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Fermat’s little theorem

Recall the Euler function

ϕ(n) = n ·
∏
p|n

(1− 1

p
)

How to compute it? We need to factor n, which is a hard problem.

aϕ(n) ≡ 1 (mod n).
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Applications to cryptography

A,B want to exchange messages

Suppose we have large (distinct) primes p, q such that

(p − 1)(q − 1) | ed − 1

for some e, d .

Public: N = pq, e

Secret: p, q, d
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Applications to cryptography

A wants to send a message M < N

A computes X := Me (mod N) and sends it via open channels

B computes X d ≡ M (mod N)

Proof:
(Me)d ≡ Med ≡ M rϕ(N)+1 ≡ M (mod N)

This is OK if (M ,N) = 1, which is almost always so; if not, change
the message slightly.

Lecture 2 4 / 47



Applications to cryptography

A wants to send a message M < N

A computes X := Me (mod N) and sends it via open channels

B computes X d ≡ M (mod N)

Proof:
(Me)d ≡ Med ≡ M rϕ(N)+1 ≡ M (mod N)

This is OK if (M ,N) = 1, which is almost always so; if not, change
the message slightly.

Lecture 2 4 / 47



Applications to cryptography

A wants to send a message M < N

A computes X := Me (mod N) and sends it via open channels

B computes X d ≡ M (mod N)

Proof:
(Me)d ≡ Med ≡ M rϕ(N)+1 ≡ M (mod N)

This is OK if (M ,N) = 1, which is almost always so; if not, change
the message slightly.

Lecture 2 4 / 47



Applications to cryptography

Security: C intercepts the message, knows N , e, needs M .

For this,
needs to solve the congruence

ed ≡ 1 (mod ϕ(N)).

Unknown: d , ϕ(N). Currently, there are no fast algorithms to
compute ϕ(N) – one needs to factor N .
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Applications to cryptography

Public key: Suppose there are A1, . . . ,Am participants, and they
want to exchange information so that it remains secret to others.

Ai picks pi , qi large primes, puts Ni = piqi , and chooses residues
ei , di (mod ϕ(Ni)), with

eidi ≡ 1 (mod ϕ(Ni)).

The numbers (ei ,Ni) are published in yellow pages

If Ai wants to send M to Aj , computes Mej (mod Nj) and sends
it.

To decode, Aj computes

(Mej )dj ≡ Mejdj ≡ M rϕ(Nj )+1 ≡ M (mod Nj).
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Equations

3x + 5 = 0

x2 − Dy 2 = 1

x2 + y 2 = z2

3x3 + 4y 3 = 5z3

x3 + 4y 3 = 25z3 + 10t3

x4 + 2y 4 = z4 + 4t4
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Basic questions

Existence of solutions in Z or Q?

Qualitative description of the set of solutions: finite, dense?

Quantitative description: how many solutions?
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Diophantus of Alexandria

Solutions in Z of
x2 + y 2 = z2

are given by

x = 2mn

y = m2 − n2

z = m2 + n2

with m, n ∈ Z.
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Pell’s equation: x2 − Dy 2 = 1, D > 0

D = 61 x = 1766319049 y = 226153980

D = 63 x = 8 y = 1

D = 73 x = 2281249 y = 267000

D = 97 x = 62809633 y = 6377352

D = 99 x = 10 y = 1

Lecture 2 10 / 47



Cubic equations

y 2 = x3 + Ax + B , A,B ∈ Z

If (x1, y1) and (x2, y2), with x1 6= x2, are solutions then so is (x3, y3)
with

x3 := −x1 − x2 + δ2

y3 = δ(x1 − x3)− y1,

where

δ :=
y1 − y2
x1 − x2

.

In particular, if x1, y1, x2, y2 ∈ Q then also x3, y3.
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More equations

Euler (1769):
x4 + y 4 + z4 = t4

has no nontrivial solutions.

(Elkies, 1998):

26824404 + 153656394 + 187967604 = 206156734

Swinnerton-Dyer (2001):

x4 + 2y 4 = z4 + 4t4

has no nontrivial solutions.
(Elsenhans/Jahnel, 2004):

4848014 + 2 · 12031204 = 11694074 + 4 · 11575204
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More equations

Sums of cubes (a problem of Mordell):

x3 + y 3 + z3 = k .

Sutherland-Booker 2020:

5699368212219623807203 + (−569936821113563493509)3

+(−472715493453327032)3 = 3,

The only other solutions are (1, 1, 1) and (4, 4,−5).

