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Analogies

We introduced p-adic numbers. Why?
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Analogies

We introduced p-adic numbers. Why?

Z & C[x]
n=TIp f(x) = T1(x — )"
n=3"qap f(x) = Yo a(x —ay
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Analogies

We introduced p-adic numbers. Why?

Z
n=1Ilp}
n= ZJ,'V:O a;p’

- Y

J=>Jo
—_——

formal power series

3=

& C[x]

Laurent series
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Analogies

We introduced p-adic numbers. Why?

Z
n=1Ilp}
n= ZJ,'V:O a;p’

. .

L= ) ap
J=>Jo
——

formal power series

Q— Qp

& C[x]

Laurent series

C(x) = C((x — o))
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Functions

We started investigating functions

f:Qp—Qp
@ rational functions
@ series > a,x", e.g.,
n Xn +1 1
=2 [ logp(ltx) = > n (=1)™,  for |x|, < p T,
n>1
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Functions

We started investigating functions

f:Qp—Qp
@ rational functions
@ series > a,x", e.g.,
=35 log,(1+x) = S (-1, for [x], < p7
- nl7 gp - =t n 9 P p 9

ala—1)---(a—n+1) ,

(1+x)°=) X" =: By p(x) € Zp[[x]]

nl
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Interpolation over R
Given a finite set of pairs

(Xju.yj)v jZO,...,m,

find a function (e.g., polynomial) f such that f(x;) = y; for all .
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Interpolation over R
Given a finite set of pairs

(Xju.yj)v jZO,...,m,

find a function (e.g., polynomial) f such that f(x;) = y; for all .

Solution (Lagrange formula):

) = 3y A

o Hj;ék(xk - X))
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Interpolation over R

Given a finite set of pairs

(Xjuyj)v j:O,...,m,

find a function (e.g., polynomial) f such that f(x;) = y; for all .

Solution (Lagrange formula):

Z Vi - J;ﬁk XJ)

J;ék XJ)

This is a polynomial interpolation of a finite set of points.

Lecture 4

4/51



Interpolation over R
Given a finite set of pairs
(,y), J=0,....m,
find a function (e.g., polynomial) f such that f(x;) = y; for all .

Solution (Lagrange formula):

Z Vi - J;ﬁk XJ)

J;ék XJ)

This is a polynomial interpolation of a finite set of points. Another

instance of interpolation is approximation via continuity: how does
one define a*7?
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Interpolation over R

Given a finite set of pairs

(Xju.yj)v j:O,...,m,
find a function (e.g., polynomial) f such that f(x;) = y; for all .

Solution (Lagrange formula):

Z Vi - J;ﬁk XJ)

J;ék XJ)

This is a polynomial interpolation of a finite set of points. Another
instance of interpolation is approximation via continuity: how does

one define a*? First for x € QQ, then by continuity, since Q is dense
in R.
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Interpolation over Q,,

Recall that Z is dense in Z,,.

Lecture 4 5/51



Interpolation over Q,,

Recall that Z is dense in Z,. Given a finite set (or a sequence)

Yi, ..., of elements in QQ, find a continuous function
f:Zy,— Qp
such that
f(n)=y, Vn
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Interpolation over Q,,

Recall that Z is dense in Z,. Given a finite set (or a sequence)

Yi, ..., of elements in QQ, find a continuous function
f:Zy,— Qp
such that
f(n)=y, Vn

When is this possible? How does one achieve this?
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Interpolation over Q,,

Let us try

p-adically.
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Interpolation over Q,,

Let us try
ax, acl,

p-adically.

Need to understand what happens when x" := x + p".
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Interpolation over Q,,

Let us try

X

a, aecl,

p-adically.
Need to understand what happens when x’ := x 4 p".
Consider a = p,x = 0. Then

¥ —a|,=1—p"|, =1, VN.
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Interpolation over Q,,

Let us try

X

a, aecl,
p-adically.

Need to understand what happens when x’ := x 4 p".
Consider a = p,x = 0. Then
¥ —a|,=1—p"|, =1, VN.

Not good, we are not getting closer.
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Interpolation over Q,: a*

Assume that 1 < a < p. Then

@ =@, =|a]p- 1 -2 |, =1, VN.
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Interpolation over Q,: a*

Assume that 1 < a < p. Then
@ =@, =|a]p- 1 -2 |, =1, VN.

