
Lecture 4

Lecture 4 1 / 51



Analogies

We introduced p-adic numbers. Why?

Z ⇔ C[x ]

n =
∏

p
nj
j f (x) =

∏
(x − αj)

nj

n =
∑N

j=0 ajp
j f (x) =

∑N
j=0 aj(x − α)j

n
m

=
∑
j≥j0

ajp
j

︸ ︷︷ ︸
formal power series

f (x)
g(x)

=
∑
j≥j0

aj(x − α)j︸ ︷︷ ︸
Laurent series

Q ↪→ Qp C(x) ↪→ C((x − α))
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Functions

We started investigating functions

f : Qp → Qp

rational functions

series
∑

anx
n, e.g.,

ex =
∑ xn

n!
, logp(1+x) =

∑
n≥1

xn

n
(−1)n+1, for |x |p < p−

1
p−1 ,

(1 + x)a =
∑
n≥0

a(a − 1) · · · (a − n + 1)

n!
xn =: Ba,p(x) ∈ Zp[[x ]]
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Interpolation over R
Given a finite set of pairs

(xj , yj), j = 0, . . . ,m,

find a function (e.g., polynomial) f such that f (xj) = yj for all j .

Solution (Lagrange formula):

f (x) :=
m∑

k=0

yk ·
∏

j 6=k(x − xj)∏
j 6=k(xk − xj)

This is a polynomial interpolation of a finite set of points. Another
instance of interpolation is approximation via continuity: how does
one define ax? First for x ∈ Q, then by continuity, since Q is dense
in R.
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Interpolation over Qp

Recall that Z is dense in Zp.

Given a finite set (or a sequence)
y1, . . . , of elements in Qp find a continuous function

f : Zp → Qp

such that
f (n) = yn, ∀n

When is this possible? How does one achieve this?
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Interpolation over Qp

Let us try
ax , a ∈ Z,

p-adically.

Need to understand what happens when x ′ := x + pN .

Consider a = p, x = 0. Then

|ax − ax
′ |p = |1− pp

N |p = 1, ∀N .

Not good, we are not getting closer.
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Interpolation over Qp: ax

Assume that 1 < a < p. Then

|ax − ax
′ |p = |ax |p · |1− ap

N |p = 1, ∀N .

Again, we have a problem.
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Interpolation over Qp: ax

However, let a ≡ 1 (mod p), a = 1 + bp and x ′ = x + x ′′pN . Then

|x ′ − x |p ≤
1

pN
,

|ax−ax ′|p = |ax |p ·|1−ax
′−x |p = |1−(1+bp)x

′′pN |p ≤ |pN+1|p =
1

pN+1

It follows that for a ≡ 1 (mod p), the function

f (x) = ax

is well-defined and continuous for x ∈ Zp.

Lecture 4 8 / 51



Interpolation over Qp: ax

However, let a ≡ 1 (mod p), a = 1 + bp and x ′ = x + x ′′pN . Then

|x ′ − x |p ≤
1

pN
,

|ax−ax ′|p = |ax |p ·|1−ax
′−x |p = |1−(1+bp)x

′′pN |p ≤ |pN+1|p =
1

pN+1

It follows that for a ≡ 1 (mod p), the function

f (x) = ax

is well-defined and continuous for x ∈ Zp.

Lecture 4 8 / 51



Interpolation over Qp: ax

Can we do better? Let a 6≡ 0 (mod p). Let x ≡ x0 (mod p − 1).

Then
ax = ax0 · (ap−1)x1 .

The second factor gives a well-defined function. Consider

S := {x ∈ N | x ≡ x0 (mod p − 1)} ⊂ Zp

This set is dense. Thus, any

f : S → Zp

will have a unique continuous extension to Zp.
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Interpolation: the Γ-function

Recall

Γ(n + 1) =

∫ ∞
0

e−xxn dx = n!

Γ(s + 1) =

∫ ∞
0

e−xx s dx , s ∈ C

interpolates (over C) between the values n!
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Interpolation: the Γ-function

Note, there does not exist a continuous function

f : Zp → Zp, f (n) = n!, ∀n ∈ N.

Why? n! is too divisible by p.

Try: ∏
1≤j≤n, p-j

j

Does not work either.
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Interpolation: the Γ-function

Theorem
Let p ≥ 3 be a prime. The function

n 7→ (−1)n
∏

j≤n, p-j

j

admits a continuous extension to

Γp : Zp → Zp

Lecture 4 12 / 51



Γp

Proof: We need to show that

n′ = n + n1p
N ⇒ Γp(n) ≡ Γp(n′) (mod pN).

