SOLUTION TO MIDTERM EXAM

Problem 1. Find a primitive root of $(\mathbb{Z} / 37 \mathbb{Z})^{\times}$.
Proof. 2 is a primitive root of $(\mathbb{Z} / 37 \mathbb{Z})^{\times}$. Check that $2^{18} \neq 1(\bmod 37)$ and $2^{12} \neq 1(\bmod 37)$.
Problem 2. Is 30 a quadratic residue modulo 157 ?
Proof. Using reciprocity law, we have
$\left(\frac{30}{157}\right)=\left(\frac{2}{157}\right)\left(\frac{3}{157}\right)\left(\frac{5}{157}\right)=(-1)^{\left(157^{2}-1\right) / 8}\left(\frac{157}{3}\right)\left(\frac{157}{5}\right)=-\left(\frac{1}{3}\right)\left(\frac{2}{5}\right)=1$.

Problem 3. Find a polynomial $f \in \mathbb{Z}[x, y, z]$ such that
$f(x, y, z) \equiv x \quad(\bmod 3), f(x, y, z) \equiv y \quad(\bmod 5), f(x, y, z) \equiv z \quad(\bmod 13)$
for all $x, y, z \in \mathbb{Z}$.
Proof. Choose $f(x, y, z)=a x+b y+c z$, such that

$$
\begin{array}{lllll}
a \equiv 1 & (\bmod 3) & b \equiv 0 & (\bmod 3) & c \equiv 0 \\
a \equiv 0 & (\bmod 5) & b \equiv 1 & (\bmod 5) & c \equiv 0 \\
a \equiv & (\bmod 5) \\
a \equiv 0 & (\bmod 13), & b \equiv 0 & (\bmod 13), & c \equiv 1
\end{array}(\bmod 13) .
$$

For example, we can choose $f(x, y, z)=130 x+156 y+105 z$.
Problem 4. Determine $n \in \mathbb{Z}$ such that the congruences $5 x-y \equiv 2$ $(\bmod n)$ and $4 x+3 y \equiv 2(\bmod n)$ are solvable.

Proof.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 5 x - y \equiv 2 (\operatorname { m o d } n) } \\
{ 4 x + 3 y \equiv 2 } \\
{ (\operatorname { m o d } n) }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
5 x-y \equiv 2 & (\bmod n) \\
x-4 y \equiv 0 & (\bmod n)
\end{array}\right.\right. \\
\Leftrightarrow & \left\{\begin{array}{l}
19 y \equiv 2(\bmod n) \\
x-4 y \equiv 0 \quad(\bmod n)
\end{array} .\right.
\end{aligned}
$$

So these equations are solvable if and only if $19 \nmid n$.
Problem 5. Give a definition of a field.
Proof. Omitted.
Problem 6. Determine the centralizer of the matrix
$\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \in G L_{2}(\mathbb{Z} / 3 \mathbb{Z})$.

Proof. Assume $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the centralizer of $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$, and then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

We get $a=d$ and $c=0$. So the centralizers are

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{Z} / 3 \mathbb{Z}): a=d, c=0\right\} .
$$

Problem 7. Let $N \subset G$ be a normal subgroup, with $|N|=17$ and $|G|$ an odd integer. Show that N is contained in the center $Z(G)$ of G.
Proof. Since N is normal, for any $g \in G, \sigma_{g}: h \mapsto g h g^{-1}$ is an automorphism on N, and then $\varphi: g \mapsto \sigma_{g}$ is a group homomorphism from G to $\operatorname{Aut}(N)$.
$N \cong C_{17}$ is cyclic and assume h is a generator of N, then any automorphism of N can be uniquely determined by the map $h \mapsto h^{k}$ for $1 \leq k \leq 16$. So $|\operatorname{Aut}(N)|=16 . ~ \varphi(G)=G / \operatorname{ker}(\varphi)$ is a subgroup of $\operatorname{Aut}(N)$, a quotient group of G. So $|\varphi(G)|$ divides both $|\operatorname{Aut}(N)|$ and G, and thus $|\varphi(G)|=1$, which means $\sigma_{g}=i d$ for any $g \in G$.

