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Measure and integration

Let X , T be topological spaces.

A map

f : X → T

is called locally constant if for all x ∈ X there exists an open
neighborhood U := Ux ⊂ X such that the restriction f |U is constant.
Example: X = R,C. Locally constant implies constant.

Example: X = Zp, T = Qp. Locally constant implies that f is a
finite linear combination of characteristic functions of compact open
subsets of the form

{a + pNZp}.
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p-adic distributions

Recall that compact open subsets of Zp have the form a + pnZp.

A p-adic distribution µ on X ⊂ Zp is an additive map from the set of
compact open subsets Y ⊆ X to Qp.

For all a + pNZp ⊂ X one has

µ(a + pNZp) =

p−1∑
b=0

µ(a + bpN + pN+1Zp).

Conversely, every such map defines a unique distribution.

This is called the distribution relation.
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p-adic distributions

Assume we have a distribution of the form

µk(a + pNZp) = pN(k−1)fk(
a

pN
), a = 0, . . . , pN − 1,

where fk is a (monic) polynomial of degree k .

The distribution relation implies that

fk(x) = pk−1
p−1∑
a=0

fk(
x + a

p
)
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p-adic distributions

There is a unique such polynomial, for all k ≥ 1, namely, the
Bernoulli polynomial Bk(x), defined by

text

et − 1
=
∑
k≥0

Bk(x)
tk

k!

Recall, that

B0(x) = 1, B1(x) = x − 1/2, B2(x) = x2 − x + 1/6, . . . ,

Bk(x) = xk − k

2
xk−1 · · ·

Lecture 8 6 / 53



p-adic distributions

There is a unique such polynomial, for all k ≥ 1, namely, the
Bernoulli polynomial Bk(x), defined by

text

et − 1
=
∑
k≥0

Bk(x)
tk

k!

Recall, that

B0(x) = 1, B1(x) = x − 1/2, B2(x) = x2 − x + 1/6, . . . ,

Bk(x) = xk − k

2
xk−1 · · ·

Lecture 8 6 / 53



p-adic distributions

Thus we have

µB,k(a + pNZp) := pN(k−1)Bk(
a

pN
)

µB,0 = µHaar , invariant under translations

µB,1 = µMazur
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p-adic measures

A p-adic measure is a distribution µ such that there exists a B > 0
with

|µ(U)|p ≤ B

for all compact open U ⊂ X .
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p-adic measures

Let µ be a p-adic measure on Zp and f : Zp → Qp a continuous
function.

Let

SN :=
∑

0≤a≤pN−1

f (xa,N)µ(a + pNZp),

where xa,N ∈ a + pNZp. Then there exists a limit

lim
N→∞

SN =:

∫
Zp

f dµ
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p-adic measures

Proof: Note that

a + pNZp = t0≤ã≤pM−1,ã≡a (mod pN)

(
ã + pMZp

)

We have

|SN − SM |p = |
∑

0≤a≤pM−1

f (xã,N)− f (xa,M)︸ ︷︷ ︸
≤ε

µ(a + pMZp)|p ≤ ε · B

(since Zp is compact, we have uniform continuity). Thus, we have a
Cauchy sequence, and a limit in Qp, independent of the choice of
xã,N .
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f (xã,N)− f (xa,M)︸ ︷︷ ︸
≤ε

µ(a + pMZp)|p ≤ ε · B

(since Zp is compact, we have uniform continuity).

Thus, we have a
Cauchy sequence, and a limit in Qp, independent of the choice of
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Haar “measure”

µHaar(p
NZp) =

1

pN
+ translation invariance, i.e.,

µHaar (a + pNZp) =
1

pN
, ∀a.

This satisfies the distribution relation, i.e., µHaar is a distribution.
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Haar “measure”

Problems: Let
f : Zp → Zp

x 7→ x

Write
Zp = tp

N−1
a=0 (a + pNZp)

SN,{xa,N} =

pN−1∑
a=0

f (xa,N)µ(a + pNZp) =
∑
a

xa,N
pN
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Haar “measure”

For xa,N := a ∈ a + pNZp we get

1

pN

pN−1∑
a=0

a =
(pN − 1)pN

2
· 1

pN
=

pN − 1

2
→ −1

2

For one a, choose xa,N := a + a0p
N ∈ a + pNZp, with some a0 6= 0.

