0} \\ &= (\frac{d}{dt})^{k-1} \left(\sum_{n \ge 1} e^{nt} \right) |_{t=0} \\ &= (\frac{d}{dt})^{k-1} \left(\frac{1}{1-e^t} - 1 \right) |_{t=0} \\ &= (\frac{d}{dt})^{k-1} \left(\frac{1}{1-e^t} \right) |_{t=0} \end{split}$$

<日

<</p>

$$= \left(\frac{d}{dt}\right)^{k-1} \left(-\frac{1}{t} \cdot \left(\sum_{k\geq 1} B_k \frac{t^k}{k!}\right)\right)|_{t=0}$$
$$= \left(\frac{d}{dt}\right)^{k-1} \left(\sum_{k\geq 1} \left(-\frac{B_k}{k}\right) \frac{t^{k-1}}{(k-1)!}\right)|_{t=0}$$

2

イロト イヨト イヨト イヨト

$$= \left(\frac{d}{dt}\right)^{k-1} \left(-\frac{1}{t} \cdot \left(\sum_{k\geq 1} B_k \frac{t^k}{k!}\right)\right)|_{t=0}$$
$$= \left(\frac{d}{dt}\right)^{k-1} \left(\sum_{k\geq 1} \left(-\frac{B_k}{k}\right) \frac{t^{k-1}}{(k-1)!}\right)|_{t=0}$$

It follows that

$$\zeta(1-k) = -\frac{B_k}{k}$$

æ

<ロト <回ト < 回ト < 回ト < 回ト -

Now put

$$\zeta_p(1-k) := (1-p^{k-1})\left(-\frac{B_k}{k}\right)$$

2

Now put

$$\zeta_{p}(1-k) := (1-p^{k-1})\left(-\frac{B_{k}}{k}\right) = \frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_{p}^{\times}} x^{k-1}\mu_{1,\alpha}$$

2

Now put

$$\zeta_p(1-k) := (1-p^{k-1})\left(-\frac{B_k}{k}\right) = \frac{1}{\alpha^{-k}-1}\int_{\mathbb{Z}_p^{\times}} x^{k-1}\mu_{1,\alpha}$$

As before, it can be interpolated for $k \equiv s_0 \pmod{p-1}$, and gives a continuous function from \mathbb{Z}_p to \mathbb{Q}_p , (independent of α).

Let χ be a Dirichlet character of conductor $f = f_{\chi}$.

$$F_{\chi}(t,x) := \sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x)t}}{e^{ft}-1} =$$

- 2

ヘロト ヘロト ヘヨト ヘヨト

Let χ be a Dirichlet character of conductor $f = f_{\chi}$.

$$F_{\chi}(t,x) := \sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x)t}}{e^{ft}-1} = \sum_{n \ge 0} B_{n,\chi}(x) \frac{t^n}{n!}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Put

Let χ be a Dirichlet character of conductor $f = f_{\chi}$.

$$F_{\chi}(t,x) := \sum_{a=1}^{f} \chi(a) \cdot t \cdot \frac{e^{(a+x)t}}{e^{ft}-1} = \sum_{n \ge 0} B_{n,\chi}(x) \frac{t^n}{n!}$$

$$B_{n,\chi} := B_{n,\chi}(0).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We have:

B_{n,χ}(x) ∈ Q(χ)[x], where Q(χ) = Q(χ(a), a ∈ Z) is the smallest field containing all the indicated roots of 1,

- 4 回 ト 4 ヨ ト 4 ヨ ト

We have:

B_{n,χ}(x) ∈ Q(χ)[x], where Q(χ) = Q(χ(a), a ∈ Z) is the smallest field containing all the indicated roots of 1,
B_{0,χ} = ¹/_f ∑^f_{a=1} χ(a) = 0, for χ ≠ χ₀; it follows that deg(B_{n,χ}) < n,

▲圖 医 ▲ 国 医 ▲ 国 医 …

We have:

- B_{n,χ}(x) ∈ Q(χ)[x], where Q(χ) = Q(χ(a), a ∈ Z) is the smallest field containing all the indicated roots of 1,
- $B_{0,\chi} = \frac{1}{f} \sum_{a=1}^{f} \chi(a) = 0$, for $\chi \neq \chi_0$; it follows that $\deg(B_{n,\chi}) < n$,
- $B_{n,\chi}(x) = \sum_{k=0}^{n} {n \choose k} B_{k,\chi} x^{n-k}$.

