Lecture 4

Analogies

We introduced p-adic numbers. Why?

Analogies

We introduced p-adic numbers. Why?

$$
\mathbb{Z} \quad \Leftrightarrow \quad \mathbb{C}[x]
$$

Analogies

We introduced p-adic numbers. Why?

$$
\begin{array}{ccc}
\mathbb{Z} & \Leftrightarrow & \mathbb{C}[x] \\
n=\prod p_{j}^{n_{j}} & & f(x)=\prod\left(x-\alpha_{j}\right)^{n_{j}}
\end{array}
$$

Analogies

We introduced p-adic numbers. Why?

$$
\begin{array}{ccc}
\mathbb{Z} & \Leftrightarrow & \mathbb{C}[x] \\
n=\prod p_{j}^{n_{j}} & & f(x)=\prod\left(x-\alpha_{j}\right)^{n_{j}} \\
n=\sum_{j=0}^{N} a_{j} p^{j} & & f(x)=\sum_{j=0}^{N} a_{j}(x-\alpha)^{j}
\end{array}
$$

Analogies

We introduced p-adic numbers. Why?

$$
\begin{array}{ccc}
\mathbb{Z} & \Leftrightarrow & \mathbb{C}[x] \\
n=\prod p_{j}^{n_{j}} & & f(x)=\prod\left(x-\alpha_{j}\right)^{n_{j}} \\
n=\sum_{j=0}^{N} a_{j} p^{j} & & f(x)=\underbrace{\sum_{j=0}^{N} a_{j}(x-\alpha)^{j}}_{\text {formal power series }} \\
\frac{n}{m}=\sum_{\text {j>i0 }} a_{j} p^{j} & & \frac{f(x)}{g(x)}=\underbrace{\sum_{j \geq j_{j}} a_{j}(x-\alpha)^{j}}_{\text {Laurent series }}
\end{array}
$$

Analogies

We introduced p-adic numbers. Why?

$$
\begin{array}{ccc}
\mathbb{Z} & \Leftrightarrow & \mathbb{C}[x] \\
n=\prod p_{j}^{n_{j}} & f(x)=\prod\left(x-\alpha_{j}\right)^{n_{j}} \\
n=\sum_{j=0}^{N} a_{j} p^{j} & & f(x)=\sum_{j=0}^{N} a_{j}(x-\alpha)^{j} \\
\frac{n}{m}=\underbrace{\sum_{j \geq j_{j}} a_{j} p^{j}}_{\text {formal power series }} & \frac{f(x)}{g(x)}=\underbrace{\sum_{j \geq j_{0}} a_{j}(x-\alpha)^{j}}_{\text {Laurent series }} \\
\mathbb{Q} \hookrightarrow \mathbb{Q}_{p} & \mathbb{C}(x) \hookrightarrow \mathbb{C}((x-\alpha))
\end{array}
$$

Functions

We started investigating functions

$$
f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}
$$

- rational functions
- series $\sum a_{n} x^{n}$, e.g.,

$$
e^{x}=\sum \frac{x^{n}}{n!}, \quad \log _{p}(1+x)=\sum_{n \geq 1} \frac{x^{n}}{n}(-1)^{n+1}, \quad \text { for }|x|_{p}<p^{-\frac{1}{p-1}}
$$

Functions

We started investigating functions

$$
f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}
$$

- rational functions
- series $\sum a_{n} x^{n}$, e.g.,

$$
\begin{gathered}
e^{x}=\sum \frac{x^{n}}{n!}, \quad \log _{p}(1+x)=\sum_{n \geq 1} \frac{x^{n}}{n}(-1)^{n+1}, \quad \text { for }|x|_{p}<p^{-\frac{1}{\rho-1}}, \\
(1+x)^{a}=\sum_{n \geq 0} \frac{a(a-1) \cdots(a-n+1)}{n!} x^{n}=: B_{a, p}(x) \in \mathbb{Z}_{\rho}[[x]]
\end{gathered}
$$

Interpolation over \mathbb{R}

Given a finite set of pairs

$$
\left(x_{j}, y_{j}\right), \quad j=0, \ldots, m
$$

find a function (e.g., polynomial) f such that $f\left(x_{j}\right)=y_{j}$ for all j.

Interpolation over \mathbb{R}

Given a finite set of pairs

$$
\left(x_{j}, y_{j}\right), \quad j=0, \ldots, m
$$

find a function (e.g., polynomial) f such that $f\left(x_{j}\right)=y_{j}$ for all j.
Solution (Lagrange formula):

$$
f(x):=\sum_{k=0}^{m} y_{k} \cdot \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

Interpolation over \mathbb{R}

Given a finite set of pairs

$$
\left(x_{j}, y_{j}\right), \quad j=0, \ldots, m
$$

find a function (e.g., polynomial) f such that $f\left(x_{j}\right)=y_{j}$ for all j.

Solution (Lagrange formula):

$$
f(x):=\sum_{k=0}^{m} y_{k} \cdot \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

This is a polynomial interpolation of a finite set of points.

Interpolation over \mathbb{R}

Given a finite set of pairs

$$
\left(x_{j}, y_{j}\right), \quad j=0, \ldots, m
$$

find a function (e.g., polynomial) f such that $f\left(x_{j}\right)=y_{j}$ for all j.

Solution (Lagrange formula):

$$
f(x):=\sum_{k=0}^{m} y_{k} \cdot \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

This is a polynomial interpolation of a finite set of points. Another instance of interpolation is approximation via continuity: how does one define a^{x} ?

Interpolation over \mathbb{R}

Given a finite set of pairs

$$
\left(x_{j}, y_{j}\right), \quad j=0, \ldots, m
$$

find a function (e.g., polynomial) f such that $f\left(x_{j}\right)=y_{j}$ for all j.

Solution (Lagrange formula):

$$
f(x):=\sum_{k=0}^{m} y_{k} \cdot \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

This is a polynomial interpolation of a finite set of points. Another instance of interpolation is approximation via continuity: how does one define a^{x} ? First for $x \in \mathbb{Q}$, then by continuity, since \mathbb{Q} is dense in \mathbb{R}.

Interpolation over \mathbb{Q}_{p}

Recall that \mathbb{Z} is dense in \mathbb{Z}_{p}.

