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Fermat’s last theorem, for n = 3

There are no nontrivial solutions to

x3 + y 3 = z3.
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Fermat’s last theorem, for n = 3

Lemma (Euler 1768)

If (a, b) = 1 and a2 + 3b2 = m3 then there exist s, t ∈ Z such that

a = s(s2 − 9t2) b = 3t(s2 − t2).
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Proof

We have
a2 + 3b2︸ ︷︷ ︸

cube

= (a + b
√
−3)︸ ︷︷ ︸

cube?

· (a − b
√
−3)︸ ︷︷ ︸

cube?

If so, then put
a + b

√
−3 = (s + t

√
−3)3.

Then
(s2 − 9st2)︸ ︷︷ ︸

a

+ (3s2t − 3t2)︸ ︷︷ ︸
b

√
−3
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Issues

But is this true?

NO:
4 = 2 · 2 = (1 +

√
−3) · (1−

√
−3).

However, it is true for the ring

Z[
1 +
√
−3

2
].

To understand this, we need theory – algebraic number theory.
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Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.

Lecture 3 6 / 54



Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.

Lecture 3 6 / 54



Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.

Lecture 3 6 / 54



Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.

Lecture 3 6 / 54



Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.

Lecture 3 6 / 54



Fermat’s last theorem, for n = 3

x3 = z3 − y 3 =
(
(p + q)3 − (p − q)3

)
= 6p2q + 2q3 = 2q(q2 + 3p2)

⇒ u3 =
q

4
(q2 + 3p2︸ ︷︷ ︸

odd

)

⇒ q ≡ 0 (mod 4), p ≡ 1 (mod 2)

(
q

4
, q2 + 3p2) = 1⇔ (q, 3p2︸︷︷︸

(q2+3p2)−q2)

) = 1⇔ q 6≡ 0 (mod 3)
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Fermat’s last theorem, for n = 3

Case 1.

If q 6≡ 0 (mod 3) then q/4 and q2 + 3p2 are cubes, by Euler’s
lemma, we have

q = s(s2 − 9t2), p = 3t(s2 − t2) odd.

It follows that t is odd, s is even, (s, t) = 1. Then 2q = 8q/4 is also
a cube. Thus

2s(s2 − 9t2) = 2s(s − 3t)(s + 3t) also cube.

Since q 6≡ 0 (mod 3), we have

(2s, s − 3t) = (2s, s + 3t) = (s − 3t, s + 3t) = 1.
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Fermat’s last theorem, for n = 3

Thus there exist x1, y1, z1 such that

x3
1 = 2s, y 3

1 = −(s + 3t), z3
1 = (s − 3t)

which implies that

x3
1 + y 3

1 = z3
1 , x1 ≡ 0 (mod 2)

But
x3 = 2q(q2 + 3p2)⇒ | q︸︷︷︸

s(s2−9t2)

| < |x3/2|,

thus
|x1|3 = 2|s| < |x |3,

which contradicts the assumption that x is minimal. This is an
instance of infinite descent.
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Fermat’s last theorem, for n = 3

Case 2.

q = 3r , r ≡ 0 (mod 4)

Then

u3 =
3

4
r(9r 2 + 3p2) =

9

4
r(3r 2 + p2)

We have

(
9

4
r , (3r 2 + p2)) = 1,

and both are cubes. By Euler’s lemma

p = s(s2 − 9t2), r = 3t(s2 − t2)

with t even and s odd.
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Fermat’s last theorem, for n = 3

Thus

8

27
· 9

4
· r =

2

3
r = 2t(s2 − t2) 2t(s + t)(s − t)

and the factors are coprime, thus all cubes.

As before, there exist x1, y1, z1 such that

x3
1 = 2t, y 3

1 = s − t, z3
1 = s + t

with
x3

1 + y 3
1 = z3

1

and

|x1|3 < 2|t| ≤ 2

3
|r | =

2

9
|q| < 2|q| < |x |3,

contradiction.
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Diophantine equations

Let f ∈ Z[t, x1, . . . , xn]. Consider

f (t, x1, . . . , xn) = 0,

either as an equation in the unknowns t, x1, . . . , xn or as an algebraic
family of equations in x1, . . . xn parametrized by t ∈ Z.
Examples:

x2 + r(t)y 2 = q(t)z2, with r , q ∈ Z[t]

x3 + y 3 = tz3

x3 + y 3 + z3 = t (e.g., t = 3)
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Hilbert’s problems, Paris 1900

10.
Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers
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Matiyasevich (1970)

Matiyasevich-Robinson (1975)

Theorem
The set of t ∈ Z such that f (t, . . . , xn) = 0 is solvable is not
decidable, i.e., there is no algorithm to decide whether or not a
diophantine equation is solvable in integers.