Then we have 1

pN

pN−1∑
a=0

a

+ a0p
N · 1

pN
=

pN − 1

2
+ a0 → −

1

2
+ a0.

So even simple continuous functions f are not integrable on the
compact Zp.
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p-adic measures

µB,k(a + pNZp) := pN(k−1)Bk(
a

pN
)

As we saw, these are distributions. There is a way to regularize them,
i.e., turn them into measures.

For a fixed α ∈ Q ∩ Z×p , define

µk,α(U) := µB,k(U)− µB,k(αU)

αk
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p-adic measures

Theorem
µk,α is a measure for all k ≥ 1.

Proof: First, we show that

|µ1,α(a + pNZp)|p ≤ 1, ∀N ≥ 1.

Indeed, by definition,

µ1,α(a + pNZp) =
a

pN
− 1

2
− 1

α

(
αa

pN
− 1

2

)
=

1/α− 1

2
+

a

pN
− 1

α

(
αa

pN
− [

αa

pN
]

)
=

1/α− 1

2
+

1

α
[
αa

pN
]︸ ︷︷ ︸

∈Zp
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p-adic measures

For α ∈ Q ∩ Z×p , the element is in Zp.

Since any U is a finite (disjoint) union of sets of the form ai + pNiZp,

|µ1,α(U)|p ≤ max ...

and we obtain the result.

Thus, µ1,α is a measure on Zp.

Lecture 8 16 / 53



p-adic measures

For α ∈ Q ∩ Z×p , the element is in Zp.

Since any U is a finite (disjoint) union of sets of the form ai + pNiZp,

|µ1,α(U)|p ≤ max ...

and we obtain the result.

Thus, µ1,α is a measure on Zp.

Lecture 8 16 / 53



p-adic measures

For α ∈ Q ∩ Z×p , the element is in Zp.

Since any U is a finite (disjoint) union of sets of the form ai + pNiZp,

|µ1,α(U)|p ≤ max ...

and we obtain the result.

Thus, µ1,α is a measure on Zp.

Lecture 8 16 / 53



p-adic measures

Now we treat k ≥ 2.

Let dk be the lcm of denominators of
coefficients of Bk(x), so that dkBk(x) ∈ Z[x ].

d1 = 2, d2 = 6, d3 = 2, . . .

We will show that

|µk,α(a + pNZp)|p ≤ max

(
1

|dk |p
, |µ1,α(a + pNZp)|p

)
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p-adic measures

Recall,

Bk(x) = xk − k

2
xk−1 + · · ·
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p-adic measures

We compute dkµk,α(a + pNZp) as follows:

= dkp
N(k−1)

(
Bk(

a

pN
)− 1

αk
Bk(

αa

pN
)

)

≡︸︷︷︸
(mod pN)

dkp
N(k−1)

(
(
a

pN
)k − 1

αk
(
αa

pN
)k − k

2
(

ak−1

pN(k−1) −
1

αk
(
αa

pN
)k−1

)
Writing

αa

pN
=
αa

pN
− [

αa

pN
],

substituting, and simplifying, we obtain:

≡ dk · k · ak−1
(

1

α
[
αa

pN
] +

1/α− 1

2

)
= dk · k · ak−1µ1,α(a + pNZp)
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What were we doing?

Over R:
dxk

dx
= kxk−1, µk [a, b] = bk − ak

lim
b→a

µk([a, b])

µ1([a, b])
= k · ak−1

Over Qp:
µk(a + pNZp)

µ1(a + pNZp)
= k · ak−1

dxk ⇔ µk,α
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p-adic measures

Consider
f : Zp → Zp

x 7→ xk−1

Let X ⊂ Zp be a compact open subset. Then∫
X

µk,α = k ·
∫
X

f µ1,α

In particular,
1

k

∫
Z×p
µk,α =

∫
Z×p

xk−1µ1,α.

Proof: It suffices to consider a + pNZp. We have

µk,α(a + pNZp) ≡ k · ak−1µ1,α(a + pNZp) (mod pN−νp(dk )),

take N →∞.
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p-adic measures

∫
Z×p
µk,α =

= µk,α(Zp)− µk,α(pZp)

=

(
µB,k(Zp)− µB,k(αZp)

αk

)
−
(
µB,k(pZp)− µB,k(αpZp)

αk

)
= (Bk −

Bk

αk
)− (Bk · pk−1 −

Bkp
k−1

αk
)

= Bk(1− 1

αk
)(1− pk−1)

Thus,

(1− pk−1)(−Bk

k
) =

1

α−k − 1
·
∫
Z×p

xk−1µ1,α
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Back to interpolation

Let S := {s ≡ s0 (mod (p − 1))} ⊂ Zp. It is dense.