Interpolation over \mathbb{Q}_{p}

Recall that \mathbb{Z} is dense in \mathbb{Z}_{p}. Given a finite set (or a sequence) y_{1}, \ldots, of elements in \mathbb{Q}_{p} find a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}
$$

such that

$$
f(n)=y_{n}, \quad \forall n
$$

Interpolation over \mathbb{Q}_{p}

Recall that \mathbb{Z} is dense in \mathbb{Z}_{p}. Given a finite set (or a sequence) y_{1}, \ldots, of elements in \mathbb{Q}_{p} find a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}
$$

such that

$$
f(n)=y_{n}, \quad \forall n
$$

When is this possible? How does one achieve this?

Interpolation over \mathbb{Q}_{p}

Let us try

$$
a^{x}, \quad a \in \mathbb{Z}
$$

p-adically.

Interpolation over \mathbb{Q}_{p}

Let us try

$$
a^{x}, \quad a \in \mathbb{Z}
$$

p-adically.
Need to understand what happens when $x^{\prime}:=x+p^{N}$.

Interpolation over \mathbb{Q}_{p}

Let us try

$$
a^{x}, \quad a \in \mathbb{Z}
$$

p-adically.
Need to understand what happens when $x^{\prime}:=x+p^{N}$.
Consider $a=p, x=0$. Then

$$
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|1-p^{p^{N}}\right|_{p}=1, \quad \forall N
$$

Interpolation over \mathbb{Q}_{p}

Let us try

$$
a^{x}, \quad a \in \mathbb{Z}
$$

p-adically.
Need to understand what happens when $x^{\prime}:=x+p^{N}$.
Consider $a=p, x=0$. Then

$$
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|1-p^{p^{N}}\right|_{p}=1, \quad \forall N
$$

Not good, we are not getting closer.

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Assume that $1<a<p$. Then

$$
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|a^{x}\right|_{\rho} \cdot\left|1-a^{p^{N}}\right|_{p}=1, \quad \forall N .
$$

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Assume that $1<a<p$. Then

$$
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|a^{x}\right|_{\rho} \cdot\left|1-a^{p^{N}}\right|_{p}=1, \quad \forall N .
$$

Again, we have a problem.

Interpolation over $\mathbb{Q}_{p}: a^{x}$

However, let $a \equiv 1(\bmod p), a=1+b p$ and $x^{\prime}=x+x^{\prime \prime} p^{N}$. Then

$$
\begin{gathered}
\left|x^{\prime}-x\right|_{p} \leq \frac{1}{p^{N}} \\
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|a^{x}\right|_{p} \cdot\left|1-a^{x^{\prime}-x}\right|_{p}=\left|1-(1+b p)^{x^{\prime \prime} p^{N}}\right|_{p} \leq\left|p^{N+1}\right|_{p}=\frac{1}{p^{N+1}}
\end{gathered}
$$

Interpolation over $\mathbb{Q}_{p}: a^{x}$

However, let $a \equiv 1(\bmod p), a=1+b p$ and $x^{\prime}=x+x^{\prime \prime} p^{N}$. Then

$$
\begin{gathered}
\left|x^{\prime}-x\right|_{p} \leq \frac{1}{p^{N}} \\
\left|a^{x}-a^{x^{\prime}}\right|_{p}=\left|a^{x}\right|_{p} \cdot\left|1-a^{x^{\prime}-x}\right|_{p}=\left|1-(1+b p)^{x^{\prime \prime} p^{N}}\right|_{p} \leq\left|p^{N+1}\right|_{p}=\frac{1}{p^{N+1}}
\end{gathered}
$$

It follows that for $a \equiv 1(\bmod p)$, the function

$$
f(x)=a^{x}
$$

is well-defined and continuous for $x \in \mathbb{Z}_{p}$.

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Can we do better? Let $a \not \equiv 0(\bmod p)$. Let $x \equiv x_{0}(\bmod p-1)$.

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Can we do better? Let $a \not \equiv 0(\bmod p)$. Let $x \equiv x_{0}(\bmod p-1)$. Then

$$
a^{x}=a^{x_{0}} \cdot\left(a^{p-1}\right)^{x_{1}}
$$

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Can we do better? Let $a \not \equiv 0(\bmod p)$. Let $x \equiv x_{0}(\bmod p-1)$. Then

$$
a^{x}=a^{x_{0}} \cdot\left(a^{p-1}\right)^{x_{1}}
$$

The second factor gives a well-defined function.

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Can we do better? Let $a \not \equiv 0(\bmod p)$. Let $x \equiv x_{0}(\bmod p-1)$. Then

$$
a^{x}=a^{x_{0}} \cdot\left(a^{p-1}\right)^{x_{1}} .
$$

The second factor gives a well-defined function. Consider

$$
S:=\left\{x \in \mathbb{N} \mid x \equiv x_{0} \quad(\bmod p-1)\right\} \subset \mathbb{Z}_{p}
$$

Interpolation over $\mathbb{Q}_{p}: a^{x}$

Can we do better? Let $a \not \equiv 0(\bmod p)$. Let $x \equiv x_{0}(\bmod p-1)$. Then

$$
a^{x}=a^{x_{0}} \cdot\left(a^{p-1}\right)^{x_{1}} .
$$

The second factor gives a well-defined function. Consider

$$
S:=\left\{x \in \mathbb{N} \mid x \equiv x_{0} \quad(\bmod p-1)\right\} \subset \mathbb{Z}_{p}
$$

This set is dense. Thus, any

$$
f: S \rightarrow \mathbb{Z}_{p}
$$

will have a unique continuous extension to \mathbb{Z}_{p}.

Interpolation: the Г-function

Recall

$$
\Gamma(n+1)=\int_{0}^{\infty} e^{-x} x^{n} d x=n!
$$

Interpolation: the Г-function

Recall

$$
\begin{gathered}
\Gamma(n+1)=\int_{0}^{\infty} e^{-x} x^{n} d x=n! \\
\Gamma(s+1)=\int_{0}^{\infty} e^{-x} x^{s} d x, \quad s \in \mathbb{C}
\end{gathered}
$$

interpolates (over \mathbb{C}) between the values n !

Interpolation: the Г-function

Note, there does not exist a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f(n)=n!, \quad \forall n \in \mathbb{N}
$$

Interpolation: the Г-function

Note, there does not exist a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f(n)=n!, \quad \forall n \in \mathbb{N}
$$

Why?

Interpolation: the Г-function

Note, there does not exist a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f(n)=n!, \quad \forall n \in \mathbb{N}
$$

Why? n ! is too divisible by p.