く 同 ト く ヨ ト く ヨ ト

Since

$$F_{\chi}(-t,-x) = \sum_{a=1}^{f} \chi(a) \cdot (-t) \cdot \frac{e^{-(a-x)t}}{e^{-ft}-1} =$$

æ

Since

$$F_{\chi}(-t,-x) = \sum_{a=1}^{f} \chi(a) \cdot (-t) \cdot \frac{e^{-(a-x)t}}{e^{-ft}-1} = \sum_{a=1}^{f} \chi(-1) \chi(f-a)t \cdot \frac{e^{(f-a+x)t}}{e^{ft}-1},$$

æ

Since

$$F_{\chi}(-t,-x) = \sum_{a=1}^{f} \chi(a) \cdot (-t) \cdot \frac{e^{-(a-x)t}}{e^{-ft}-1} = \sum_{a=1}^{f} \chi(-1) \chi(f-a)t \cdot \frac{e^{(f-a+x)t}}{e^{ft}-1},$$

we have

$$F_{\chi}(-t,-x)=\chi(-1)F_{\chi}(t,x), \quad \chi
eq\chi_0,$$

æ

Since

$$F_{\chi}(-t,-x) = \sum_{a=1}^{f} \chi(a) \cdot (-t) \cdot \frac{e^{-(a-x)t}}{e^{-ft}-1} = \sum_{a=1}^{f} \chi(-1) \chi(f-a)t \cdot \frac{e^{(f-a+x)t}}{e^{ft}-1},$$

we have

$$F_{\chi}(-t,-x)=\chi(-1)F_{\chi}(t,x), \quad \chi
eq\chi_0,$$

and

$$(-1)^n B_{n,\chi}(-x) = \chi(-1) B_{n,\chi}(x), \quad n \ge 0.$$

æ
We have

$$B_{n,\chi} = 0, \quad \chi \neq \chi_0, \quad n \not\equiv \delta_{\chi} \pmod{2},$$

where

$$\delta_{\chi} := egin{cases} 0 & \chi(-1) = 1 \ 1 & \chi(-1) = -1 \end{cases}.$$

2

<ロト <回ト < 回ト < 回ト -

We can express these new numbers through classical Bernoulli numbers.

э

We can express these new numbers through classical Bernoulli numbers. Starting with

$$F_{\chi}(t,x) = \frac{1}{f} \sum_{a=1}^{f} \chi(a) F(ft, \frac{a-f+x}{f})$$

we obtain

$$B_{n,\chi}(x) = \frac{1}{f} \sum_{a=1}^{f} \chi(a) f^n B_n(\frac{a-f+x}{f}), \quad n \ge 0,$$

and in particular

$$B_{n,\chi}=\frac{1}{f}\sum_{a=1}^{f}\chi(a)f^{n}B_{n}(\frac{a-f}{f}), \quad n\geq 0.$$

• • = • • = •

Consider

$$egin{aligned} S_{n,\chi}(k) &:= \sum_{a=1}^{k-1} \chi(a) a^n, \quad n \geq 0, \ S_n(k) &:= \sum_{a=1}^{k-1} a^n. \end{aligned}$$