Theorem
There exists an f ∈ Z[t1, t2, x0, . . . , xn], with n ≤ 13, such that
f (a, n, z0, · · · , zn) = 0 for some z0, · · · , zn ∈ N iff a ∈ Dn, where
D0,D1, · · · is a list of all recursively enumerable Dj ⊂ N.

Conjecture: n ≤ 3.
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Matiyasevich (1970)

Matiyasevich-Robinson (1975)

The solubility of diophantine equations is not decidable.

There is a single equation

F (t, x1, . . . , xn) = 0

with coefficients in Z, which is equivalent to all of (formal
mathematics): the statement #t is provable if and only if the above
equation is solvable in x1, . . . , xn ∈ Z.

Lecture 3 15 / 54



Matiyasevich (1970)

Matiyasevich-Robinson (1975)

The solubility of diophantine equations is not decidable.

There is a single equation

F (t, x1, . . . , xn) = 0

with coefficients in Z, which is equivalent to all of (formal
mathematics): the statement #t is provable if and only if the above
equation is solvable in x1, . . . , xn ∈ Z.

Lecture 3 15 / 54



G. Chaitin (1993)

Theorem
The set of t ∈ Z such that ft = 0 has infinitely many primitive
solutions is algorithmically random.

Abstract: One normally thinks that everything that is true is true for a reason. I’ve found mathematical truths that are true for

no reason at all. These mathematical truths are beyond the power of mathematical reasoning because they are accidental and

random. Using software written in Mathematica that runs on an IBM RS/6000 workstation, I constructed a perverse 200-page

algebraic equation with a parameter t and 17,000 unknowns. For each whole-number value of the parameter t, we ask whether

this equation has a finite or an infinite number of whole number solutions. The answers escape the power of mathematical

reason because they are completely random and accidental.
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Points

Basic rings: R

Fp = Z/pZ,Z or C[t]...

Basic geometric objects: An and Pn = (An+1 \ 0) /Gm

Varieties: X affine ⊂ An (system of polynomial equations with
coefficients in R), resp. X projective ⊂ Pn (system of
homogeneous polynomial equations with coefficients in R)

R-valued points: X affine(R), resp. X projective(R). Note

X projective(Z) = X projective(Q).

for now: work projectively

first nontrivial variety: Xf := {f (x) = 0} ⊂ Pn, a hypersurface
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Dimension 1

Basic invariant: dimension

ax r + by r + cz r = 0,

with a, b, c ∈ Z, abc 6= 0, and r ≥ 2.

r = 2 – no solutions or infinitely many solutions

r = 3 – none, finitely many or infinitely many solutions

r ≥ 4 – at most finitely many solutions
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Conics: geometry

This is how one derives formulas for Pythagorean triples.
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Cubic equations: geometry

This is how one adds rational points.
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Dimension 2

ax r + by r = cz r + dt r ,

with a, b, c , d ∈ Z, abcd 6= 0, and r ≥ 2.

r = 2 - no solutions or a dense set of solutions

r = 3 - no solutions or a dense set of solutions

r ≥ 4 - ???
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Quadric surface
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Cubic surface
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Cubic surface
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Quartic surface
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Quartic surface - sliced
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Quartic surface - sliced

Consider
ax4 + by 4 + cz4 + dt4 = 0

Assume that abcd is a square in Q and

a + b + c + d = 0

but no two of the coefficients sum to zero. Then Q-rational points
are dense.

Special case of a general theorem of Bogomolov-T., worked out by
Logan, McKinnon, van Luijk in 2010.
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Reminder

Number theory studies systems of (homogeneous or inhomogeneous)
equations with coefficients in Z,Q, or more general rings or fields.
We will mostly focus on homogeneous equations. (Geometrically, on
rational points on algebraic varieties.)

The simplest such systems consist of one equation, e.g.,

ax2 + by 2 = cz2, x3 + y 3 + z3 = t3, ...

The corresponding varieties are called hypersurfaces.
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Xf ⊂ Pn over Fq

Consider
f (x0, . . . , xn) =

∑
|d|=d

ad x
d,

in multi-index notation.

Theorem [Chevalley-Warning (1936)]

If d ≤ n then X (Fq) 6= ∅.
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Proof

Step 1. δ − function :
∑p−1

x=1 x
d =

{
−1 (mod p) if p − 1 | d
0 (mod p) if p − 1 - d

Step 2. Let φ ∈ Z[x0, . . . , xn], with deg(φ) ≤ n(p − 1). Then∑
x0,...,xn

φ(x0, . . . , xn) ≡ 0 (mod p).

