
Lecture 1

Lecture 1 1 / 60



Organizational matters

Yuri Tschinkel tschinke@cims.nyu.edu

Course webpage:
cims.nyu.edu/∼tschinke/teaching/Spring24/number.html

Grader: Zhijia Zhang zhijia.zhang@cims.nyu.edu

Grading:

Homework: 20%

Midterm March 11: 30%

Final May 6 50%

Lecture 1 2 / 60



Organizational matters

Yuri Tschinkel tschinke@cims.nyu.edu

Course webpage:
cims.nyu.edu/∼tschinke/teaching/Spring24/number.html

Grader: Zhijia Zhang zhijia.zhang@cims.nyu.edu

Grading:

Homework: 20%

Midterm March 11: 30%

Final May 6 50%

Lecture 1 2 / 60



Organizational matters

Yuri Tschinkel tschinke@cims.nyu.edu

Course webpage:
cims.nyu.edu/∼tschinke/teaching/Spring24/number.html

Grader: Zhijia Zhang zhijia.zhang@cims.nyu.edu

Grading:

Homework: 20%

Midterm March 11: 30%

Final May 6 50%

Lecture 1 2 / 60



Syllabus

Elementary number theory, residues, quadratic reciprocity

Diophantine equations

p-adic numbers

Distribution of primes

L-functions, primes in arithmetic progressions

Basic algebraic number theory: number fields, rings of integers,
class groups

Transcendence of e and π
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Integers

. . . ,−2,−1, 0, 1, 2, . . .

Leopold Kronecker (1823-1891)

Integers were created by God, the rest is human labor.
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Substance of Number Theory

Integers are a group with respect to addition, a semigroup with
respect to multiplication – a ring.

Number theory investigates the
structure of this ring.

Seems trivial: what is there to study?
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+/·

Adding is easy / multiplying is difficult.

Today, we don’t even know accurate lower bounds for the complexity
of multiplication.

Trivially, multiplying two n-digit integers takes O(n2) steps. Best
known bound is

O(n log(n) log(log(n))).
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Number Theory

One of the oldest branches of mathematics.

Gauss: Mathematics is the queen of the sciences – and number
theory is the queen of mathematics.

Why?

Elegant, simply stated problems

Deep, difficult proofs that stimulate the development of new
areas of mathematics
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Number Theory

My goal in this course is to show you the variety of techniques that
have been deployed to solve number-theoretic problems:

Algebra: manipulations of equations

Metric properties of numbers Q ⊂ R, distance, Geometry of
Numbers

Complex numbers

Harmonic analysis over R (and Qp), special functions

Complex variables

Approximation theory
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Primes

Definition
A positive integer p ≥ 2 is called prime if it is divisible only by itself
and 1.

Example
primes: 2, 3, 5, 7, 11, 13, . . ..

not primes: 1, 4, 6, 8, 9, 10, 12, 15, . . ..

Primes are atoms in the ring of integers, a free basis of the
multiplicative semigroup.
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Properties

Theorem
Every positive integer is a product of prime factors

n = p1 · · · pr .

These prime factors are uniquely determined, up to permutation.

Proof: Use Euclidean algorithm.
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Euclid, 325 BC

Theorem
There are infinitely many primes.

Proof by contradiction. Assume that there are finitely many primes
p1, . . . , pn. None of these can divide the number

p1 · p2 · . . . · pn + 1.

Thus there exists another prime. Contradiction to the assumption.
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888 AD., Bodleian Library, Oxford
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To know and use

Division with remainder

gcd(a, b) = ax + by , for some x , y ∈ Z
Finding x , y , d recursively (Euclidean algorithm)

Congruences: a ≡ b (mod m) iff m | (a − b)

Solving congruences ax ≡ b (mod m)

Euler function ϕ(m) := #(Z/mZ)×

ϕ(pn) = (p − 1)pn−1

ϕ(ab) = ϕ(a) · ϕ(b) if (a, b) = 1∑
d |m

ϕ(d) = m
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To know and use

Fermat’s Little Theorem:

(a,m) = 1⇒ aϕ(m) ≡ 1 (mod m)

In particular, if p is a prime, then

ap−1 ≡ 1 (mod p).
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Carmichael numbers

The converse is not true! There exist composite numbers m such
that for all a one has

am ≡ a (mod m).

Theorem (Alford, Granville, Pomerance 1994)

There are infinitely many Carmichael numbers.
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First results about primes

Theorem
Assume that p > 2 satisfies p | a2 + b2. Then p ≡ 1 (mod 4).