Again, we have a problem.
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Interpolation over Q,: a*

However, let a=1 (mod p), a=1+ bp and x' = x + x"p". Then

1

|X/_X|P < p_Nv

X x/ X ' —x " pN
a—a|, = |a¥|,-|1—a" |, = [1—(1+bp)"""|, < [PV, = i
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Interpolation over Q,: a*

However, let a=1 (mod p), a=1+ bp and x' = x + x"p". Then

1

|X/_X|P < p_Nv

X x’ X x! —x " pN
|a*—a" |, = |a¥|,-|1—a" |, = [L—(1+bp)* P |, < |p" T, = i
It follows that for a =1 (mod p), the function

)= 2

is well-defined and continuous for x € Z,.
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Interpolation over Q,: a*

Can we do better? Let a 0 (mod p). Let x = xo (mod p — 1).
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Interpolation over Q,: a*

Can we do better? Let a 0 (mod p). Let x = xo (mod p — 1).
Then
X = 3%. (apfl)xl.
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Interpolation over Q,: a*

Can we do better? Let a 0 (mod p). Let x = xo (mod p — 1).
Then
X = 3%. (apfl)xl.

The second factor gives a well-defined function.
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Interpolation over Q,: a*

Can we do better? Let a 0 (mod p). Let x = xo (mod p — 1).

Then
ax — aXO . (apfl)xl.

The second factor gives a well-defined function. Consider

S={xeN|x=x (modp—-1)}CZ,
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Interpolation over Q,: a*

Can we do better? Let a 0 (mod p). Let x = xo (mod p — 1).

Then
ax — aXO . (apfl)xl.

The second factor gives a well-defined function. Consider
S={xeN|x=x (modp—-1)}CZ,
This set is dense. Thus, any
f:S—=7Z

will have a unique continuous extension to Zj,.

Lecture 4
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Interpolation: the [-function

Recall -
M(n+1)= / e *x"dx = n!
0
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Interpolation: the [-function

Recall -
M(n+1)= / e *x"dx = n!
0

r(s—i—l):/ e *x*dx, seC
0

interpolates (over C) between the values n!
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Interpolation: the [-function

Note, there does not exist a continuous function

f:Zy,— ZLp, f(n)=n!, VneN.
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Note, there does not exist a continuous function
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Interpolation: the [-function

Note, there does not exist a continuous function

f:Zy,— ZLp, f(n)=n!, VneN.

Why? n! is too divisible by p.
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Interpolation: the [-function

Note, there does not exist a continuous function
f:Zy,— ZLp, f(n)=n!, VneN.
Why? n! is too divisible by p.

Try:
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Interpolation: the [-function

Note, there does not exist a continuous function
f:Zy,— ZLp, f(n)=n!, VneN.

Why? n! is too divisible by p.

Try:

Does not work either.
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Interpolation: the [-function

Theorem
Let p > 3 be a prime. The function

ni—(=1)" I] J

J<n,plj

admits a continuous extension to

[,:Z,—7Z,
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[

Proof: We need to show that

W=ntmp" = Th(n)=Ty(n) (mod pY).
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[

Proof: We need to show that

W=ntmp" = Th(n)=Ty(n) (mod pY).

First, observe that

o [y(n) € Zy =Zp\ PLp
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Mo(n')
YETLm)

= (-1 TIJ (mod pY)

n<j<n’
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Mo(n')
1=-° j (mod p"
rp(n) n<1_£n’
Indeed, assume first n; = 1. Note that (—1)?" = —1, thus we need

to show that

H j=-1 (mod p")

0<j<pN, ptj

EH\_[/Z/-].-(—].)

the only solutions to j2 =1 are j = 1,—1 (mod p").
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Mo(n')
1=-° j (mod p"
rp(n) n<1_£n’
Indeed, assume first n; = 1. Note that (—1)?" = —1, thus we need

to show that

H j=-1 (mod p")

0<j<pN, ptj

EH\_[/Z/-].-(—].)

the only solutions to j2 =1 are j = 1,—1 (mod p").
A similar argument works for arbitrary ny.
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[,: Properties

rp(a) -1 a - pZP

Indeed, may assume that a € N and use the definition.