Interpolation: the Г-function

Note, there does not exist a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f(n)=n!, \quad \forall n \in \mathbb{N}
$$

Why? n ! is too divisible by p.

Try:

$$
\prod_{l \leq j \leq n, p \nmid j} j
$$

Interpolation: the Г-function

Note, there does not exist a continuous function

$$
f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f(n)=n!, \quad \forall n \in \mathbb{N}
$$

Why? n ! is too divisible by p.

Try:

$$
\prod_{1 \leq j \leq n, p \nmid j} j
$$

Does not work either.

Interpolation: the Γ-function

Theorem
Let $p \geq 3$ be a prime. The function

$$
n \mapsto(-1)^{n} \prod_{j \leq n, p \nmid j} j
$$

admits a continuous extension to

$$
\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}
$$

Proof: We need to show that

$$
n^{\prime}=n+n_{1} p^{N} \quad \Rightarrow \Gamma_{p}(n) \equiv \Gamma_{p}\left(n^{\prime}\right) \quad\left(\bmod p^{N}\right)
$$

Proof: We need to show that

$$
n^{\prime}=n+n_{1} p^{N} \Rightarrow \Gamma_{p}(n) \equiv \Gamma_{p}\left(n^{\prime}\right) \quad\left(\bmod p^{N}\right)
$$

First, observe that

- $\Gamma_{p}(n) \in \mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$

$$
1 \equiv \frac{\Gamma_{p}\left(n^{\prime}\right)}{\Gamma_{p}(n)}=(-1)^{n} \cdot \prod_{n \leq j<n^{\prime}} j \quad\left(\bmod p^{N}\right)
$$

Γ_{p}

$$
1 \equiv \frac{\Gamma_{p}\left(n^{\prime}\right)}{\Gamma_{p}(n)}=(-1)^{n} \cdot \prod_{n \leq j<n^{\prime}} j \quad\left(\bmod p^{N}\right)
$$

Indeed, assume first $n_{1}=1$. Note that $(-1)^{\rho^{N}}=-1$, thus we need to show that

$$
\begin{aligned}
& \prod_{n \leq j<n+p^{N}} j \equiv-1 \quad\left(\bmod p^{N}\right) \\
\equiv & \prod_{0<j<p^{N}, p \nmid j} j \\
\equiv & \prod \underbrace{j j^{\prime}}_{1} \cdot 1 \cdot(-1)
\end{aligned}
$$

the only solutions to $j^{2}=1$ are $j=1,-1\left(\bmod p^{N}\right)$.

$$
1 \equiv \frac{\Gamma_{p}\left(n^{\prime}\right)}{\Gamma_{p}(n)}=(-1)^{n} \cdot \prod_{n \leq j<n^{\prime}} j \quad\left(\bmod p^{N}\right)
$$

Indeed, assume first $n_{1}=1$. Note that $(-1)^{\rho^{N}}=-1$, thus we need to show that

$$
\begin{aligned}
& \prod_{n \leq j<n+p^{N}} j \equiv-1 \quad\left(\bmod p^{N}\right) \\
\equiv & \prod_{0<j<p^{N}, p \nmid j} j \\
\equiv & \prod_{1} \underbrace{}_{1 j^{\prime}} \cdot 1 \cdot(-1)
\end{aligned}
$$

the only solutions to $j^{2}=1$ are $j=1,-1\left(\bmod p^{N}\right)$.
A similar argument works for arbitrary n_{1}.

$\Gamma_{p}:$ Properties

$$
\frac{\Gamma_{p}(a+1)}{\Gamma_{p}(a)}= \begin{cases}-a & a \in \mathbb{Z}_{p}^{\times} \\ -1 & a \in p \mathbb{Z}_{p}\end{cases}
$$

Indeed, may assume that $a \in \mathbb{N}$ and use the definition.

$\Gamma_{p}:$ Properties

$$
\frac{\Gamma_{p}(a+1)}{\Gamma_{p}(a)}= \begin{cases}-a & a \in \mathbb{Z}_{p}^{\times} \\ -1 & a \in p \mathbb{Z}_{p}\end{cases}
$$

Indeed, may assume that $a \in \mathbb{N}$ and use the definition.

- Let $a:=a_{0}+p a_{1}$, with $p \nmid a_{0}$. Then

$$
\Gamma_{p}(a) \cdot \Gamma_{p}(1-a)=(-1)^{a_{0}}
$$

$\Gamma_{p}:$ Properties

$$
\frac{\Gamma_{p}(a+1)}{\Gamma_{p}(a)}= \begin{cases}-a & a \in \mathbb{Z}_{p}^{\times} \\ -1 & a \in p \mathbb{Z}_{p}\end{cases}
$$

Indeed, may assume that $a \in \mathbb{N}$ and use the definition.

- Let $a:=a_{0}+p a_{1}$, with $p \nmid a_{0}$. Then

$$
\Gamma_{p}(a) \cdot \Gamma_{p}(1-a)=(-1)^{a_{0}}
$$

Again, may assume $a \in \mathbb{Z}$. Check $a=1$:

$$
\Gamma_{p}(1)=-1, \quad \Gamma_{p}(0)=-\Gamma_{p}(1)=1
$$

$\Gamma_{p}:$ Properties

$$
\frac{\Gamma_{p}(a+1)}{\Gamma_{p}(a)}= \begin{cases}-a & a \in \mathbb{Z}_{p}^{\times} \\ -1 & a \in p \mathbb{Z}_{p}\end{cases}
$$

Indeed, may assume that $a \in \mathbb{N}$ and use the definition.