We implemented these improvements on Charity Engine’s global
compute grid of 500,000 volunteer PCs and found new
representations for several values of k, including k = 3 and k = 42.
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Solving diophantine equations

Theorem (Legendre)

The equation

ax2 + by 2 = cz2, a, b, c ∈ N, squarefree, coprime

is solvable in Z iff it is solvable modulo p, for all primes p.

First instance of the Hasse principle (local-global principle).
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Proof

(1) x2 + y 2 = z2 is solvable: (2mn,m2 − n2,m2 + n2)

(2) If p | c and (x0, y0, z0) is a nontrivial solution then x0, y0 6≡ 0
(mod p). Thus we can express

ax2 + by 2 ≡ a

y0
(xy0 + yx0)(xy0 − yx0) (mod p)

ax2 + by 2 − cz2 ≡ Lp(x , y , z)Mp(x , y , z) (mod p)

with linear Lp and Mp, for all p. Same holds for p | abc .

(3) By the Chinese Remainder Theorem we find

ax2 + by 2 − cz2 ≡ L(x , y , z)M(x , y , z) (mod abc)
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Proof

(4) Now consider the box

B :=


0 ≤ x <

√
bc

0 ≤ y <
√
ac

0 ≤ z <
√
ab

Since gcd(a, b) = 1, ..., none of the
√
ab,
√
ac ,
√
bc is an

integer. It follows that

# lattice points in B >
√
ab
√
ac
√
bc = abc .

Thus there exist (x1, y1, z1) and (x2, y2, z2) such that

L(x1, y1, z1) ≡ L(x2, y2, z2) (mod abc)
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Proof

(5) Put
x0 = x1 − x2, y0 := y1 − y2, z0 := z1 − z2.

We have

|x0| ≤
√
bc , |y0| ≤

√
ac , |z0| ≤

√
ab

and
ax20 + by 2

0 − cz20 ≡ 0 (mod abc).
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Proof

At the same time

−abc < ax20 + by 2
0 − cz20 < 2abc .

Either

ax20 + by 2
0 − cz20 = 0 or ax20 + by 2

0 − cz20 = abc .

In the second case,

a(x0z0 + by0)2 + b(y0 − ax0)2 − c(z20 − ab)2 = 0

which is a nontrivial solution since z20 = ab is not possible by
coprimality.
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Reichard’s equation

Application of Quadratic reciprocity: if p, q are odd primes then(
p

q

)
=

(
q

p

)
· (−1)

p−1
2
· q−1

2

Theorem
The equation

x4 − 17y 4 = 2z2

is solvable modulo all primes, and in the reals, but not in Z.

Lecture 2 19 / 47



Reichard’s equation

Application of Quadratic reciprocity: if p, q are odd primes then(
p

q

)
=

(
q

p

)
· (−1)

p−1
2
· q−1

2

Theorem
The equation

x4 − 17y 4 = 2z2

is solvable modulo all primes, and in the reals, but not in Z.

Lecture 2 19 / 47



Reichard’s equation: proof

We may assume that gcd(x , y , z) = 1. Recall that(
2

17

)
= 1.

For all primes p dividing z we have a congruence

x4 ≡ 17y 4 (mod p)

i.e., ( p

17

)
= 1 ⇒

(
17

p

)
= 1.
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Reichard’s equation: proof

It follows that z is a square modulo 17,

z ≡ z21 (mod 17).

Then

x4 ≡ 2z41 (mod 17)⇒ x16 ≡ 16 · y 16 (mod 17)

This is a contradiction, as 1 6≡ −1 (mod 17).
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Diagonal cubics

Now consider similar equations of higher degree:

ax3 + by 3 = cz3.

no local-global principle

no effective algorithm to decide solvability

the set of solutions could be finite or infinite

Selmer’s example:

3x3 + 4y 3 + 5z3 = 0

is solvable modulo all primes and in R but not Z.
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Fermat’s last theorem, for n = 3

Lemma (Euler 1768)

If (a, b) = 1 and a2 + 3b2 = m3 then there exist s, t ∈ Z such that

a = s(s2 − 9t2) b = 3t(s2 − t2).
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Proof

We have
a2 + 3b2︸ ︷︷ ︸

cube

= (a + b
√
−3)︸ ︷︷ ︸

cube?

· (a − b
√
−3)︸ ︷︷ ︸

cube?