Mp(a+1) {—a ERSN/
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[,: Properties

rp(a) -1 a - pZP

Indeed, may assume that a € N and use the definition.
o Let a:= ag + pa;, with p{ ag. Then

Mp(a)  Tp(l—a) = (-1)%

Mp(a+1) {—a ERSN/
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[,: Properties

rp(a) -1 a - pZP

Indeed, may assume that a € N and use the definition.
o Let a:= ag + pa;, with p{ ag. Then

Mp(a) - Tp(1—a) = (-1)%
Again, may assume a € Z. Check a = 1:
rp(l) =-1, rp(o) = _rp(l) =1

Mp(a+1) {—a ERSN/
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[,: Properties

°
M(a+1) [—a a€Z]

rP(a) -1 ac pr

Indeed, may assume that a € N and use the definition.
o Let a:= ag + pa;, with p{ ag. Then

Mp(a) - Tp(1—a) = (-1)%
Again, may assume a € Z. Check a = 1:
rp(l) = -1, rp(o) = _rp(l) =1
Then apply induction:

rp(a+1)-rp(1—(a+1)) —a/(—(— a)):—l acly
p(a) - Tp(l—a) ~-1/(-1) = a € pZ,
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[,: Properties

Recall:
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Artin-Hasse exponential

xP  xF
E,(x) := exp(x+?+?+---)
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Artin-Hasse exponential

xP  xP
E,(x) ::exp(x—{—?jt?jt---)

This converges for |x|, < 1 (better than exp(x)).
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Artin-Hasse exponential
Proof:

0 otherwise

p(n) == {(_W if n=py-

Lecture 4

pr
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Artin-Hasse exponential

Proof:

(=1)" if n=p;---p, distinct primes
p(n) =

0 otherwise

Properties:
Q@ Forn>1, onehas >, u(d)=0
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Artin-Hasse exponential

Proof:

(=1)" if n=p;---p, distinct primes
p(n) =

0 otherwise

Properties:
Q@ Forn>1, onehas >, u(d)=0
Q@ > 4, luld)| = 2k where k = # of distinct primes dividing n
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Artin-Hasse exponential

Proof:

(=1)" if n=p;---p, distinct primes
p(n) =

0 otherwise

Properties:
Q@ Forn>1, onehas >, u(d)=0
Q@ > 4, luld)| = 2k where k = # of distinct primes dividing n

e anl _N(nn) . |Og(1 - Xn) = X
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Artin-Hasse exponential

Proof:

—1)" if n=p---p, distinct primes
p(n) = {( ) 1

0 otherwise

Properties:
Q@ Forn>1, onehas >, u(d)=0
Q@ > 4, luld)| = 2k where k = # of distinct primes dividing n

e anl _N(n) . |Og(1 - Xn) = X

n

o ZnZLp)(n_‘u(n) : |Og(]. —Xn) =X+ X_: + .-

n
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Artin-Hasse exponential
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Artin-Hasse exponential
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Artin-Hasse exponential

@) =E0= [[ a-)

n>1, ptn

As formal power series.
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Artin-Hasse exponential

@) =E(= ] @-x)""

n>1, ptn

As formal power series.

Ep(x) € Zy[[x]]

and thus converges for |x|, < 1.
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Artin-Hasse exponential

Proof: For p { n, we have —@ € Zp.
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Artin-Hasse exponential

Proof: For p { n, we have —@ € Zp. Thus

(1-— X)_N(nn) € Zp[[x]]  binomial series expansion
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Artin-Hasse exponential

Proof: For p { n, we have —@ € Zp. Thus

(1-— X)_N(nn) € Zp[[x]]  binomial series expansion

Thus
I1¢) ez«

n, ptn
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Dieudonné-Dwork theory

Let f € 1+ xQ,[[x]]. Then

FEZl & FX)P/F(xP) € 1+ pZ,[[x]
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Dieudonné-Dwork theory

Proof: = f(x)? = f(xP) (mod p).
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Dieudonné-Dwork theory

Proof: = f(x)P = f(xP) (mod p). Since f(x) =1 (mod p) then
so is f(xP).
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Dieudonné-Dwork theory

Proof: = f(x)P = f(xP) (mod p). Since f(x) =1 (mod p) then
so is f(xP). Thus the series for f(xP) is invertible and
f(xP) € 1+ pZ,[[x]].
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Dieudonné-Dwork theory