- Let $a:=a_{0}+p a_{1}$, with $p \nmid a_{0}$. Then

$$
\Gamma_{p}(a) \cdot \Gamma_{p}(1-a)=(-1)^{a_{0}}
$$

Again, may assume $a \in \mathbb{Z}$. Check $a=1$:

$$
\Gamma_{p}(1)=-1, \quad \Gamma_{p}(0)=-\Gamma_{p}(1)=1
$$

Then apply induction:

$$
\frac{\Gamma_{p}(a+1) \cdot \Gamma_{p}(1-(a+1))}{\Gamma_{p}(a) \cdot \Gamma_{p}(1-a)}= \begin{cases}-a /(-(-a))=-1 & a \in \mathbb{Z}_{p}^{\times} \\ -1 /(-1)=1 & a \in p \mathbb{Z}_{p}\end{cases}
$$

$\Gamma_{p}:$ Properties

$$
\Gamma_{p}\left(\frac{1}{2}\right)^{2}=-\left(\frac{-1}{p}\right)
$$

$\Gamma_{p}:$ Properties

$$
\Gamma_{p}\left(\frac{1}{2}\right)^{2}=-\left(\frac{-1}{p}\right)
$$

Recall:

$$
\Gamma\left(\frac{1}{2}\right)^{2}=\pi
$$

Artin-Hasse exponential

$$
E_{p}(x):=\exp \left(x+\frac{x^{p}}{p}+\frac{x^{p^{2}}}{p^{2}}+\cdots\right)
$$

Artin-Hasse exponential

$$
E_{p}(x):=\exp \left(x+\frac{x^{p}}{p}+\frac{x^{p^{2}}}{p^{2}}+\cdots\right)
$$

Theorem

This converges for $|x|_{p}<1$ (better than $\exp (x)$).

Artin-Hasse exponential

Proof:

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Artin-Hasse exponential

Proof:

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Properties:

(3) For $n>1$, one has $\sum_{d \mid n} \mu(d)=0$

Artin-Hasse exponential

Proof:

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Properties:

(1) For $n>1$, one has $\sum_{d \mid n} \mu(d)=0$
(2) $\sum_{d \mid n}|\mu(d)|=2^{k}$, where $k=\#$ of distinct primes dividing n

Artin-Hasse exponential

Proof:

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Properties:

(1) For $n>1$, one has $\sum_{d \mid n} \mu(d)=0$
(2) $\sum_{d \mid n}|\mu(d)|=2^{k}$, where $k=\#$ of distinct primes dividing n
(3) $\sum_{n \geq 1}-\frac{\mu(n)}{n} \cdot \log \left(1-x^{n}\right)=x$

Artin-Hasse exponential

Proof:

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Properties:

(1) For $n>1$, one has $\sum_{d \mid n} \mu(d)=0$
(2) $\sum_{d \mid n}|\mu(d)|=2^{k}$, where $k=\#$ of distinct primes dividing n
(3) $\sum_{n \geq 1}-\frac{\mu(n)}{n} \cdot \log \left(1-x^{n}\right)=x$
(9) $\sum_{n \geq 1, p \nmid n}-\frac{\mu(n)}{n} \cdot \log \left(1-x^{n}\right)=x+\frac{x^{p}}{p}+\cdots$

Artin-Hasse exponential

(3) $\Rightarrow e^{x}=\prod_{n \geq 1}\left(1-x^{n}\right)^{-\frac{\mu(n)}{n}}$

Artin-Hasse exponential

$$
\begin{gathered}
\text { (3) } \Rightarrow e^{x}=\prod_{n \geq 1}\left(1-x^{n}\right)^{-\frac{\mu(n)}{n}} \\
(4) \Rightarrow E_{p}(x)=\prod_{n \geq 1, p p r}\left(1-x^{n}\right)^{-\frac{\mu(t)}{n}}
\end{gathered}
$$

Artin-Hasse exponential

$$
\begin{gathered}
\text { (3) } \Rightarrow e^{x}=\prod_{n \geq 1}\left(1-x^{n}\right)^{-\frac{\mu(n)}{n}} \\
(4) \Rightarrow E_{p}(x)=\prod_{n \geq 1, p p(n}\left(1-x^{n}\right)^{-\frac{\mu(v)}{n}}
\end{gathered}
$$

As formal power series.

Artin-Hasse exponential

$$
\begin{gathered}
\text { (3) } \Rightarrow e^{x}=\prod_{n \geq 1}\left(1-x^{n}\right)^{-\frac{\mu(t)}{n}} \\
(4) \Rightarrow E_{p}(x)=\prod_{n \geq 1, p \nmid n}\left(1-x^{n}\right)^{-\frac{\mu(n)}{n}}
\end{gathered}
$$

As formal power series.
Theorem

$$
E_{\rho}(x) \in \mathbb{Z}_{\rho}[[x]]
$$

and thus converges for $|x|_{p}<1$.

Artin-Hasse exponential

Proof: For $p \nmid n$, we have $-\frac{\mu(n)}{n} \in \mathbb{Z}_{p}$.

Artin-Hasse exponential

Proof: For $p \nmid n$, we have $-\frac{\mu(n)}{n} \in \mathbb{Z}_{p}$. Thus

$$
(1-x)^{-\frac{\mu(n)}{n}} \in \mathbb{Z}_{p}[[x]] \quad \text { binomial series expansion }
$$

Artin-Hasse exponential

Proof: For $p \nmid n$, we have $-\frac{\mu(n)}{n} \in \mathbb{Z}_{p}$. Thus

$$
(1-x)^{-\frac{\mu(n)}{n}} \in \mathbb{Z}_{p}[[x]] \quad \text { binomial series expansion }
$$

Thus

$$
\prod_{n, p \nmid n}(\cdots) \in \mathbb{Z}_{p}[[x]]
$$

Dieudonné-Dwork theory

Theorem

 Let $f \in 1+x \mathbb{Q}_{p}[[x]]$. Then$$
f \in \mathbb{Z}_{p}\left[[x] \quad \Leftrightarrow \quad f(x)^{p} / f\left(x^{p}\right) \in 1+p \mathbb{Z}_{p}[[x]]\right.
$$

Dieudonné-Dwork theory

Proof: $\Rightarrow \quad f(x)^{p} \equiv f\left(x^{p}\right)(\bmod p)$.

Dieudonné-Dwork theory

Proof: $\Rightarrow \quad f(x)^{p} \equiv f\left(x^{p}\right)(\bmod p)$. Since $f(x) \equiv 1(\bmod p)$ then so is $f\left(x^{p}\right)$.

Dieudonné-Dwork theory

Proof: $\Rightarrow \quad f(x)^{p} \equiv f\left(x^{p}\right)(\bmod p)$. Since $f(x) \equiv 1(\bmod p)$ then so is $f\left(x^{p}\right)$. Thus the series for $f\left(x^{p}\right)$ is invertible and $f\left(x^{p}\right) \in 1+p \mathbb{Z}_{p}[[x]]$.