If so, then put
a + b

√
−3 = (s + t

√
−3)3.

Then
(s2 − 9st2)︸ ︷︷ ︸

a

+ (3s2t − 3t2)︸ ︷︷ ︸
b

√
−3
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Issues

But is this true?

NO:
4 = 2 · 2 = (1 +

√
−3) · (1−

√
−3).

However, it is true for the ring

Z[
1 +
√
−3

2
].

To understand this, we need theory – algebraic number theory.
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Fermat’s last theorem, for n = 3

Assuming Euler’s lemma, consider

x3 + y 3 = z3.

We may assume that

x , y , z are pairwise coprime

x ≡ 0 (mod 2) and y , z ≡ 1 (mod 2)

|x | is minimal, x = 2u

p := (z + y)/2, q := (z − y)/2, both in Z, (p, q) = 1, if one of
them is even, the other is odd.
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Fermat’s last theorem, for n = 3

x3 = z3 − y 3 =
(
(p + q)3 − (p − q)3

)
= 6p2q + 2q3 = 2q(q2 + 3p2)

⇒ u3 =
q

4
(q2 + 2p2︸ ︷︷ ︸

odd

)

⇒ q ≡ 0 (mod 4), p ≡ 1 (mod 2)

(
q

4
, q2 + 3p2) = 1⇔ (q, 3p2︸︷︷︸

(q2+3p2)−q2)

) = 1⇔ q 6≡ 0 (mod 3)
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Fermat’s last theorem, for n = 3

Case 1.

If q 6≡ 0 (mod 3) then q/4 and q2 + 3p2 are cubes, by Euler’s
lemma, we have

q = s(s2 − 9t2), p = 3t(s2 − t2) odd.

It follows that t is odd, s is even, (s, t) = 1. Then 2q = 8q/4 is also
a cube. Thus

2s(s2 − 9t2) = 2s(s − 3t)(s + 3t) also cube.

Since q 6≡ 0 (mod 3), we have

(2s, s − 3t) = (2s, s + 3t) = (s − 3t, s + 3t) = 1.
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Fermat’s last theorem, for n = 3

Thus there exist x1, y1, z1 such that

x31 = 2s, y 3
1 = −(s + 3t), z31 = (s − 3t)

which implies that

x31 + y 3
1 = z31 , x1 ≡ 0 (mod 2)

But
x3 = 2q(q2 + 3p2)⇒ | q︸︷︷︸

s(s2−9t2)

| < |x3/2|,

thus
|x1|3 = 2|s| < |x |3,

which contradicts the assumption that x is minimal. This is an
instance of infinite descent.
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Fermat’s last theorem, for n = 3

Case 2.

q = 3r , r ≡ 0 (mod 4)

Then

u3 =
3

4
r(9r 2 + 3p2) =

9

4
r(3r 2 + p2)

We have

(
9

4
r , (3r 2 + p2)) = 1,

and both are cubes. By Euler’s lemma

p = s(s2 − 9t2), r = 3t(s2 − t2)

with t even and s odd.

Lecture 2 30 / 47



Fermat’s last theorem, for n = 3

Case 2.

q = 3r , r ≡ 0 (mod 4)

Then

u3 =
3

4
r(9r 2 + 3p2) =

9

4
r(3r 2 + p2)

We have

(
9

4
r , (3r 2 + p2)) = 1,

and both are cubes. By Euler’s lemma

p = s(s2 − 9t2), r = 3t(s2 − t2)

with t even and s odd.

Lecture 2 30 / 47



Fermat’s last theorem, for n = 3

Case 2.

q = 3r , r ≡ 0 (mod 4)

Then

u3 =
3

4
r(9r 2 + 3p2) =

9

4
r(3r 2 + p2)

We have

(
9

4
r , (3r 2 + p2)) = 1,

and both are cubes.

By Euler’s lemma

p = s(s2 − 9t2), r = 3t(s2 − t2)

with t even and s odd.

Lecture 2 30 / 47



Fermat’s last theorem, for n = 3

Case 2.

q = 3r , r ≡ 0 (mod 4)

Then

u3 =
3

4
r(9r 2 + 3p2) =

9

4
r(3r 2 + p2)

We have

(
9

4
r , (3r 2 + p2)) = 1,

and both are cubes. By Euler’s lemma

p = s(s2 − 9t2), r = 3t(s2 − t2)

with t even and s odd.