For all s, s ′ ∈ S with |s − s ′|p → 0 we have |ns − ns
′ |p → 0.

Proof: already did this.
Thus there is a continuous function that interpolates ns .
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Interpolation

For all k ≡ k ′ (mod (p − 1)pN) we have

|xk ′−1 − xk−1|p ≤
1

pN+1
, ∀x ∈ Z×p .

It follows that

|
∫
Z×p

xk
′−1µ1,α −

∫
Z×p

xk−1µ1,α| ≤
1

pN+1
.

Thus,

k 7→
∫
Z×p

xk−1µ1,α =
1

k

∫
Z×p

1µ1,α

is interpolates to a continuous function on Zp.
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Kummer congruences

Theorem (Kummer / Clausen-von Staudt)

1 p − 1 - k ⇒ |Bk

k
|p ≤ 1

2 p − 1 - k and k ≡ k ′ (mod (p − 1)pN)⇒

(1− pk−1)
Bk

k
≡ (1− pk

′−1)
Bk ′

k ′
(mod pN+1)

3 p > 2, (p − 1) | k ⇒ pBk ≡ −1 (mod p)
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Kummer congruences

Proof: We will assume p > 2. Let α be a primitive root modulo p
(generator of (Z/pZ)×).

For k = 1 we have

|B1

1
|p = | − 1

2
|p = 1

and we are done. For k ≥ 2, we have

|Bk

k
|p = | 1

αk − 1
|p · |

1

(1− pk−1)
|p · |

∫
Z×p

xk−1µ1,α|p

|
∫
Z×p

xk−1µ1,α|p ≤ 1.

This proves the first point.
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Kummer congruences

To show the second point, it suffices to establish

1

α−k − 1

∫
Z×p

xk−1µ1,α ≡
1

α−k ′ − 1

∫
Z×p

xk
′−1µ1,α (mod pN+1)

With our assumptions, we have

(α−k − 1)−1 ≡ (α−k
′ − 1)−1 (mod pN+1)⇔

αk ≡ αk ′ (mod pN+1)

xk−1 ≡ xk
′−1 (mod pN+1)

same for the integral.
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Kummer congruences

To prove the third point, put α = p + 1. Then

pBk = −kp(−Bk

k
) =

−kp
α−k − 1

(1− pk−1)

∫
Z×p

xk−1µ1,α

Let d = νp(k). Then

(α−k − 1) = (1 + p)−k − 1 ≡ −kp (mod pd+2)

We have

(α−k − 1) = (1 + p)−k − 1 ≡ −kp (mod pνp(d)+2), thus

1 ≡ −kp
α−k − 1

(mod p)

(1− pk−1) ≡ 1 (mod p)
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Kummer congruences

Since (p − 1) | k , we have

xk−1 ≡ x−1 (mod p)

Then

pBk ≡
∫
Z×p

xk−1µ1,α ≡
∫
Z×p

x−1µ1,α

≡ −1 (mod p),

the last congruence by direct computation.
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Bernoulli numbers
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Bernoulli numbers

The total running time of our computation was approximately 8.6
million core-hours (almost 1000 core-years).

We found many new primes with ip = 7, four primes with ip = 8,
namely

p = 381348997, 717636389, 778090129, 1496216791,

and exactly one prime with ip = 9, namely p = 1767218027. For this
last p, we found that Br = 0 (mod p) for the following nine values of
r:

63562190, 274233542, 290632386, 619227758, 902737892,

1279901568, 1337429618, 1603159110, 1692877044.
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Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012.

Any computation is
susceptible to errors; in a computation of this magnitude it would be
a great surprise if nothing went wrong. Consequently, we took careful
precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade
machines in the Condor pool tended to have lower quality RAM, and
on a handful of them the checksum test would reliably fail several
times a day. The other systems had high-quality error-correcting
RAM modules, and we did not detect any errors on them except for
one problematic node on Katana. If any machine exhibited even a
single checksum error, we excluded it from all computations and
reprocessed all primes that had been handled on that machine.