Dieudonné-Dwork theory

Proof: $\Rightarrow \quad f(x)^{p} \equiv f\left(x^{p}\right)(\bmod p)$. Since $f(x) \equiv 1(\bmod p)$ then so is $f\left(x^{p}\right)$. Thus the series for $f\left(x^{p}\right)$ is invertible and $f\left(x^{p}\right) \in 1+p \mathbb{Z}_{p}[[x]]$.
It follows that

$$
\frac{f(x)^{p}}{f\left(x^{p}\right)} \in 1+p x \mathbb{Z}_{p}[[x]] .
$$

Dieudonné-Dwork theory

$\Leftarrow \quad$ Let

$$
f(x)=1+\sum_{i \geq 1} a_{i} x^{i}, \quad a_{i} \in \mathbb{Q}_{p}
$$

Dieudonné-Dwork theory

\Leftarrow Let

$$
f(x)=1+\sum_{i \geq 1} a_{i} x^{i}, \quad a_{i} \in \mathbb{Q}_{p}
$$

Assume that

$$
f(x)^{p}=f\left(x^{p}\right) \cdot\left(1+p \sum b_{j} x^{j}\right), \quad b_{j} \in \mathbb{Z}_{p}
$$

Dieudonné-Dwork theory

$\Leftarrow \quad$ Let

$$
f(x)=1+\sum_{i \geq 1} a_{i} x^{i}, \quad a_{i} \in \mathbb{Q}_{p}
$$

Assume that

$$
f(x)^{p}=f\left(x^{p}\right) \cdot\left(1+p \sum b_{j} x^{j}\right), \quad b_{j} \in \mathbb{Z}_{p}
$$

We see that

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=b_{1} \in \mathbb{Z}_{p}
\end{aligned}
$$

Dieudonné-Dwork theory

Now we proceed by induction, assuming that $a_{i} \in \mathbb{Z}_{p}$ for all $i<n$. Comparing coefficients at x^{n} :

Dieudonné-Dwork theory

Now we proceed by induction, assuming that $a_{i} \in \mathbb{Z}_{p}$ for all $i<n$. Comparing coefficients at x^{n} :

On the left: $\left(\sum_{i \leq n} a_{i} x^{i}\right)^{p} \quad$ On the right: $f\left(x^{p}\right) \cdot\left(1+p \sum b_{j} x^{j}\right)$

$$
\begin{aligned}
& =\sum_{i \leq n} a_{i}^{p} x^{i p}+p \underbrace{(\cdots)}_{a_{i 1} \cdots a_{i p} x^{i_{1}+\cdots i_{p}}} \\
& =\underbrace{a_{i}^{p}}_{i p=n}+p a_{n}+p \mathbb{Z}_{p} \\
& =\underbrace{a_{\frac{n}{p}}^{p}}_{\mathbb{Z}_{p}}+p a_{n}+p \mathbb{Z}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\sum_{i \leq \frac{n}{p}} a_{i} x^{p i}\left(1+p \sum b_{j} x^{j}\right) \\
\quad=\underbrace{a_{\frac{n}{p}}}_{\mathbb{Z}_{p}}+p \mathbb{Z}_{p} \text { - terms }
\end{array} \\
& \text { Have: } a_{\frac{n}{p}}^{a_{p}^{p}} \equiv a_{\frac{n}{p}}(\bmod p)
\end{aligned}
$$

Dieudonné-Dwork theory

Thus,

$$
p a_{n} \in p \mathbb{Z}_{p} \Rightarrow a_{n} \in \mathbb{Z}_{p}
$$

Dieudonné-Dwork theory

Thus,

$$
p a_{n} \in p \mathbb{Z}_{p} \Rightarrow a_{n} \in \mathbb{Z}_{p}
$$

Apply: Since

$$
E_{p}(x)^{p}=e^{p x} E_{p}\left(x^{p}\right) \quad \text { and } \quad e^{p x} \in 1+p x \mathbb{Z}_{p}[[x]]
$$

we conclude

$$
E_{p}(x) \in \mathbb{Z}_{p}[[x]]
$$

i.e., converges for $|x|_{p}<1$ (alternative proof of the previous theorem).

Dieudonné-Dwork theory

Thus,

$$
p a_{n} \in p \mathbb{Z}_{p} \Rightarrow a_{n} \in \mathbb{Z}_{p}
$$

Apply: Since

$$
E_{p}(x)^{p}=e^{p x} E_{p}\left(x^{p}\right) \quad \text { and } \quad e^{p x} \in 1+p x \mathbb{Z}_{p}[[x]]
$$

we conclude

$$
E_{p}(x) \in \mathbb{Z}_{p}[[x]]
$$

i.e., converges for $|x|_{p}<1$ (alternative proof of the previous theorem). Here we used that

$$
\nu_{p}\left(\frac{p^{n}}{n!}\right) \geq n-\frac{n-1}{p-1}=\frac{p-2}{p-1} n+\frac{1}{p-1} \geq 1, \quad \forall n .
$$

Binomial polynomials

Recall,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \Rightarrow\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k!} \in \mathbb{Q}[x] .
$$

Binomial polynomials

Recall,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \Rightarrow\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k!} \in \mathbb{Q}[x] .
$$

$$
\binom{x}{k}: \mathbb{Z} \rightarrow \mathbb{Z}
$$

In particular, this extends to a continuous function $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

Binomial polynomials

Recall,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \Rightarrow\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k!} \in \mathbb{Q}[x] .
$$

$$
\binom{x}{k}: \mathbb{Z} \rightarrow \mathbb{Z} .
$$

In particular, this extends to a continuous function $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

Proof: OK for $x \in \mathbb{N}$, note that

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

Binomial polynomials

Theorem

Let \mathcal{L} be the \mathbb{Z}-module of all functions $f \in \mathbb{Q}[x]$ such that

$$
f: \mathbb{N} \rightarrow \mathbb{Z}
$$

Binomial polynomials

Theorem

Let \mathcal{L} be the \mathbb{Z}-module of all functions $f \in \mathbb{Q}[x]$ such that

$$
f: \mathbb{N} \rightarrow \mathbb{Z}
$$

Then \mathcal{L} is free, with basis $\binom{x}{k}$, i.e.,

$$
f(x)=\sum_{k \geq 0} m_{k}\binom{x}{k}, \quad m_{k} \in \mathbb{Z}
$$

Binomial polynomials

The proof uses the difference operator:

$$
\Delta f(x):=f(x+1)-f(x)
$$

Binomial polynomials

The proof uses the difference operator:

$$
\Delta f(x):=f(x+1)-f(x)
$$

Example:

$$
\Delta\binom{x}{0}=0, \quad \Delta\binom{x}{k}=\binom{x}{k-1}, \quad k \geq 1
$$