2

Consider

$$S_{n,\chi}(k) := \sum_{a=1}^{k-1} \chi(a) a^n, \quad n \ge 0,$$

 $S_n(k) := \sum_{a=1}^{k-1} a^n.$

E.g.,

$$S_1(k)=\frac{k(k-1)}{2}.$$

2

<ロト <回ト < 回ト < 回ト -

Consider

$$S_{n,\chi}(k) := \sum_{a=1}^{k-1} \chi(a) a^n, \quad n \ge 0,$$

 $S_n(k) := \sum_{a=1}^{k-1} a^n.$

E.g.,

$$S_1(k)=\frac{k(k-1)}{2}.$$

These were computed by Bernoulli, in closed form. Before that, people published books (!), with tables of these numbers.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\label{eq:F_constraint} \mathsf{F}_{\chi}(t,x)-\mathsf{F}_{\chi}(t,x-f)=\sum \mathsf{a}=1^{f}\chi(\mathsf{a})\mathsf{t}\mathsf{e}^{(\mathsf{a}+x-f)t},$$
 so that

$$B_{n,\chi}(x) - B_{n,\chi}(x-f) = n \sum_{a=1}^{f} \chi(a)(a+x-f)^{n-1}.$$

2

$$F_{\chi}(t,x)-F_{\chi}(t,x-f)=\sum a=1^{f}\chi(a)te^{(a+x-f)t},$$
 so that

$$B_{n,\chi}(x) - B_{n,\chi}(x-f) = n \sum_{a=1}^{f} \chi(a)(a+x-f)^{n-1}.$$

Now, replace $n \mapsto n+1$, and sum over $x = f, 2f, \ldots, kf$.

æ

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

æ

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

From this we can compute

$$B_{n,\chi} = \lim_{h\to\infty} S_{n,\chi}(p^h f),$$

э

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

From this we can compute

$$B_{n,\chi} = \lim_{h \to \infty} S_{n,\chi}(p^h f),$$

and also

$$S_n(k) = \frac{1}{n+1} (B_{n+1}(k) - B_{n+1}(0))$$

э

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

From this we can compute

$$B_{n,\chi} = \lim_{h\to\infty} S_{n,\chi}(p^h f),$$

and also

$$S_n(k) = \frac{1}{n+1} \left(B_{n+1}(k) - B_{n+1}(0) \right)$$

$$B_n=\lim_{h\to\infty}S_n(p^n),$$

э

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

From this we can compute

$$B_{n,\chi} = \lim_{h\to\infty} S_{n,\chi}(p^h f),$$

and also

$$S_n(k) = \frac{1}{n+1} \left(B_{n+1}(k) - B_{n+1}(0) \right)$$

$$B_n=\lim_{h\to\infty}S_n(p^h),$$

In particular,

$$S_1(k) = \frac{1}{2} (B_2(k) - B_2(0))$$

э

We obtain

$$S_{n,\chi}(kf) = \frac{1}{n+1} (B_{n+1,\chi}(kf) - B_{n+1,\chi}(0))$$

From this we can compute

$$B_{n,\chi} = \lim_{h\to\infty} S_{n,\chi}(p^h f),$$

and also

$$S_n(k) = \frac{1}{n+1} \left(B_{n+1}(k) - B_{n+1}(0) \right)$$

$$B_n=\lim_{h\to\infty}S_n(p^h),$$

In particular,

$$S_1(k) = \frac{1}{2} \left(B_2(k) - B_2(0) \right) = \frac{1}{2} \left(\left(k^2 - k + \frac{1}{6} \right) - \frac{1}{6} \right) = \frac{1}{2} k(k-1).$$

э

Generalized Kummer congruences

Theorem

Let χ be a Dirichlet character, and

$$\omega: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}, \quad p \geq 3.$$

Put $\chi_n := \chi \cdot \omega^{-n}$.

Generalized Kummer congruences

Theorem

Let χ be a Dirichlet character, and

$$\omega: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}, \quad p \geq 3.$$

Put $\chi_n := \chi \cdot \omega^{-n}$. Then there exists a power series $A = A_{\chi} \in K[[x]]$, such that

• *K* is a finite extension of \mathbb{Q}_p ,

A E A E A

Theorem

Let χ be a Dirichlet character, and

$$\omega: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}, \quad p \geq 3.$$

Put $\chi_n := \chi \cdot \omega^{-n}$. Then there exists a power series $A = A_{\chi} \in K[[x]]$, such that

- K is a finite extension of \mathbb{Q}_p ,
- the radius of convergence $r_A \ge p^{\frac{p}{p-1}}$

Theorem

Let χ be a Dirichlet character, and

$$\omega: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}, \quad p \geq 3.$$

Put $\chi_n := \chi \cdot \omega^{-n}$. Then there exists a power series $A = A_{\chi} \in K[[x]]$, such that

- K is a finite extension of \mathbb{Q}_p ,
- the radius of convergence $r_A \ge p^{\frac{p}{p-1}}$

$$A_{\chi}(n)=(1-\chi_n(p)p^{n-1})B_{n,\chi_n}.$$

Let K/\mathbb{Q}_p be a finite extension.