Lecture 8 32 / 53



Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012. Any computation is
susceptible to errors; in a computation of this magnitude it would be
a great surprise if nothing went wrong. Consequently, we took careful
precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade
machines in the Condor pool tended to have lower quality RAM, and
on a handful of them the checksum test would reliably fail several
times a day. The other systems had high-quality error-correcting
RAM modules, and we did not detect any errors on them except for
one problematic node on Katana. If any machine exhibited even a
single checksum error, we excluded it from all computations and
reprocessed all primes that had been handled on that machine.

Lecture 8 32 / 53



Bernoulli numbers

The main irregular prime computation was performed over a period
of about ten months, starting in late 2012. Any computation is
susceptible to errors; in a computation of this magnitude it would be
a great surprise if nothing went wrong. Consequently, we took careful
precautions to maximize the chance of detecting any problems.

Indeed, a number of errors were detected. The consumer-grade
machines in the Condor pool tended to have lower quality RAM, and
on a handful of them the checksum test would reliably fail several
times a day. The other systems had high-quality error-correcting
RAM modules, and we did not detect any errors on them except for
one problematic node on Katana. If any machine exhibited even a
single checksum error, we excluded it from all computations and
reprocessed all primes that had been handled on that machine.

Lecture 8 32 / 53



Bernoulli numbers

There are infinitely many irregular primes.

It is unknown whether or not there are infinitely many regular
primes.
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Special values of ζ(s)

We compute special values formally – we gave a rigorous
computation previously.

ζ(1− k) =
∑
n≥1

(
d

dt
)k−1ent |t=0

= (
d

dt
)k−1

(∑
n≥1

ent

)
|t=0

= (
d

dt
)k−1

(
1

1− et
− 1

)
|t=0

= (
d

dt
)k−1

(
1

1− et

)
|t=0
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Special values of ζ(s)

= (
d

dt
)k−1

(
−1

t
·

(∑
k≥1

Bk
tk

k!

))
|t=0

= (
d

dt
)k−1

(∑
k≥1

(
−Bk

k

)
tk−1

(k − 1)!

)
|t=0

It follows that

ζ(1− k) = −Bk

k
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Special values of ζ(s)

Now put

ζp(1− k) := (1− pk−1)

(
−Bk

k

)

=
1

α−k − 1

∫
Z×p

xk−1µ1,α

As before, it can be interpolated for k ≡ s0 (mod p − 1), and gives a
continuous function from Zp to Qp, (independent of α).
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Back to Bernoulli

Let χ be a Dirichlet character of conductor f = fχ.

Fχ(t, x) :=
f∑

a=1

χ(a) · t · e
(a+x)t

e ft − 1
=

∑
n≥0

Bn,χ(x)
tn

n!

Put
Bn,χ := Bn,χ(0).
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Back to Bernoulli

We have:

Bn,χ(x) ∈ Q(χ)[x ], where Q(χ) = Q(χ(a), a ∈ Z) is the
smallest field containing all the indicated roots of 1,

B0,χ = 1
f

∑f
a=1 χ(a) = 0, for χ 6= χ0; it follows that

deg(Bn,χ) < n,

Bn,χ(x) =
∑n

k=0

(
n
k

)
Bk,χx

n−k .
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Back to Bernoulli

Since

Fχ(−t,−x) =
f∑

a=1

χ(a)·(−t)· e
−(a−x)t

e−ft − 1
=

f∑
a=1

χ(−1)χ(f−a)t·e
(f−a+x)t

e ft − 1
,

we have
Fχ(−t,−x) = χ(−1)Fχ(t, x), χ 6= χ0,

and
(−1)nBn,χ(−x) = χ(−1)Bn,χ(x), n ≥ 0.
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Back to Bernoulli

We have

Bn,χ = 0, χ 6= χ0, n 6≡ δχ (mod 2),

where

δχ :=

{
0 χ(−1) = 1

1 χ(−1) = −1
.
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Back to Bernoulli

We can express these new numbers through classical Bernoulli
numbers.

Starting with

Fχ(t, x) =
1

f

f∑
a=1

χ(a)F (ft,
a − f + x

f
)

we obtain

Bn,χ(x) =
1

f

f∑
a=1

χ(a)f nBn(
a − f + x

f
), n ≥ 0,

and in particular

Bn,χ =
1

f

f∑
a=1

χ(a)f nBn(
a − f

f
), n ≥ 0.
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Back to Bernoulli

Consider

Sn,χ(k) :=
k−1∑
a=1

χ(a)an, n ≥ 0,

Sn(k) :=
k−1∑
a=1

an.