Problem 8. How many elements of order 3 could be contained in a group of order 30 ?

Proof. Assume n is the number of 3 -Sylow subgroups. By Sylow's theorem $n \equiv 1(\bmod 3)$ and $n \mid 10$, and then $n=1$ or 10 .

If $n=1$, there is only 1 subgroup of order 3 and 2 elements of order 3. In C_{30}, we have 2 elements of order 3.

Now we prove n cannot be 10 . If $n=10$, there are 20 elements of order 3. By Sylow's theorem we have 1 subgroup N_{5} of order 5 and it is normal. Pick a subgroup G_{3} of order 3, then using the normality of N_{5} we can show $N_{5} G_{3}$ is a subgroup of order 15.

By a result in class $N_{5} G_{3} \cong C_{15}$. So there are $\phi(15)=2 \times 4=8$ elements in $N_{5} G_{3}$ of order 15, and 4 elements of order 5 . So the total number of elements $\geq 20+8+4=32>30$, contradictory.
Problem 9. Exhibit a subgroup of the symmetric group \mathfrak{S}_{7} which is nonabelian and of order 21.

Proof. Assume G is the wanted subgroup of order 21. By Sylow's theorem there exists a normal subgroup N_{7} of order 7. W.L.O.G, we may assume $N_{7}=<(1234567)>$. Since G is nonabelian, G does not have elements of order 21 , so there are $21-7=14$ elements of order 3 .

Assume $g \in G$ and is order of 3 , then g is of form ($a b c$) or $(a b c)(d e f)$, and $g(1234567)$ is of order 3. By trial and error we find $g=(142)(563)$ satisfies such condition and

$$
g(1234567) g^{-1}=(1357246)=(123456)^{2} .
$$

Then we can prove if $G_{3}=\langle g\rangle, G_{3} N_{7}$ forms a subgroup of \mathfrak{S}_{7}.
Problem 10. Let G be a group of order 39. Show that G is generated by two elements x, y, with relations $x^{13}=y^{3}=1, y x y^{-1}=x^{r}$, for some $r, 1 \leq r \leq 13$. Which r are possible?

Proof.

$$
x=y^{3} x y^{-3}=y^{2} x^{r} y^{-2}=y\left(y x y^{-1}\right)^{r} y^{-1}=y x^{r^{2}} y^{-1}=x^{r^{3}} .
$$

So $x^{r^{3}-1}=e$ and $13 \mid r^{3}-1$, and so $r=1$ or 3 or 9 .
Now we construct G realizing $r=1,3,9$. Using prime root in module 13, we can prove $\operatorname{Aut}\left(C_{13}\right)=C_{12}$. Assume $C_{13}=<g>$ and $C_{3}=<$ $h>$ and there are 3 different homomorphisms $\varphi_{0}, \varphi_{1}, \varphi_{2}$ from C_{3} to $\operatorname{Aut}\left(C_{13}\right)$ which map h to $i d,\left(g \mapsto g^{3}\right),\left(g \mapsto g^{9}\right)$ respectively.

Given φ_{i}, we define the semi-direct product on set $C_{13} \times C_{3}$ as follows

$$
\left(g^{a}, h^{b}\right) \times_{i}\left(g^{c}, h^{d}\right)=\left(g^{a}\left(\varphi_{i}(h)^{b}(g)\right)^{c}, h^{b+d}\right) .
$$

We can straightforward verify that $\left(C_{13} \times C_{3}, \times_{i}\right)$ forms a group, and if we let $x=(g, e), y=(e, h)$, we have $x^{13}=y^{3}=1, y x y^{-1}=x^{3^{i}}$.