First, observe that

Γp(n) ∈ Z×p = Zp \ pZp
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Γp

1 ≡ Γp(n′)

Γp(n)
= (−1)n ·

∏
n≤j<n′

j (mod pN)

Indeed, assume first n1 = 1. Note that (−1)p
N

= −1, thus we need
to show that∏

n≤j<n+pN

j ≡ −1 (mod pN)

≡
∏

0<j<pN , p-j

j

≡
∏

jj ′︸︷︷︸
1

·1 · (−1)

the only solutions to j2 = 1 are j = 1,−1 (mod pN).
A similar argument works for arbitrary n1.
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Γp: Properties

Γp(a + 1)

Γp(a)
=

{
−a a ∈ Z×p
−1 a ∈ pZp

Indeed, may assume that a ∈ N and use the definition.

Let a := a0 + pa1, with p - a0. Then

Γp(a) · Γp(1− a) = (−1)a0

Again, may assume a ∈ Z. Check a = 1:

Γp(1) = −1, Γp(0) = −Γp(1) = 1

Then apply induction:

Γp(a + 1) · Γp(1− (a + 1))

Γp(a) · Γp(1− a)
=

{
−a/(−(−a)) = −1 a ∈ Z×p
−1/(−1) = 1 a ∈ pZp
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Γp: Properties

Γp

(
1

2

)2

= −
(
−1

p

)

Recall:

Γ

(
1

2

)2

= π.
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Artin-Hasse exponential

Ep(x) := exp(x +
xp

p
+

xp
2

p2
+ · · · )

Theorem
This converges for |x |p < 1 (better than exp(x)).
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Artin-Hasse exponential

Proof:

µ(n) :=

{
(−1)r if n = p1 · · · pr distinct primes

0 otherwise

Properties:

1 For n > 1, one has
∑

d |n µ(d) = 0

2
∑

d |n |µ(d)| = 2k , where k = # of distinct primes dividing n

3
∑

n≥1−
µ(n)
n
· log(1− xn) = x

4
∑

n≥1, p-n−
µ(n)
n
· log(1− xn) = x + xp

p
+ · · ·
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Artin-Hasse exponential

(3) ⇒ ex =
∏
n≥1

(1− xn)−
µ(n)
n

(4) ⇒ Ep(x) =
∏

n≥1, p-n

(1− xn)−
µ(n)
n

As formal power series.

Theorem

Ep(x) ∈ Zp[[x ]]

and thus converges for |x |p < 1.
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Artin-Hasse exponential

Proof: For p - n, we have −µ(n)
n
∈ Zp.

Thus

(1− x)−
µ(n)
n ∈ Zp[[x ]] binomial series expansion

Thus ∏
n, p-n

(· · · ) ∈ Zp[[x ]]
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Dieudonné-Dwork theory

Theorem
Let f ∈ 1 + xQp[[x ]]. Then

f ∈ Zp[[x ] ⇔ f (x)p/f (xp) ∈ 1 + pZp[[x ]]
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Dieudonné-Dwork theory

Proof: ⇒ f (x)p ≡ f (xp) (mod p).

Since f (x) ≡ 1 (mod p) then
so is f (xp). Thus the series for f (xp) is invertible and
f (xp) ∈ 1 + pZp[[x ]].
It follows that

f (x)p

f (xp)
∈ 1 + pxZp[[x ]].
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Dieudonné-Dwork theory

Proof: ⇒ f (x)p ≡ f (xp) (mod p). Since f (x) ≡ 1 (mod p) then
so is f (xp). Thus the series for f (xp) is invertible and
f (xp) ∈ 1 + pZp[[x ]].
It follows that

f (x)p

f (xp)
∈ 1 + pxZp[[x ]].

Lecture 4 22 / 51



Dieudonné-Dwork theory

⇐ Let
f (x) = 1 +

∑
i≥1

aix
i , ai ∈ Qp.

Assume that

f (x)p = f (xp) · (1 + p
∑

bjx
j), bj ∈ Zp.

We see that

a0 = 1

a1 = b1 ∈ Zp
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Dieudonné-Dwork theory

Now we proceed by induction, assuming that ai ∈ Zp for all i < n.
Comparing coefficients at xn:

On the left:
(∑

i≤n aix
i
)p

On the right: f (xp) · (1 + p
∑

bjx
j)

=
∑
i≤n

api x
ip + p (· · · )︸ ︷︷ ︸

ai1···aipx i1+···ip

∑
i≤ n

p

aix
pi(1 + p

∑
bjx

j)

= api︸︷︷︸
ip=n

+pan + pZp = a n
p︸︷︷︸

Zp

+pZp − terms

= apn
p︸︷︷︸

Zp

+pan + pZp Have: apn
p
≡ a n

p
(mod p)
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Dieudonné-Dwork theory

Thus,
pan ∈ pZp ⇒ an ∈ Zp

Apply: Since

Ep(x)p = epxEp(xp) and epx ∈ 1 + pxZp[[x ]]

we conclude
Ep(x) ∈ Zp[[x ]],

i.e., converges for |x |p < 1 (alternative proof of the previous
theorem). Here we used that

νp

(
pn

n!