Proof: = f(x)P = f(xP) (mod p). Since f(x) =1 (mod p) then
so is f(xP). Thus the series for f(xP) is invertible and
f(xP) € 1+ pZ,[[x]].
It follows that
f(x)?
f(xP)

€ 1+ pxZp[[x]).
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Dieudonné-Dwork theory

<  Let

f(X) =1+ Za;xi, aj € Qp.

i>1
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Dieudonné-Dwork theory

<  Let

X) =1+ Za;xi, aj € Qp.

i>1

Assume that

fF(x)P = F(xP)-(1+p>_ bxX), b€,
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Dieudonné-Dwork theory

<  Let

X) =1+ Za;xi, aj € Qp.

i>1

Assume that

fF(x)P = F(xP)-(1+p>_ bxX), b€,

We see that

30:1
alzb;leZp

Lecture 4
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Dieudonné-Dwork theory

Now we proceed by induction, assuming that a; € Z, for all i < n.
Comparing coefficients at x":
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Dieudonné-Dwork theory

Now we proceed by induction, assuming that a; € Z, for all i < n.
Comparing coefficients at x":

On the left: (3,_,ax)°  On the right: f(x?)- (1+p)_ bjx)

=> axP4p u D axP(14p)  b)

i<n ajy--apx1tip =3
= & +pa,+ pZ, = a» +pZ, — terms
~—~ \L
ip=n Z,
= ah +pa,+ pZ, Have: a% = a2 (mod p)
N g
ZF’
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Dieudonné-Dwork theory

Thus,
pan € pLy = an € Zp
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Dieudonné-Dwork theory

Thus,
pan € pLy, = an € ZLp
Apply: Since

E,(x)P = e”E,(xP) and e €1+ pxZ,[[x
p p p

we conclude
Ex(x) € Zp[[x]],

i.e., converges for |x|, < 1 (alternative proof of the previous
theorem).
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Dieudonné-Dwork theory

Thus,
pan € pLy, = an € ZLp
Apply: Since

E,(x)P = e”E,(xP) and e €1+ pxZ,[[x
p p p

we conclude
Ex(x) € Zp[[x]],

i.e., converges for |x|, < 1 (alternative proof of the previous
theorem). Here we used that

n -1 -2 1
Vp(p—)Zn—n _F n-+ >1, Vn
p—1 p-—1

p—1

Lecture 4
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Binomial polynomials

Recall,
(Z) _ k!(nni 5 = C) _x(x-1) .l.d(x— k+1) Ol
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Binomial polynomials

Recall,

() -mmmm = () - e

() 22

In particular, this extends to a continuous function Z, — Z,.
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Binomial polynomials

Recall,

() -mmmm = () - e

() 2z

In particular, this extends to a continuous function Z, — Z,.

Proof: OK for x € N, note that

()= ()
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Binomial polynomials

Let L be the Z-module of all functions f € Q[x| such that

f:N— Z.
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Binomial polynomials

Theorem

Let L be the Z-module of all functions f € Q[x| such that

f:N— Z.

Then L is free, with basis (’;) ie.,
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Binomial polynomials

The proof uses the difference operator:

Af(x) = f(x+1) — f(x).
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Binomial polynomials

The proof uses the difference operator:

Af(x) = f(x+1) — f(x).

Example:

Lecture 4

28 /51



Binomial polynomials

The proof uses the difference operator:

Af(x) = f(x+1) — f(x).

Example:
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Binomial polynomials

The proof proceeds by induction,

Lecture 4
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Binomial polynomials
The proof proceeds by induction,
f(0) := mg
X X
Af(x) = kaA(k) = ka<k_ 1)

It follows that every coefficient can be brought into the position of

(6)-
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Binomial polynomials
The proof proceeds by induction,

f(0) := mg

ot~ Sna;) -En(,")

It follows that every coefficient can be brought into the position of
(’6) This shows the uniqueness of the presentation.
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Binomial polynomials

The proof proceeds by induction,
f(0) := myg

ot~ Sna;) -En(,")

It follows that every coefficient can be brought into the position of
(’(;) This shows the uniqueness of the presentation.

The existence follows by setting

my := (A*£)(0), i.e., a Taylor expansion

f(x)zzw-x(x—l)---(x—knLl)
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Binomial polynomials

Assume that

(Z a%) . (Z c%) = (Z b%) .

Then
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Binomial polynomials

Assume that

(Z a%) . (Z c%) = (Z b%) .