æ

Let K/\mathbb{Q}_p be a finite extension.

Theorem

Let $A, B \in K[[x]]$, with $r_A, r_B > 0$. Let $\{x_n\}$ be a sequence with $\lim x_n = 0$. Assume that $A(x_n) = B(x_n)$ for all n.

(4) (日本)

Let K/\mathbb{Q}_p be a finite extension.

Theorem

Let $A, B \in K[[x]]$, with $r_A, r_B > 0$. Let $\{x_n\}$ be a sequence with $\lim x_n = 0$. Assume that $A(x_n) = B(x_n)$ for all n. Then

$$A = B$$
.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let K/\mathbb{Q}_p be a finite extension.

Theorem

Let $A, B \in K[[x]]$, with $r_A, r_B > 0$. Let $\{x_n\}$ be a sequence with $\lim x_n = 0$. Assume that $A(x_n) = B(x_n)$ for all n. Then

$$A=B.$$

Proof: Consider the difference $A(x) - B(x) = \sum c_n x^n$, let c_{n_0} be the first nonzero coefficient.

イロト イヨト イヨト 一座

Let K/\mathbb{Q}_p be a finite extension.

Theorem

Let $A, B \in K[[x]]$, with $r_A, r_B > 0$. Let $\{x_n\}$ be a sequence with $\lim x_n = 0$. Assume that $A(x_n) = B(x_n)$ for all n. Then

$$A=B.$$

Proof: Consider the difference $A(x) - B(x) = \sum c_n x^n$, let c_{n_0} be the first nonzero coefficient. We have

$$-c_{n_0} = \underbrace{x_i}_{\to 0} \cdot \underbrace{\sum_{n > n_0} c_n x_i^{n-n_0-1}}_{\text{bounded}}, \quad \forall x_i$$

・ロト ・四ト ・ヨト ・ヨト

Put

$$\|A\| = \sup_n (|a_n|_p),$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Put

$$\|A\| = \sup_n (|a_n|_p),$$

and let

$$\mathcal{P}_{\mathcal{K}} := \{ A \in \mathcal{K}[[x]] \mid \|A\| < \infty \}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Put

$$\|A\| = \sup_n (|a_n|_p),$$

and let

$$\mathcal{P}_{\mathcal{K}} := \{A \in \mathcal{K}[[x]] \mid \|A\| < \infty\}.$$

Theorem

This is a norm and \mathcal{P}_{K} is complete, i.e., a Banach algebra over the local field K.

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Reminder

$$c_n := \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} b_i$$

イロト イ部ト イヨト イヨト 一日

Reminder

$$c_n := \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} b_i$$
 $b_n := \sum_{i=0}^n \binom{n}{i} c_i$

2

Reminder

$$c_n := \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} b_i$$
$$b_n := \sum_{i=0}^n \binom{n}{i} c_i$$
$$\|n!\|_p \ge p^{\frac{n}{p-1}}.$$

2

Let $0 < r < |p|^{\frac{1}{p-1}}$ and $|c_n|_p \leq Cr^n$, $\forall n$, and some C > 0.

イロト イポト イヨト イヨト 三日

Let $0 < r < |p|^{\frac{1}{p-1}}$ and $|c_n|_p \le Cr^n$, $\forall n$, and some C > 0. Then there exists a unique $A \in \mathcal{P}_K$ such that • $r_A \ge |p|_p^{\frac{1}{p-1}}r^{-1}$, • $A(n) = b_n$, for all n.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Application

$$b_n := (1 - \chi_n(p)p^{n-1})B_{n,\chi_n}$$
 $c_n := \sum_{i=0}^n \binom{n}{i}b_i$

3

Application

$$b_n := (1 - \chi_n(p)p^{n-1})B_{n,\chi_n}$$
 $c_n := \sum_{i=0}^n \binom{n}{i}b_i$

So the basic estimate one has to show is:

$$|c_n|_p \leq |p^{-2}f^{-1}| \cdot |p|_p^n, \quad \forall n$$

. . .