)
≥ n − n − 1

p − 1
=

p − 2

p − 1
n +

1

p − 1
≥ 1, ∀n.
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Binomial polynomials

Recall,(
n

k

)
=

n!

k!(n − k)!
⇒
(
x

k

)
=

x(x − 1) · · · (x − k + 1)

k!
∈ Q[x ].

(
x

k

)
: Z→ Z.

In particular, this extends to a continuous function Zp → Zp.

Proof: OK for x ∈ N, note that(
−n
k

)
= (−1)k

(
n + k − 1

k

)
.
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Binomial polynomials

Theorem
Let L be the Z-module of all functions f ∈ Q[x ] such that

f : N→ Z.

Then L is free, with basis
(
x
k

)
, i.e.,

f (x) =
∑
k≥0

mk

(
x

k

)
, mk ∈ Z.
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Binomial polynomials

The proof uses the difference operator:

∆f (x) := f (x + 1)− f (x).

Example:

∆

(
x

0

)
= 0, ∆

(
x

k

)
=

(
x

k − 1

)
, k ≥ 1.

This is the analog of

∂ :
xk

k!
→ xk−1

(k − 1)!
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Binomial polynomials

The proof proceeds by induction,

f (0) := m0

∆f (x) =
∑

mk∆

(
x

k

)
=
∑

mk

(
x

k − 1

)

It follows that every coefficient can be brought into the position of(
x
0

)
. This shows the uniqueness of the presentation.

The existence follows by setting

mk := (∆k f )(0), i.e., a Taylor expansion

f (x) =
∑
k

(∆k f )(0)

k!
· x(x − 1) · · · (x − k + 1)
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Binomial polynomials

Assume that(∑
an
xn

n!

)
·
(∑

cn
xn

n!

)
=

(∑
bn

xn

n!

)
.

Then ∑(
n

k

)
akcn−k = bn.

Proof: Compare coefficients at xn.
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Binomial polynomials

bn =
n∑

k=0

(
n

k

)
ak ⇔ an =

n∑
k=0

(
n

k

)
(−1)n−kbk

Proof: Apply to (∑
an
xn

n!

)
· ex =

(∑
bn

xn

n!

)
.
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Binomial polynomials
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p-adic interpolation

Mahler 1961
Let f : Zp → Qp be a continuous function. Put

an(f ) :=
∑

(−1)n−k
(
n

k

)
f (k), this is a finite sum

Then
∞∑
k=0

(
x

k

)
ak(f )→ f (x)

converges uniformly.
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p-adic interpolation

The sum is finite on Z

|ak |p → 0, so that the series converges to a continuous function

Every continuous function has such a representation, and it is
unique (since determined by restriction to N)
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Mahler’s theory

Let K be a field of characteristic zero, e.g., Q or Qp. Introduce the
following operators on K [x ]:

translation operator: for a ∈ K

τa :K [x ]→ K [x ]

(τaf )(x) := f (x + a)

δ-operator: a linear endomorphisms δ : K [x ]→ K [x ], which
commutes with τa for all a ∈ K , i.e.,

δ ◦ τa = τa ◦ δ,

and satisfies
δ(x) = c ∈ K×.
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Mahler’s theory

It follows that

δ(a) = 0, ∀a ∈ K×, deg(δf ) = deg(f )− 1.

A basis system {qn = qn,δ}n∈N is a collection of polynomials such
that

deg(qn) = n, for all n

δqn = nqn−1, for n ≥ 1,

q0 = 1, qn(0) = 0, for n ≥ 1.

This is uniquely determined, by induction.
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Mahler’s theory

Examples:
∂
∂x

: qn = xn

∆ := τ1 − Id: qn = (x)n := x(x − 1) · · · (x − n + 1), ∆nqn = n!