Then

Proof: Compare coefficients at x".
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Binomial polynomials
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Binomial polynomials

k=

o

Proof: Apply to

() o (£82)

Lecture 4
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p-adic interpolation

Mahler 1961

Let f : Z, — Q, be a continuous function. Put

an(f) =3 (1) (Z) f(k), this is a finite sum
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p-adic interpolation

Mahler 1961

Let f : Z, — Q, be a continuous function. Put

an(f) =3 (1) (Z) f(k), this is a finite sum

Then .
; (i) a(f) = f(x)

0

converges uniformly.

Lecture 4 32/51



p-adic interpolation

@ The sum is finite on Z
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p-adic interpolation

@ The sum is finite on Z

@ |ax|, — 0, so that the series converges to a continuous function
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p-adic interpolation

@ The sum is finite on Z
@ |ax|, — 0, so that the series converges to a continuous function

@ Every continuous function has such a representation, and it is
unique (since determined by restriction to N)
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Mahler's theory

Let K be a field of characteristic zero, e.g., Q or Q,. Introduce the
following operators on K{x|:

@ translation operator: for a € K

7, :K[x] = K][x]
(1af)(x) := f(x + a)
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Mahler's theory

Let K be a field of characteristic zero, e.g., Q or Q,. Introduce the
following operators on K{x|:

@ translation operator: for a € K

7, :K[x] = K][x]
(1af)(x) := f(x + a)

@ o-operator: a linear endomorphisms ¢ : K[x] — K[x], which
commutes with 7, for all a € K, i.e.,

doTy=T,00,

and satisfies
d(x)=ce K*.
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Mahler's theory

It follows that

d(a) =0, Vae K™, deg(df)= deg(f)—1.
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Mahler's theory

It follows that

d(a) =0, Vae K™, deg(df)= deg(f)—1.

A basis system {gn = qns}nen is a collection of polynomials such
that

@ deg(qg,) = n, for all n
@ g, =nq,_ 1, forn>1,
@ go=1,9,(0) =0, for n > 1.
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Mahler's theory

It follows that

d(a) =0, Vae K™, deg(df)= deg(f)—1.

A basis system {gn = qns}nen is a collection of polynomials such
that

e deg(q,) = n, for all n
@ g, =nq,_ 1, forn>1,
@ go=1,9,(0) =0, for n > 1.

This is uniquely determined, by induction.

Lecture 4
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Mahler's theory

Examples:

J . __n
@ -l Qgh=X
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Mahler's theory

Examples:

a . _
Ox" qn—Xn

o A:=n —1d: g,

= (x)n = x(x —1)

Lecture 4
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Mahler's theory

Examples:
%: an = x"
o A:=n —1d: g,

© 7,—Tp foraztb

= (x)n = x(x —1)

Lecture 4
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Mahler's theory

Examples:

J . __n
@ -l Qgh=X

o Ai=m —1Id: gy = (X)n :=x(x—=1)---(x —n+1), A"q, = n!

© 7,—Tp foraztb

0.
ox "

§:=> ¢ (%)i € K[[aﬁx]], a#0

i>1

@ Any formal power series of order 1 in

Lecture 4
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Mahler's theory

For all f € K[x], we have

fx+y) =)~ &)
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Mahler's theory

For all f € K[x], we have

fx+y)=>_ J ZEX) - qk(y)

In particular, for f = g,, we obtain the "binomial formula":

a0 = Y (7)at0- an)

0<k<n
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Mahler's theory

For all f € K[x], we have

fx+y)=>_ J ZEX) ~q(y)

k>0

In particular, for f = g,, we obtain the "binomial formula":

W(x+y)= ) <Z) (%) - Gn-k(y)

0<k<n

as if we were computing

dn(x +y)" ="(q(x) +q(y))"

Lecture 4
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Mahler's theory

Let
T = K[x] — K][x]

be an endomorphism. The following properties are equivalent:

@ T commutes with 7
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Mahler's theory

Let
T = K[x] — K][x]
be an endomorphism. The following properties are equivalent:
@ T commutes with 7

@ T commutes with 7, for all a € K*
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Mahler's theory

Let
T = K[x] — K][x]
be an endomorphism. The following properties are equivalent:
@ T commutes with 7
@ T commutes with 7, for all a € K*
e for any J-operator there exists a ¢ € K[[d]] such that