Binomial polynomials

The proof uses the difference operator:

$$
\Delta f(x):=f(x+1)-f(x)
$$

Example:

$$
\Delta\binom{x}{0}=0, \quad \Delta\binom{x}{k}=\binom{x}{k-1}, \quad k \geq 1
$$

This is the analog of

$$
\partial: \frac{x^{k}}{k!} \rightarrow \frac{x^{k-1}}{(k-1)!}
$$

Binomial polynomials

The proof proceeds by induction,

$$
\begin{gathered}
f(0):=m_{0} \\
\Delta f(x)=\sum m_{k} \Delta\binom{x}{k}=\sum m_{k}\binom{x}{k-1}
\end{gathered}
$$

Binomial polynomials

The proof proceeds by induction,

$$
\begin{gathered}
f(0):=m_{0} \\
\Delta f(x)=\sum m_{k} \Delta\binom{x}{k}=\sum m_{k}\binom{x}{k-1}
\end{gathered}
$$

It follows that every coefficient can be brought into the position of $\binom{x}{0}$.

Binomial polynomials

The proof proceeds by induction,

$$
\begin{gathered}
f(0):=m_{0} \\
\Delta f(x)=\sum m_{k} \Delta\binom{x}{k}=\sum m_{k}\binom{x}{k-1}
\end{gathered}
$$

It follows that every coefficient can be brought into the position of $\binom{x}{0}$. This shows the uniqueness of the presentation.

Binomial polynomials

The proof proceeds by induction,

$$
\begin{gathered}
f(0):=m_{0} \\
\Delta f(x)=\sum m_{k} \Delta\binom{x}{k}=\sum m_{k}\binom{x}{k-1}
\end{gathered}
$$

It follows that every coefficient can be brought into the position of $\binom{x}{0}$. This shows the uniqueness of the presentation.

The existence follows by setting

$$
\begin{aligned}
m_{k} & :=\left(\Delta^{k} f\right)(0), \quad \text { i.e., a Taylor expansion } \\
f(x) & =\sum_{k} \frac{\left(\Delta^{k} f\right)(0)}{k!} \cdot x(x-1) \cdots(x-k+1)
\end{aligned}
$$

Binomial polynomials

Assume that

$$
\left(\sum a_{n} \frac{x^{n}}{n!}\right) \cdot\left(\sum c_{n} \frac{x^{n}}{n!}\right)=\left(\sum b_{n} \frac{x^{n}}{n!}\right)
$$

Then

$$
\sum\binom{n}{k} a_{k} c_{n-k}=b_{n}
$$

Binomial polynomials

Assume that

$$
\left(\sum a_{n} \frac{x^{n}}{n!}\right) \cdot\left(\sum c_{n} \frac{x^{n}}{n!}\right)=\left(\sum b_{n} \frac{x^{n}}{n!}\right)
$$

Then

$$
\sum\binom{n}{k} a_{k} c_{n-k}=b_{n}
$$

Proof: Compare coefficients at x^{n}.

Binomial polynomials

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \quad \Leftrightarrow \quad a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} b_{k}
$$

Binomial polynomials

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \quad \Leftrightarrow \quad a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} b_{k}
$$

Proof: Apply to

$$
\left(\sum a_{n} \frac{x^{n}}{n!}\right) \cdot e^{x}=\left(\sum b_{n} \frac{x^{n}}{n!}\right)
$$

p-adic interpolation

Mahler 1961

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ be a continuous function. Put

$$
a_{n}(f):=\sum(-1)^{n-k}\binom{n}{k} f(k), \quad \text { this is a finite sum }
$$

p-adic interpolation

Mahler 1961

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ be a continuous function. Put

$$
a_{n}(f):=\sum(-1)^{n-k}\binom{n}{k} f(k), \quad \text { this is a finite sum }
$$

Then

$$
\sum_{k=0}^{\infty}\binom{x}{k} a_{k}(f) \rightarrow f(x)
$$

converges uniformly.

p-adic interpolation

- The sum is finite on \mathbb{Z}

p-adic interpolation

- The sum is finite on \mathbb{Z}
- $\left|a_{k}\right|_{p} \rightarrow 0$, so that the series converges to a continuous function

p-adic interpolation

- The sum is finite on \mathbb{Z}
- $\left|a_{k}\right|_{p} \rightarrow 0$, so that the series converges to a continuous function
- Every continuous function has such a representation, and it is unique (since determined by restriction to \mathbb{N})

Mahler's theory

Let K be a field of characteristic zero, e.g., \mathbb{Q} or \mathbb{Q}_{p}. Introduce the following operators on $K[x]$:

- translation operator: for $a \in K$

$$
\begin{gathered}
\tau_{a}: K[x] \rightarrow K[x] \\
\left(\tau_{a} f\right)(x):=f(x+a)
\end{gathered}
$$

Mahler's theory

Let K be a field of characteristic zero, e.g., \mathbb{Q} or \mathbb{Q}_{p}. Introduce the following operators on $K[x]$:

- translation operator: for $a \in K$

$$
\begin{array}{r}
\tau_{a}: K[x] \rightarrow K[x] \\
\left(\tau_{a} f\right)(x):=f(x+a)
\end{array}
$$

- δ-operator: a linear endomorphisms $\delta: K[x] \rightarrow K[x]$, which commutes with τ_{a} for all $a \in K$, i.e.,

$$
\delta \circ \tau_{a}=\tau_{a} \circ \delta
$$

and satisfies

$$
\delta(x)=c \in K^{\times}
$$

Mahler's theory

It follows that

$$
\delta(a)=0, \quad \forall a \in K^{\times}, \quad \operatorname{deg}(\delta f)=\operatorname{deg}(f)-1
$$

Mahler's theory

It follows that

$$
\delta(a)=0, \quad \forall a \in K^{\times}, \quad \operatorname{deg}(\delta f)=\operatorname{deg}(f)-1
$$

A basis system $\left\{q_{n}=q_{n, \delta}\right\}_{n \in \mathbb{N}}$ is a collection of polynomials such that

- $\operatorname{deg}\left(q_{n}\right)=n$, for all n
- $\delta q_{n}=n q_{n-1}$, for $n \geq 1$,
- $q_{0}=1, q_{n}(0)=0$, for $n \geq 1$.