Proof: For monomials, we have∑
x0,...,xn

xd0
0 · · · xdnn =

∏
(
∑

x
dj
j ), with d0 + . . . + dn ≤ n(p − 1).

For some j , we have 0 ≤ dj < p − 1, and we apply Step 1.
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−1 (mod p) if p − 1 | d
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Proof

Step 3. Let f ∈ Z[x0, . . . , xn] with deg(f ) ≤ n then

N(f ) := #{x | f (x) = 0} ≡ 0 (mod p).

Proof: For φ(x) = 1− f (x)p−1 we have deg(φ) ≤ deg(f ) · (p − 1).
Apply 2:

N(f ) =
∑

x0,...,xn

φ(x).

Step 4. The homogeneous equation f (x) = 0 has a trivial solution. It
follows that

N(f ) > 1 and Xf (Fp) 6= ∅.
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Xf ⊂ Pn over Q

Theorem [Birch (1961)]

If
n ≥ (deg(f )− 1) · 2deg(f ),

and f is smooth, then Xf satisfies the local-global (Hasse) principle.

Moreover:

asymptotic formulas

better bounds for n for small deg(f )
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Heuristic

Given: f ∈ Z[x0, . . . , xn] homogeneous of degree d = deg(f ).

We have |f (x)| = O(Bd), for ‖x‖ := maxj(|xj |) ≤ B .

May (?) assume that the probability of f (x) = 0 is B−d .

There are Bn+1 “events” with ‖x‖ ≤ B .

We expect Bn+1−d solutions with ‖x‖ ≤ B .

Hope: reasonable at least when n + 1− d ≥ 0.
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Circle method I

δ-function: ∫ 1

0

e2πiαf (x)dα =

{
1 f (x) = 0
0 f (x) 6= 0

N(f ,B) := #{x ∈ Zn+1 | f (x) = 0, ‖x‖ ≤ B}

N(f ,B) :=
∑
‖x‖≤B

∫ 1

0

e2πiαf (x)dα =

∫ 1

0

S(α)dα,

where
S(α) :=

∑
‖x‖≤B

e2πiαf (x)
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Circle method II: S(α)
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Circle method III

major arcs M :=
⋃

(a,q)=1,q≤B∆ Ma,q, where

Ma,q := {α | |α− a

q
| ≤ B−d−δ}.

minor arcs: m := [0, 1] \M
Goal: ∫

m

S(α)dα = O(Bn+1−d−ε),∫
M

S(α)dα ∼
∏
p

τp · τ∞ · Bn+1−d for B →∞

Input: Weyl’s bounds (1916), e.g, |
∑

1≤x≤B e2πiαxd | “small”
when |α− a/q| “large”.
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Xf ⊂ Pn over C(t)

Theorem
If d = deg(f ) ≤ n then Xf (C(t)) 6= ∅.

Proof: Insert xj = xj(t) ∈ C[t], of degree e, into

f =
∑
|d|=d

fdx
d = 0.

This gives a system of e · d + const equations in e(n + 1) variables.
This system is solvable for e � 0, provided d ≤ n.
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Classification

Low-degree (Fano varieties) – many rational points

Intermediate

High-degree (varieties of general type) – few rational points
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Main results

Mordell’s conjecture /Faltings’ theorem: curves of general type
have finitely many rational points. E.g., any (smooth) curve in
P2, with equation

fd(x0, x1, x2) = 0, d = deg(f ) ≥ 4,

has only finitely many rational points.

Surfaces of low degree, e.g., cubic surfaces

x3 + y 3 = x3 + t3

are understood, all have (potentially) dense sets of rational
points.

Fano threefolds (Harris, Bogomolov, T.): all have (potentially)
dense sets of rational points, with the possible exception of

w 2 = f (x0, x1, x2, x3), deg(f ) = 6.
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Summary

(nontrivial) solutions of homogeneous equations over fields F
give F -rational points X (F ) on corresponding projective
algebraic varieties X

properties of the sets X (F ) reflect the geometric/algebraic
complexity of X (e.g., dimension, degree) and the structure of F
(e.g., topology, analytic structure)
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Analytic structure

How does one pass from number theory to geometry?

By viewing

Q ↪→ R,C.