Proof:

(p, a) = (p, b) = 1

a2 ≡ −1 · b2 ⇒ (a2)
p−1
2 ≡ (−1)

p−1
2 · (b2)

p−1
2 (mod p)

1 ≡ (−1)
p−1
2 (mod p)

Thus, p−1
2

is even, and p ≡ 1 (mod 4). �
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First results about primes

Corollary: There are infinitely many primes ≡ 1 (mod 4).

Proof: Assume that there are finitely many p1, . . . , pr . Consider

N := 4
r∏

j=1

p2j + 1

Every prime dividing N is of the form 4m + 1, so must be one of the
listed primes, contradiction. �
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Representations as sums of squares

Theorem

p ≡ 1 (mod 4)⇒ p = x2 + y 2, x , y ∈ Z
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Proof

(1) Given r 6≡ 0 (mod p) and e, f with ef > p there exists a
representation

r = ±x/y , 1 ≤ y < f , 1 ≤ x < e.

Indeed, we have e · f numbers of the form y · r + x , at least two
have to be equal (mod p)

y ′r + x ′ ≡ y ′′r + x ′′ (mod p)

(y ′ − y ′′)r ≡ x ′′ − x ′ (mod p)

r ≡ ±x ′′ − x ′

y ′′ − y ′
(mod p)
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Proof

(2) Assume there exists an r with r 2 ≡ −1 (mod p). We can
represent it as

r ≡ ±x

y
, 1 ≤ x , y ≤ [

√
p ] + 1.

Then we have

x2 + y 2 ≡ 0 (mod p) ⇒ x2 + y 2 = mp, with m = 1, 2

If m = 1 we are done, if m = 2, we can write(
x + y

2

)2

+

(
x − y

2

)2

= p.
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Representations by polynomials

Theorem (Friedlander-Iwaniec 1998)

There are infinitely many primes of the form x2 + y 4.

Theorem (Heath-Brown 2001)

There are infinitely many primes of the form x3 + 2y 3.
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Integral part

[x ] - integral part:
[x ] ≤ x < [x ] + 1

{x} - fractional part, {x + 1} = {x},

x = [x ] + {x}

[
[x ]

m
] = [

x

m
] ∀m ∈ N, x ∈ R.

(prove this at home)
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Applications

For an integer m > 1 write

m! = pν11 · · · pνss .

Then
νj = [

m

pj
] + [

m

p2j
] + · · ·
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Applications

Proof: List
1, 2, . . . ,m,

p, 2p, . . . , k1p,

we have
k1p ≤ m < (k1 + 1)p ⇒ k1 = [

m

p
].

Then
ν = k1 + · · ·

List
1, 2, . . . , k1

and repeat the process: k2 = [k1
p

].
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Applications

Inductively,

νp(m!) = [
m

p
] + [

k1
p

] + · · ·+ [
kn
p

], with [
kn
p

] = [
[kn−1

p
]

p
].

Now apply the lemma.
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Applications

How to use this?

Example: Find the maximal ν such that

3ν | 1000!

Solution:

ν = [
1000

3
] + [

1000

9
] + [

1000

27
] + [

1000

81
] + [

1000

243
] + [

1000

729
]

= 333 + 111 + 37 + 12 + 4 + 1

= 498

Lecture 1 26 / 60



Applications

How to use this?

Example: Find the maximal ν such that

3ν | 1000!

Solution:

ν = [
1000

3
] + [

1000

9
] + [

1000

27
] + [

1000

81
] + [

1000

243
] + [

1000

729
]

= 333 + 111 + 37 + 12 + 4 + 1

= 498

Lecture 1 26 / 60



Tricks

Let n ≥ 9 be an odd integer. Put

N0 := n, N1 = N0 + 1, N2 = N1 + 3, Ns := Ns−1 + (2s − 1)

with

1 ≤ s ≤ [
n − 9

6
].
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Tricks

Theorem
n is composite iff for some s, Ns = t2.

Proof:

Ns = n + 1 + 3 + · · · (2s − 1)

n + s2

If Ns = n + s2 = t2 then

n = t2 − s2 = (t − s)(t + s).
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Tricks

Since s ≤ (n − 9)/6 we have

n ≥ 6s + 9 > 2s + 1, t2 = n2 + s2 > (s + 1)2,

t > (s + 1)⇒ (t − s) > 1,

i.e., n is composite.
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Tricks

Conversely, suppose n = a · b, with a, b odd. Then

3 ≤ a ≤
√
n,
√
n ≤ b ≤ n/3.