Mahler's theory

It follows that

$$
\delta(a)=0, \quad \forall a \in K^{\times}, \quad \operatorname{deg}(\delta f)=\operatorname{deg}(f)-1
$$

A basis system $\left\{q_{n}=q_{n, \delta}\right\}_{n \in \mathbb{N}}$ is a collection of polynomials such that

- $\operatorname{deg}\left(q_{n}\right)=n$, for all n
- $\delta q_{n}=n q_{n-1}$, for $n \geq 1$,
- $q_{0}=1, q_{n}(0)=0$ for $n \geq 1$.

This is uniquely determined, by induction.

Mahler's theory

Examples:

- $\frac{\partial}{\partial x}: q_{n}=x^{n}$

Mahler's theory

Examples:

- $\frac{\partial}{\partial x}: q_{n}=x^{n}$
- $\Delta:=\tau_{1}-$ Id: $q_{n}=(x)_{n}:=x(x-1) \cdots(x-n+1), \Delta^{n} q_{n}=n$!

Mahler's theory

Examples:

- $\frac{\partial}{\partial x}: q_{n}=x^{n}$
- $\Delta:=\tau_{1}$ - Id: $q_{n}=(x)_{n}:=x(x-1) \cdots(x-n+1), \Delta^{n} q_{n}=n$!
- $\tau_{a}-\tau_{b}$, for $a \neq b$

Mahler's theory

Examples:

- $\frac{\partial}{\partial x}: q_{n}=x^{n}$
- $\Delta:=\tau_{1}$ - Id: $q_{n}=(x)_{n}:=x(x-1) \cdots(x-n+1), \Delta^{n} q_{n}=n!$
- $\tau_{a}-\tau_{b}$, for $a \neq b$
- Any formal power series of order 1 in $\frac{\partial}{\partial x}$:

$$
\delta:=\sum_{i \geq 1} c_{i}\left(\frac{\partial}{\partial x}\right)^{i} \in K\left[\left[\frac{\partial}{\partial x}\right]\right], \quad c_{1} \neq 0
$$

Mahler's theory

For all $f \in K[x]$, we have

$$
f(x+y)=\sum_{k \geq 0} \frac{\delta^{k} f(x)}{k!} \cdot q_{k}(y)
$$

Mahler's theory

For all $f \in K[x]$, we have

$$
f(x+y)=\sum_{k \geq 0} \frac{\delta^{k} f(x)}{k!} \cdot q_{k}(y)
$$

In particular, for $f=q_{n}$, we obtain the "binomial formula":

$$
q_{n}(x+y)=\sum_{0 \leq k \leq n}\binom{n}{k} q_{k}(x) \cdot q_{n-k}(y)
$$

Mahler's theory

For all $f \in K[x]$, we have

$$
f(x+y)=\sum_{k \geq 0} \frac{\delta^{k} f(x)}{k!} \cdot q_{k}(y)
$$

In particular, for $f=q_{n}$, we obtain the "binomial formula":

$$
q_{n}(x+y)=\sum_{0 \leq k \leq n}\binom{n}{k} q_{k}(x) \cdot q_{n-k}(y)
$$

as if we were computing

$$
q_{n}(x+y) "="(q(x)+q(y))^{n}
$$

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}
- T commutes with τ_{a}, for all $a \in K^{\times}$

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}
- T commutes with τ_{a}, for all $a \in K^{\times}$
- for any δ-operator there exists a $\phi \in K[[\delta]]$ such that

$$
T=\phi(\delta)
$$

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}
- T commutes with τ_{a}, for all $a \in K^{\times}$
- for any δ-operator there exists a $\phi \in K[[\delta]]$ such that

$$
T=\phi(\delta)
$$

- $T=\phi\left(\frac{\partial}{\partial x}\right) \in K\left[\left[\frac{\partial}{\partial x}\right]\right]$

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}
- T commutes with τ_{a}, for all $a \in K^{\times}$
- for any δ-operator there exists a $\phi \in K[[\delta]]$ such that

$$
T=\phi(\delta)
$$

- $T=\phi\left(\frac{\partial}{\partial x}\right) \in K\left[\left[\frac{\partial}{\partial x}\right]\right]$
- $T \circ \frac{\partial}{\partial x}=\frac{\partial}{\partial x} \circ T$

Mahler's theory

Let

$$
T:=K[x] \rightarrow K[x]
$$

be an endomorphism. The following properties are equivalent:

- T commutes with τ_{1}
- T commutes with τ_{a}, for all $a \in K^{\times}$
- for any δ-operator there exists a $\phi \in K[[\delta]]$ such that

$$
T=\phi(\delta)
$$

- $T=\phi\left(\frac{\partial}{\partial x}\right) \in K\left[\left[\frac{\partial}{\partial x}\right]\right]$
- $T \circ \frac{\partial}{\partial x}=\frac{\partial}{\partial x} \circ T$
- $T \circ \delta=\delta \circ T$, for all δ-operators

Mahler's theory

Proof: Based on the identities:

$$
\begin{gathered}
T:=\sum_{k \geq 0} \frac{\left(T q_{k}\right)(0)}{k!} \delta^{k} \\
\tau_{a}=\sum_{k \geq 0} \frac{q_{k}(0)}{k!} \delta^{k}
\end{gathered}
$$

which means that if T commutes with δ then also with τ_{a}.

Mahler's theory

Consider the Banach space (complete normed vector space)

$$
\mathcal{C}\left(\mathbb{Z}_{p}\right)=\left\{f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right\}
$$

of continuous functions on \mathbb{Z}_{p}.

Mahler's theory

Consider the Banach space (complete normed vector space)

$$
\mathcal{C}\left(\mathbb{Z}_{p}\right)=\left\{f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right\}
$$

of continuous functions on \mathbb{Z}_{p}. The norm is defined by

$$
\|f\|:=\max \left\{|f(x)|_{p}\right\}
$$

note that \mathbb{Z}_{p} is compact.

Mahler's theory

Consider the Banach space (complete normed vector space)

$$
\mathcal{C}\left(\mathbb{Z}_{p}\right)=\left\{f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right\}
$$

of continuous functions on \mathbb{Z}_{p}. The norm is defined by

$$
\|f\|:=\max \left\{|f(x)|_{p}\right\}
$$

note that \mathbb{Z}_{p} is compact.
Let

$$
T: \mathcal{C}\left(\mathbb{Z}_{p}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{p}\right)
$$

be a continuous endomorphism (note that $\frac{\partial}{\partial x}$ is not continuous).