τa − τb, for a 6= b

Any formal power series of order 1 in ∂
∂x

:

δ :=
∑
i≥1

ci

(
∂

∂x

)i

∈ K [[
∂

∂x
]], c1 6= 0
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Mahler’s theory

For all f ∈ K [x ], we have

f (x + y) =
∑
k≥0

δk f (x)

k!
· qk(y)

In particular, for f = qn, we obtain the ”binomial formula”:

qn(x + y) =
∑

0≤k≤n

(
n

k

)
qk(x) · qn−k(y)

as if we were computing

qn(x + y)” = ”(q(x) + q(y))n
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Mahler’s theory

Let
T := K [x ]→ K [x ]

be an endomorphism. The following properties are equivalent:

T commutes with τ1

T commutes with τa, for all a ∈ K×

for any δ-operator there exists a φ ∈ K [[δ]] such that

T = φ(δ)

T = φ( ∂
∂x

) ∈ K [[ ∂
∂x

]]

T ◦ ∂
∂x

= ∂
∂x
◦ T

T ◦ δ = δ ◦ T , for all δ-operators
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Mahler’s theory

Proof: Based on the identities:

T :=
∑
k≥0

(Tqk)(0)

k!
δk

τa =
∑
k≥0

qk(0)

k!
δk

which means that if T commutes with δ then also with τa.
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Mahler’s theory

Consider the Banach space (complete normed vector space)

C(Zp) = {f : Zp → Qp}

of continuous functions on Zp.

The norm is defined by

‖f ‖ := max{|f (x)|p},

note that Zp is compact.
Let

T : C(Zp)→ C(Zp)

be a continuous endomorphism (note that ∂
∂x

is not continuous). We
can define its norm

‖T‖ := sup
‖f ‖=1

‖Tf ‖.
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Mahler’s theory

Assume that T commutes with τ1 (or ∆ = τ1 − Id). Then T
preserves

K [x ] ⊂ C(Zp)

and the restriction of T to K [x ] can be written as∑
αn∆n ∈ K [[∆]]
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Mahler’s theory

Assume that T (1) = 0, and ‖T‖ = 1. Let {qn} be a basis system for
T , Tqn = nqn−1. Then

‖qn
n!
‖ = 1.

Every f ∈ C(Zp) admits a representation (generalized Mahler series):

f (x) =
∑

cn
qn
n!
,

with
cn := (T nf )(0)→ 0

and
‖f ‖ = sup

n≥0
|cn|p.
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Number-theoretic functions

Next, we will discuss various functions arising in arithmetic.

They are multiplicative.

Many of them are related to the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
, <(s) > 1.

There are deep conjectures concerning statistical behavior of
these functions.
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Divisor function

ζ2(s) =

(∑
n≥1

1

ns

)
·

(∑
m≥1

1

ms

)
=
∞∑
n=1

σ(n)

ns

where
σ(n) :=

∑
d |n

1.

is the number of different representations of n as a product of two
integers.
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Divisor function

Consider
D(x) :=

∑
n≤x

σ(n),

this counts the number of lattice points under the hyperbola. We will
prove:

D(x) = x log(x) + x(2γ − 1) + E (x), error term .

Conjecture

E (x) = O(x
1
4
+ε), for all ε > 0.
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Divisor function

More generally,

σr (n) =
∑
d |n

d r .

We have

σr (nm) = σr (n) · σr (m), when (n,m) = 1.
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Moebius function

1

ζ(s)
=
∏
p

(1− 1

ps
) =

∑ µ(n)

ns
,

where

µ(n) :=

{
(−1)r if n = p1 · · · pr distinct primes

0 otherwise

Titchmarsh 1951
Riemann hypothesis is equivalent to∑

n≤x

µ(n) = O(x
1
2
+ε), for all ε > 0.

I.e., µ(n) is a random sequence.
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Euler ϕ-function

ζ(s − 1)

ζ(s)
=
∑ ϕ(n)

ns
,

where

ϕ(n) := n ·
∏
p|n

(1− 1

p
) = #(Z/nZ)×

is the Euler function.

Lehmer’s conjecture 1932

There are no composite n such that ϕ(n) | (n − 1).
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Dedekind ψ-function

ζ(s) · ζ(s − 1)

ζ(2s)
=
∑
n≥1

ψ(n)

ns
,

where

ψ(n) := n ·
∏
p|n

(1 +
1

p
)

is the Dedekind ψ-function.
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von Mangoldt function

−ζ
′(s)

ζ(s)
= − log(ζ(s))′ =

∑
p

log(1− 1

ps
)′ =

∑
p

1

1− p−s
(p−s)′ · (−1)

Since
(p−s)′ = (e−s log(p))′ = log(p)e−s log(p)

we find

−ζ
′(s)

ζ(s)
=
∑
p

1

1− p−s
· log(p) =

∑
n≥1

Λ(n)

ns

where

Λ(n) :=

{
log(p) n = pk

0 otherwise

Lecture 4 50 / 51



von Mangoldt function

We have ∑
d |n

Λ(d) = log(n).
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