Put

s :=
b − a

2
⇒ Ns = n + s2 = ab +

(
b − a

2

)2

=

(
b + a

2

)2

with

0 ≤ b − a

2
≤ 1

2
(
n

3
− 3)⇒ b − a

2
≤ [

n − 9

6
].
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Tricks

How to use this? Let’s try to factor 391:

N0 = 391, N1 = 392, N2 = 395, N3 = 400 = 202.

Thus

s = 3, t = 20⇒ 391 = (20− 3)(20 + 3) = 17 · 23.
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Residues modulo primes: reminder

(Z/pZ)× is cyclic, ϕ(p − 1) primitive roots (generators)

Legendre symbol:(
a

p

)
≡ a

p−1
2 (mod p),

(
ab

p

)
=

(
a

p

)(
b

p

)
.

(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8
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Residues modulo primes: reminder

Quadratic reciprocity(
p

q

)
=

(
q

p

)
· (−1)

p−1
2
· q−1

2

Lecture 1 33 / 60



Proof of quadratic reciprocity

Let p and q be odd primes. Put ζ := e
2πi
p and consider the Gauss

sum:

τp :=

p−1∑
j=1

(
j

p

)
ζ j .

One has

τ 2p =
∑
j ,k

(
jk

p

)
ζ j+k =

p−1∑
k=1

(
k

p

) p−1∑
j=0

ζ j(1+k)

︸ ︷︷ ︸0 k 6= −1

p k = −1

=

(
−1

p

)
p = (−1)

p−1
2 p
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p k = −1

=

(
−1

p

)
p = (−1)

p−1
2 p
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Proof of quadratic reciprocity

τ qp = (−1)
p−1
2
· q−1

2 · p
q−1
2 · τp ≡ (−1)

p−1
2
· q−1

2

(
p

q

)
τp (mod q)

≡
p−1∑
j=1

(
j

p

)
ζ jq ≡

(
q

p

)
τp (mod q)

It follows that (
q

p

)
= (−1)

p−1
2
· q−1

2

(
p

q

)
.
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Logarithmus: John Napier(1550-1617)

Mirifici Logarithmorum Canonis Descriptio (1614)

log(a · b) = log(a) + log(b)

Napier: Logarithms are artificial numbers and antilogarithms - natural
numbers.
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Tables for log(n)

1617 H. Briggs: n ≤ 1000

1628 A. Vlacq: n ≤ 100000

1795 G. Vega: logarithms of primes ≤ 10000

Lecture 1 37 / 60



81LOGARITHMENTAFELN – GAUSS’ „TÄGLICHES ARBEITSGERÄTH“

Abb. 10
Gauß’ erste Logarithmentafel, ein Geschenk des braunschweigischen Herzogs
Carl Wilhelm Ferdinand an den Vierzehnjährigen (D 2)



G. Vega: Thesaurus logarithmorum completus

Bestseller: more than 100 editions.

Gauss (1851)

Vega scheint sich nun mit der Hoffnung geschmeichelt zu haben, dass
seine Tafeln fast fehlerfrei geworden seien, und verspricht, für die
erste Anzeige eines Fehlers eine Prämie von einem Dukaten zu
bezahlen. ...
Unter 568 geprüften irrationalen Logarithmen haben sich 301 als
richtig und 267 als unrichtig ausgewiesen. Dürfte man dies Verhältnis
als durchschnittlich zutreffend betrachten, so würden unter den
68038 irrationalen Logarithmen des Vega’schen Thesaurus ... nach
der Wahrscheinlichkeit etwa 31983 fehlerhafte anzunehmen sein.

Lecture 1 38 / 60



G. Vega: Thesaurus logarithmorum completus

Bestseller: more than 100 editions.

Gauss (1851)

Vega scheint sich nun mit der Hoffnung geschmeichelt zu haben, dass
seine Tafeln fast fehlerfrei geworden seien, und verspricht, für die
erste Anzeige eines Fehlers eine Prämie von einem Dukaten zu
bezahlen. ...
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Distribution of primes

Definition

π(x) := number of primes less than or equal to x .