Mahler's theory

Consider the Banach space (complete normed vector space)

$$
\mathcal{C}\left(\mathbb{Z}_{p}\right)=\left\{f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}\right\}
$$

of continuous functions on \mathbb{Z}_{p}. The norm is defined by

$$
\|f\|:=\max \left\{|f(x)|_{p}\right\}
$$

note that \mathbb{Z}_{p} is compact.
Let

$$
T: \mathcal{C}\left(\mathbb{Z}_{p}\right) \rightarrow \mathcal{C}\left(\mathbb{Z}_{p}\right)
$$

be a continuous endomorphism (note that $\frac{\partial}{\partial x}$ is not continuous). We can define its norm

$$
\|T\|:=\sup _{\|f\|=1}\|T f\|
$$

Mahler's theory

Assume that T commutes with τ_{1} (or $\left.\Delta=\tau_{1}-\mathrm{Id}\right)$. Then T preserves

$$
K[x] \subset \mathcal{C}\left(\mathbb{Z}_{p}\right)
$$

and the restriction of T to $K[x]$ can be written as

$$
\sum \alpha_{n} \Delta^{n} \in K[[\Delta]]
$$

Mahler's theory

Assume that $T(1)=0$, and $\|T\|=1$. Let $\left\{q_{n}\right\}$ be a basis system for $T, T q_{n}=n q_{n-1}$. Then

$$
\left\|\frac{q_{n}}{n!}\right\|=1 .
$$

Every $f \in \mathcal{C}\left(\mathbb{Z}_{p}\right)$ admits a representation (generalized Mahler series):

$$
f(x)=\sum c_{n} \frac{q_{n}}{n!},
$$

with

$$
c_{n}:=\left(T^{n} f\right)(0) \rightarrow 0
$$

and

$$
\|f\|=\sup _{n \geq 0}\left|c_{n}\right|_{p} .
$$

Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.

- They are multiplicative.

Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.

- They are multiplicative.
- Many of them are related to the Riemann zeta function

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad \Re(s)>1
$$

Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.

- They are multiplicative.
- Many of them are related to the Riemann zeta function

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}, \quad \Re(s)>1
$$

- There are deep conjectures concerning statistical behavior of these functions.

Divisor function

$$
\zeta^{2}(s)=\left(\sum_{n \geq 1} \frac{1}{n^{s}}\right) \cdot\left(\sum_{m \geq 1} \frac{1}{m^{s}}\right)=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}}
$$

where

$$
\sigma(n):=\sum_{d \mid n} 1 .
$$

is the number of different representations of n as a product of two integers.

Divisor function

Consider

$$
D(x):=\sum_{n \leq x} \sigma(n)
$$

Divisor function

Consider

$$
D(x):=\sum_{n \leq x} \sigma(n)
$$

this counts the number of lattice points under the hyperbola.

Divisor function

Consider

$$
D(x):=\sum_{n \leq x} \sigma(n)
$$

this counts the number of lattice points under the hyperbola. We will prove:

$$
D(x)=x \log (x)+x(2 \gamma-1)+E(x), \quad \text { error term }
$$

Divisor function

Consider

$$
D(x):=\sum_{n \leq x} \sigma(n)
$$

this counts the number of lattice points under the hyperbola. We will prove:

$$
D(x)=x \log (x)+x(2 \gamma-1)+E(x), \quad \text { error term }
$$

Conjecture

$$
E(x)=O\left(x^{\frac{1}{4}+\epsilon}\right), \quad \text { for all } \quad \epsilon>0
$$

Divisor function

More generally,

$$
\sigma_{r}(n)=\sum_{d \mid n} d^{r}
$$

Divisor function

More generally,

$$
\sigma_{r}(n)=\sum_{d \mid n} d^{r}
$$

We have

$$
\sigma_{r}(n m)=\sigma_{r}(n) \cdot \sigma_{r}(m), \quad \text { when } \quad(n, m)=1
$$

Moebius function

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\sum \frac{\mu(n)}{n^{s}},
$$

where

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Moebius function

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\sum \frac{\mu(n)}{n^{s}}
$$

where

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Titchmarsh 1951

Riemann hypothesis is equivalent to

$$
\sum_{n \leq x} \mu(n)=O\left(x^{\frac{1}{2}+\epsilon}\right), \quad \text { for all } \quad \epsilon>0
$$

Moebius function

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\sum \frac{\mu(n)}{n^{s}}
$$

where

$$
\mu(n):= \begin{cases}(-1)^{r} & \text { if } \quad n=p_{1} \cdots p_{r} \quad \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

Titchmarsh 1951

Riemann hypothesis is equivalent to

$$
\sum_{n \leq x} \mu(n)=O\left(x^{\frac{1}{2}+\epsilon}\right), \quad \text { for all } \quad \epsilon>0
$$

I.e., $\mu(n)$ is a random sequence.

Euler φ-function

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum \frac{\varphi(n)}{n^{s}}
$$

where

$$
\varphi(n):=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

is the Euler function.

Euler φ-function

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum \frac{\varphi(n)}{n^{s}}
$$

where

$$
\varphi(n):=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

is the Euler function.

Lehmer's conjecture 1932

There are no composite n such that $\varphi(n) \mid(n-1)$.

Dedekind ψ-function

$$
\frac{\zeta(s) \cdot \zeta(s-1)}{\zeta(2 s)}=\sum_{n \geq 1} \frac{\psi(n)}{n^{s}}
$$

where

$$
\psi(n):=n \cdot \prod_{p \mid n}\left(1+\frac{1}{p}\right)
$$

is the Dedekind ψ-function.

von Mangoldt function

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\log (\zeta(s))^{\prime}=\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)^{\prime}=\sum_{p} \frac{1}{1-p^{-s}}\left(p^{-s}\right)^{\prime} \cdot(-1)
$$

Since

$$
\left(p^{-s}\right)^{\prime}=\left(e^{-s \log (p)}\right)^{\prime}=\log (p) e^{-s \log (p)}
$$

we find

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{p} \frac{1}{1-p^{-s}} \cdot \log (p)=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}
$$

where

$$
\Lambda(n):= \begin{cases}\log (p) & n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

von Mangoldt function

We have

$$
\sum_{d \mid n} \Lambda(d)=\log (n)
$$