Are there other possibilities? Indeed, there are: p-adic numbers!
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Ordered abelian groups

(Γ,+)

Examples: Γ = Z,Q,R

Γ∞ := Γ ∪ {∞}

γ +∞ =∞+∞ =∞ ∀γ ∈ Γ
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Valuations

Let F be a field, e.g., Q, C(t). A valuation with value group Γ is a
map

ν : F → Γ∞

such that

ν is a surjective homomorphism on F×, i.e.,
ν(xy) = ν(x) + ν(y) for all x , y ∈ F×.

the triangle inequality holds:

ν(x + y) ≥ min(ν(x), ν(y)), ∀x , y ,

ν(0) =∞.
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Valuations: Example F = Q

νp : Z \ 0 ↪→ R, n = pνp(n) · n′, with (n′, p) = 1

νp : Q ↪→ R ∪ {∞}

νp(
a

b
) = νp(a)− νp(b),

Γ = Z.
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Valuations: Example F = C(x)

ν : C[x ] \ 0 ↪→ Z,

f =
N∑

n=0

anx
n

ν(f ) = min{n|an 6= 0}

ν(
f

g
) = ν(f )− ν(g)

Γ = Z.
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Valuations: Example F = C(x , y)

ν : C[x , y ] \ 0 ↪→ R,

f (x , y) =
∑
n,m≥0

an,mx
nym

ν(f ) = min{n +
√

5m | anm 6= 0}

ν(
f

g
) = ν(f )− ν(g)

Γ = {n +
√

5m | n,m ∈ Z} ⊂ R.

Lecture 3 46 / 54



Valuations: Example F = C(x , y)

ν : C[x , y ] \ 0 ↪→ R,

f (x , y) =
∑
n,m≥0

an,mx
nym

ν(f ) = min{n +
√

5m | anm 6= 0}

ν(
f

g
) = ν(f )− ν(g)

Γ = {n +
√

5m | n,m ∈ Z} ⊂ R.

Lecture 3 46 / 54



Valuations: Q

Recall the usual absolute value:

|x | :=

{
x x ≥ 0

−x x < 0

Are there others?

For F = Q consider
|x |p := p−νp(x).

We have
|x + y |p ≤ max{|x |p, |y |p}, |0|p = 0.

The inequality is stronger!

Lecture 3 47 / 54



Valuations: Q

Recall the usual absolute value:

|x | :=

{
x x ≥ 0

−x x < 0

Are there others?

For F = Q consider
|x |p := p−νp(x).

We have
|x + y |p ≤ max{|x |p, |y |p}, |0|p = 0.

The inequality is stronger!

Lecture 3 47 / 54



Valuations: Q

Recall the usual absolute value:

|x | :=

{
x x ≥ 0

−x x < 0

Are there others?

For F = Q consider
|x |p := p−νp(x).

We have
|x + y |p ≤ max{|x |p, |y |p}, |0|p = 0.

The inequality is stronger!

Lecture 3 47 / 54



Valuations

Theorem (Ostrovski)

Up to equivalence, these are the only valuations on Q.

Product formula ∏
p

|x |p · |x | = 1, for all x ∈ Q×.
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Topology

Let F be a field, with absolute value | · |.

It induces a metric

d(x , y) := |x − y |.

Properties:

d(x , y) ≥ 0

d(x , y) = d(y , x)

d(x , z) ≤ d(x , y) + d(y , z) – triangle inequality

This defines the structure of a metric space, F is a topological field.
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Topology

For F = Q and d = | · |p we have the stronger inequality

d(x , z) ≤ max{d(x , y), d(y , z)},

the corresponding space is called ultra-metric.

We have the notions of intervals or balls:

B(a, r) := {x ∈ F | d(x , a) < r} ⊂ B(a, r) := {x ∈ F | d(x , a) ≤ r},
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Topology: Q

Let F = Q and | · | = | · |p. Then

B(0, 1) = B(0, 1) ∪ B(1, 1) ∪ . . . ∪ B(p − 1, 1),

so that B̄ are open and closed.

Example: Show that in Q, | · |5 one has

B(1, 1) = B(1,
1

2
) = B(1,

1

5
)
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Topology

For ultrametric absolute values, we have

b ∈ B(a, r)⇒ B(a, r) = B(b, r)

(same for B̄)

a, b ∈ F , r , s ∈ R≥0 ⇒ If

B(a, r) ∩ B(b, s) 6= ∅

then either

B(a, r) ⊆ B(b, s) or B(a, r) ⊇ B(b, s).
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Valuation theory

Oν := B(0, 1) valuation ring

mν := B(0, 1) valuation ideal

kν := Oν/mν residue field
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Valuation theory

F = Q, | · |p. In this case

Oν = Z(p) := {a
b
, p - b}

mν = pZ(p)

kν = Fp = Z/pZ

to be continued ...
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