Lecture 2 30 / 47



Fermat’s last theorem, for n = 3

Thus

8

27
· 9

4
· r =

2

3
r = 2t(s2 − t2) 2t(s + t)(s − t)

and the factors are coprime, thus all cubes.

As before, there exist x1, y1, z1 such that

x31 = 2t, y 3
1 = s − t, z31 = s + t

with
x31 + y 3

1 = z31

and

|x1|3 < 2|t| ≤ 2

3
|r | =

2

9
|q| < 2|q| < |x |3,

contradiction.
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Diophantine equations

Let f ∈ Z[t, x1, . . . , xn]. Consider

f (t, x1, . . . , xn) = 0,

either as an equation in the unknowns t, x1, . . . , xn or as an algebraic
family of equations in x1, . . . xn parametrized by t ∈ Z.
Examples:

x2 + r(t)y 2 = q(t)z2, with r , q ∈ Z[t]

x3 + y 3 = tz3

x3 + y 3 + z3 = t (e.g., t = 3)
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Hilbert’s problems, Paris 1900

10.
Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers
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Matiyasevich (1970), Matiyasevich-Robinson

(1975)

Theorem
The set of t ∈ Z such that f (t, . . . , xn) = 0 is solvable is not
decidable, i.e., there is no algorithm to decide whether or not a
diophantine equation is solvable in integers.

Theorem
There exists an f ∈ Z[t1, t2, x0, . . . , xn], with n ≤ 13, such that
f (a, n, z0, · · · , zn) = 0 for some z0, · · · , zn ∈ N iff a ∈ Dn, where
D0,D1, · · · is a list of all recursively enumerable Dj ⊂ N.

Conjecture: n ≤ 3.
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Matiyasevich (1970), Matiyasevich-Robinson

(1975)

The solubility of diophantine equations is not decidable.

There is a single equation

F (t, x1, . . . , xn) = 0

with coefficients in Z, which is equivalent to all of (formal
mathematics): the statement #t is provable if and only if the above
equation is solvable in x1, . . . , xn ∈ Z.
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G. Chaitin (1993)

Theorem
The set of t ∈ Z such that ft = 0 has infinitely many primitive
solutions is algorithmically random.

Abstract: One normally thinks that everything that is true is true for a reason. I’ve found mathematical truths that are true for

no reason at all. These mathematical truths are beyond the power of mathematical reasoning because they are accidental and

random. Using software written in Mathematica that runs on an IBM RS/6000 workstation, I constructed a perverse 200-page

algebraic equation with a parameter t and 17,000 unknowns. For each whole-number value of the parameter t, we ask whether

this equation has a finite or an infinite number of whole number solutions. The answers escape the power of mathematical

reason because they are completely random and accidental.
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Points

Basic rings: R

Fp = Z/pZ,Z or C[t]...

Basic geometric objects: An and Pn = (An+1 \ 0) /Gm

Varieties: X affine ⊂ An (system of polynomial equations with
coefficients in R), resp. X projective ⊂ Pn (system of
homogeneous polynomial equations with coefficients in R)

R-valued points: X affine(R), resp. X projective(R). Note

X projective(Z) = X projective(Q).

for now: work projectively

first nontrivial variety: Xf := {f (x) = 0} ⊂ Pn, a hypersurface
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Dimension 1

Basic invariant: dimension

ax r + by r + cz r = 0,

with a, b, c ∈ Z, abc 6= 0, and r ≥ 2.

r = 2 – no solutions or infinitely many solutions

r = 3 – none, finitely many or infinitely many solutions

r ≥ 4 – at most finitely many solutions
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Conics: geometry

This is how one derives formulas for Pythagorean triples.
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Cubic equations: geometry

This is how one adds rational points.
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Dimension 2

ax r + by r = cz r + dt r ,

with a, b, c , d ∈ Z, abcd 6= 0, and r ≥ 2.

r = 2 - no solutions or a dense set of solutions

r = 3 - no solutions or a dense set of solutions

r ≥ 4 - ???
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Quadric surface
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Cubic surface
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Cubic surface
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Quartic surface
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Quartic surface - sliced
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Quartic surface - sliced

Consider
ax4 + by 4 + cz4 + dt4 = 0

Assume that abcd is a square in Q and

a + b + c + d = 0

but no two of the coefficients sum to zero. Then Q-rational points
are dense.

Special case of a general theorem of Bogomolov-T., worked out by
Logan, McKinnon, van Luijk in 2010.
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