E.g.,

S1(k) =
k(k − 1)

2
.

These were computed by Bernoulli, in closed form. Before that,
people published books (!), with tables of these numbers.
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Back to Bernoulli

Fχ(t, x)− Fχ(t, x − f ) =
∑

a = 1f χ(a)te(a+x−f )t ,

so that

Bn,χ(x)− Bn,χ(x − f ) = n
f∑

a=1

χ(a)(a + x − f )n−1.

Now, replace n 7→ n + 1, and sum over x = f , 2f , . . . , kf .
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Back to Bernoulli

We obtain

Sn,χ(kf ) =
1

n + 1
(Bn+1,χ(kf )− Bn+1,χ(0))

From this we can compute

Bn,χ = lim
h→∞

Sn,χ(phf ),

and also

Sn(k) =
1

n + 1
(Bn+1(k)− Bn+1(0))

Bn = lim
h→∞

Sn(ph),

In particular,

S1(k) =
1

2
(B2(k)− B2(0)) =

1

2

(
(k2 − k +

1

6
)− 1

6

)
=

1

2
k(k − 1).
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Generalized Kummer congruences

Theorem
Let χ be a Dirichlet character, and

ω : (Z/pZ)× → C, p ≥ 3.

Put χn := χ · ω−n.

Then there exists a power series A = Aχ ∈ K [[x ]],
such that

K is a finite extension of Qp,

the radius of convergence rA ≥ p
p

p−1

Aχ(n) = (1− χn(p)pn−1)Bn,χn .
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Proof

Let K/Qp be a finite extension.

Theorem
Let A,B ∈ K [[x ]], with rA, rB > 0. Let {xn} be a sequence with
lim xn = 0. Assume that A(xn) = B(xn) for all n. Then

A = B .

Proof: Consider the difference A(x)− B(x) =
∑

cnx
n, let cn0 be the

first nonzero coefficient. We have

−cn0 = xi︸︷︷︸
→0

·
∑
n>n0

cnx
n−n0−1
i︸ ︷︷ ︸

bounded

, ∀xi
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Proof

Put
‖A‖ = sup

n
(|an|p),

and let
PK := {A ∈ K [[x ]] | ‖A‖ <∞}.

Theorem
This is a norm and PK is complete, i.e., a Banach algebra over the
local field K.
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Reminder

cn :=
n∑

i=0

(−1)n−i
(
n

i

)
bi

bn :=
n∑

i=0

(
n

i

)
ci

‖n!‖p ≥ p
n

p−1 .
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Power series

Let 0 < r < |p|
1

p−1 and |cn|p ≤ Crn, ∀n, and some C > 0.

Then
there exists a unique A ∈ PK such that

rA ≥ |p|
1

p−1
p r−1,

A(n) = bn, for all n.
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Application

bn := (1− χn(p)pn−1)Bn,χn

cn :=
n∑

i=0

(
n

i

)
bi

So the basic estimate one has to show is:

|cn|p ≤ |p−2f −1| · |p|np, ∀n

. . .
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Analysis on the p-adics

We have looked at functions f : Zp → Qp.

But we can also study
functions

f : Qp → C.

Basic examples:

characteristic functions χU of U := {a + pNZp},
|x |sp, for s ∈ C
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Integration

Now we can consider ∫
Qp

f (x) dxp

where dxp = µp is the Haar measure, i.e., translation invariant
measure,

normalized by ∫
Zp

dxp = 1.

Lecture 8 52 / 53



Integration

Now we can consider ∫
Qp

f (x) dxp

where dxp = µp is the Haar measure, i.e., translation invariant
measure, normalized by ∫

Zp

dxp = 1.

Lecture 8 52 / 53



Basic computation

∫
Qp

χZp(x) · |x |s−1p dxp

=
∑
n≥0

p−n(s−1) ·
∫
pnZp\pn+1Zp

dxp

=
∑
n≥0

p−n(s−1)
1

pn
·
(

1− 1

p

)
=

1

1− p−s
·
(

1− 1

p

)
So we can formally write

ζ(s) =
∏
p

∫
Qp

χZp(x) · |x |s−1p dxp ·
∏
p

(
1− 1

p

)−1
.
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