э

<ロト <回ト < 回ト < 回ト -

We have looked at functions $f : \mathbb{Z}_p \to \mathbb{Q}_p$.

э

We have looked at functions $f:\mathbb{Z}_p\to\mathbb{Q}_p.$ But we can also study functions

 $f: \mathbb{Q}_p \to \mathbb{C}.$

3

(日)

We have looked at functions $f:\mathbb{Z}_p\to\mathbb{Q}_p.$ But we can also study functions

$$f:\mathbb{Q}_p\to\mathbb{C}.$$

Basic examples:

• characteristic functions χ_U of $U := \{a + p^N \mathbb{Z}_p\}$,
We have looked at functions $f : \mathbb{Z}_p \to \mathbb{Q}_p$. But we can also study functions

$$f:\mathbb{Q}_p\to\mathbb{C}.$$

Basic examples:

- characteristic functions χ_U of $U := \{a + p^N \mathbb{Z}_p\}$,
- $|x|_p^s$, for $s \in \mathbb{C}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we can consider

$$\int_{\mathbb{Q}_p} f(x) \, dx_p$$

where $dx_p = \mu_p$ is the Haar measure, i.e., translation invariant measure,

æ

イロト 不得 トイヨト イヨト

Now we can consider

$$\int_{\mathbb{Q}_p} f(x) \, dx_p$$

where $dx_p = \mu_p$ is the Haar measure, i.e., translation invariant measure, normalized by

$$\int_{\mathbb{Z}_p} dx_p = 1.$$

э

(日)

$$\int_{\mathbb{Q}_p} \chi_{\mathbb{Z}_p}(x) \cdot |x|_p^{s-1} \, dx_p$$

æ

<ロト <問ト < 目と < 目と

$$\begin{split} &\int_{\mathbb{Q}_p} \chi_{\mathbb{Z}_p}(x) \cdot |x|_p^{s-1} \, dx_p = \sum_{n \ge 0} p^{-n(s-1)} \cdot \int_{p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p} dx_p \\ &= \sum_{n \ge 0} p^{-n(s-1)} \frac{1}{p^n} \cdot \left(1 - \frac{1}{p}\right) \end{split}$$

æ

<ロト <問ト < 目と < 目と

$$\int_{\mathbb{Q}_p} \chi_{\mathbb{Z}_p}(x) \cdot |x|_p^{s-1} dx_p = \sum_{n \ge 0} p^{-n(s-1)} \cdot \int_{p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p} dx_p$$
$$= \sum_{n \ge 0} p^{-n(s-1)} \frac{1}{p^n} \cdot \left(1 - \frac{1}{p}\right) = \frac{1}{1 - p^{-s}} \cdot \left(1 - \frac{1}{p}\right)$$

æ

<ロト <問ト < 目と < 目と

$$\int_{\mathbb{Q}_p} \chi_{\mathbb{Z}_p}(x) \cdot |x|_p^{s-1} dx_p = \sum_{n \ge 0} p^{-n(s-1)} \cdot \int_{p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p} dx_p$$
$$= \sum_{n \ge 0} p^{-n(s-1)} \frac{1}{p^n} \cdot \left(1 - \frac{1}{p}\right) = \frac{1}{1 - p^{-s}} \cdot \left(1 - \frac{1}{p}\right)$$

So we can formally write

$$\zeta(s) = \prod_{p} \int_{\mathbb{Q}_{p}} \chi_{\mathbb{Z}_{p}}(x) \cdot |x|_{p}^{s-1} dx_{p} \cdot \prod_{p} \left(1 - \frac{1}{p}\right)^{-1}$$

æ

.

イロト イボト イヨト イヨト