T = (9)
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Mahler's theory

Let
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be an endomorphism. The following properties are equivalent:
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e for any J-operator there exists a ¢ € K[[d]] such that
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Mahler's theory

Let
T = K[x] — K][x]

be an endomorphism. The following properties are equivalent:

@ T commutes with 7
@ T commutes with 7, for all a € K*
e for any J-operator there exists a ¢ € K[[d]] such that

T = (9)

o T =d¢(3) € Kl[5]]
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Mahler's theory

Let
T = K[x] — K][x]
be an endomorphism. The following properties are equivalent:
@ T commutes with 7
@ T commutes with 7, for all a € K*
e for any J-operator there exists a ¢ € K[[d]] such that

T = (9)

o T =d¢(3) € Kl[5]]
- Toa%za%oT

@ Tod=00T, for all )-operators
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Mahler's theory

Proof: Based on the identities:

r oy (Ta)0)

k!
k>0
N qx(0) k
T, = Z R )
k>0

which means that if T commutes with ¢ then also with 7.
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Mahler's theory

Consider the Banach space (complete normed vector space)
C(ZP) ={f: Lp — QP}

of continuous functions on Z,,.
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Mahler's theory

Consider the Banach space (complete normed vector space)

C(ZP) ={f: Lp — QP}

of continuous functions on Z,. The norm is defined by

1]l = max{[f(x)[p},

note that Z, is compact.
Let

T:C(Zy) — C(Zp)

be a continuous endomorphism (note that 8% is not continuous). We
can define its norm

IT] = sup [[TF].
Ifll=1
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Mahler's theory

Assume that T commutes with 77 (or A =7, —Id). Then T
preserves

Klx] c C(Z,)

and the restriction of T to K[x] can be written as

> a,A" € K[[A]]
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Mahler's theory

Assume that T(1) =0, and || T|| = 1. Let {g,} be a basis system for
T, Tq, = ng,_1. Then

dn

1) =1

Every f € C(Z,) admits a representation (generalized Mahler series):

dn
f(X) = C,-,H,
with
¢ = (T"f)(0) —» 0
and

Il = sup [calp-
n>0
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Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.

@ They are multiplicative.
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Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.
@ They are multiplicative.

@ Many of them are related to the Riemann zeta function

()= ni R(s) > 1.

n>1

@ There are deep conjectures concerning statistical behavior of
these functions.
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Divisor function

(s) = (Z %) - (Z %) -y

is the number of different representations of n as a product of two
integers.
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Divisor function

Consider
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Divisor function
Consider

n<x

this counts the number of lattice points under the hyperbola.

Lecture 4 45 /51



Divisor function

Consider

n<x
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prove:

D(x) = xlog(x) + x(2y — 1) + E(x),  error term .
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Divisor function

Consider

n<x

this counts the number of lattice points under the hyperbola. We will
prove:

D(x) = xlog(x) + x(2y — 1) + E(x),  error term .

E(x) = O(xi*9), forall > 0.
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Divisor function

More generally,
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Divisor function

More generally,

We have

o.(nm) =o,(n)-o,(m), when (n,m)=1

Lecture 4 46 /51



Moebius function

1
oo - Ha-

where

0 otherwise
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Moebius function

1 ~TIc- p(n)
(s . n°
where

(=1)" if n=p;---p, distinct primes
p(n) := .
0 otherwise

Zu(n) = O(x2*9), forall €>0.
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Moebius function
1 p(n)
ol v
where

(=1)" if n=p;---p, distinct primes
p(n) := .
0 otherwise

Zu(n) = O(x2*9), forall €>0.

l.e., u(n) is a random sequence.
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Euler o-function

where

is the Euler function.
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Euler ¢-function

where

is the Euler function.

Lehmer's conjecture 1932

There are no composite n such that ¢(n) | (n —1).
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Dedekind 1/-function

where

is the Dedekind w-function.
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von Mangoldt function

: ° 1 A
_2((5))— log(¢ Zlogl—— _gl—p—s(p )y - (~1)
Since

(p—S)/ — (e—slog(P))/ _ Iog(p)e—s log(p)
we find () . Ar)
) T e =2
where

A(n) = {'°g<P) n=p

0 otherwise
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von Mangoldt function

We have

> " A(d) = log(n).

d|n

Lecture 4
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