The pi-function for small values

x 1 2 3 4 5 6 7 8 9 10 20
π(x) 0 1 2 2 3 3 4 4 4 4 8
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The pi-function for x ≤ 100
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The pi-function for x ≤ 1000

Lecture 1 41 / 60



The pi-function for x ≤ 10 million
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Problem

Goal: Find a simple formula for the pi-function.
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pi-function and the logarithm
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pi-function and x/ log(x)
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pi-function divided by x/ log(x)
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pi-function and integral-log for x ≤ 1000

Intlog(x) :=

∫ x

2

1

log(t)
dt
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pi-function and integral-log for x ≤ 10000
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Letter to Encke / 1849

My distinguished friend,

Your remarks concerning the frequency of primes were of interest to me in
more ways than one. You have reminded me of my own endeavors in this
field which began in the very distant past, in 1792 or 1793, after I had
acquired the Lambert supplements to the logarithmic tables. Even before I
had begun my more detailed investigations into higher arithmetic, one of
my first projects was to turn my attention to the decreasing frequency of
primes, to which end I counted the primes in several chiliads and recorded
the results on the attached white pages. I soon recognized that behind all
of its fluctuations, this frequency is on the average inversely proportional
to the logarithm, so that the number of primes below a given bound n is
approximately equal to ∫

dn

log(n)
,

where the logarithm is understood to be hyperbolic.
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Letter to Encke / 1849

Later on, when I became acquainted with the list in Vega’s tables (1796)
going up to 400031, I extended my computation further, confirming that
estimate. In 1811, the appearance of Chernau’s cribrum gave me much
pleasure and I have frequently (since I lack the patience for a continuous
count) spent an idle quarter of an hour to count another chiliad here and
there; although I eventually gave it up without quite getting through a
million. Only some time later did I make use of the diligence of
Goldschmidt to fill some of the remaining gaps in the first million and to
continue the computation according to Burkhardt’s tables. Thus (for
many years now) the first three million have been counted and checked
against the integral.
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B. Riemann 1849

ζ(s) := 1+
1

2s
+

1

3s
+. . .

1

ns
+. . . =

∏
p

(1+
1

ps
+

1

p2s
+. . .) =

∏
p

1

1− 1
ps

Analytic properties of this function carry information about the
distribution of primes.

Riemann Conjecture

All nontrivial zeroes of this function have real part <(s) = 1/2.
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Manuscript by B. Riemann
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Manuscript by B. Riemann
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Primes

π(x) := {p ≤ x} ∼ x

log(x)
, x →∞

Gauss conjecture

Riemann’s approach via the zeta function

Hadamard, de la Vallee-Poussin

Selberg – “elementary” proof
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Primes

Proof of �

νp(n) := p-power dividing n

νp(n!) =
∑
k≥1

[
n

pk

]
Apply to

N =

(
2m

m

)
=

(2m)!

(m!)2

νp(N) =
∑
k≥1

[
2m

pk

]
− 2

[
m

pk

]
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N = (
m + 1

1
)(
m + 2

2
) · · · (m + m

m
)

Thus
N ≥ 2m, p | N ⇒ p ≤ 2m.

The summand in νp(N) vanishes if k > log(2m)
log(p)

, and is at most 1, in
other cases. It follows that

νp(N) ≤ log(2m)

log(p)
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Primes

We find

π(2m) log(2m) =
∑
p≤2m

log(2m)

log(p)
· log(p)

≥
∑
p≤2m

νp(N) · log(p) = log(N)

≥ m log(2)

Thus

π(2m) ≥ 1

2
log(2)

2m

log(2m)
.
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Primes in arithmetic progressions

(a,m) = 1 ⇒

#{p ≡ a (mod m), p ≤ x} ∼ 1

ϕ(m)

x

log(x)

E.g.

q | (
∏

pj)
2 + 1⇒ q ≡ 1 (mod 4)
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Theorems of Green-Tao

2

2,3

3,5,7

5,11,17,23

5,11,17,23,29

no infinitely long arithmetic progressions in primes (trivial)

van der Corput 1939: ∃ infinitely many arithmetic progressions
of length 3 in primes

Green-Tao 2004: there exist arbitrarily long arithmetic
progressions in primes

Tao-Ziegler 2006: P1, . . . ,Pk ∈ Z[x ], Pj(0) = 0, ⇒ Π ⊃
infinitely many progressions of the form

n + P1(r), . . . , n + Pk(r)
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Open problems

Goldbach conjecture (1742): every even number ≥ 4 is a sum of
two primes.

Recently solved: every odd number ≥ 7 is a sum of
three primes (Helfgott 2013)

Are there infinitely many prime twins: 11, 13 or 17, 19, . . . ?
Recently proved that there are infinitely many pairs of primes
p, q such that p − q ≤ 246 (after Yitang Zhang 2013 +
Polymath)

p = n2 + 1?

p = f (n), f ∈ Z[x ], unitary, irreducible, coprime coefficients

Schinzel’s hypothesis = same for systems of equations
f1, . . . , fr ∈ Z[x ]... ⇒ ∃∞-many n | fj(n) = pj e.g., x , x + 2 ...
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