

SOLUTION TO MIDTERM EXAM

Problem 1. Find a primitive root of $(\mathbb{Z}/37\mathbb{Z})^\times$.

Proof. 2 is a primitive root of $(\mathbb{Z}/37\mathbb{Z})^\times$. Check that $2^{18} \not\equiv 1 \pmod{37}$ and $2^{12} \not\equiv 1 \pmod{37}$. \square

Problem 2. Is 30 a quadratic residue modulo 157?

Proof. Using reciprocity law, we have

$$\left(\frac{30}{157}\right) = \left(\frac{2}{157}\right)\left(\frac{3}{157}\right)\left(\frac{5}{157}\right) = (-1)^{(157^2-1)/8}\left(\frac{157}{3}\right)\left(\frac{157}{5}\right) = -\left(\frac{1}{3}\right)\left(\frac{2}{5}\right) = 1.$$

\square

Problem 3. Find a polynomial $f \in \mathbb{Z}[x, y, z]$ such that

$$f(x, y, z) \equiv x \pmod{3}, f(x, y, z) \equiv y \pmod{5}, f(x, y, z) \equiv z \pmod{13}$$

for all $x, y, z \in \mathbb{Z}$.

Proof. Choose $f(x, y, z) = ax + by + cz$, such that

$$\begin{aligned} a &\equiv 1 \pmod{3} & b &\equiv 0 \pmod{3} & c &\equiv 0 \pmod{3} \\ a &\equiv 0 \pmod{5} & b &\equiv 1 \pmod{5} & c &\equiv 0 \pmod{5} \\ a &\equiv 0 \pmod{13}, & b &\equiv 0 \pmod{13}, & c &\equiv 1 \pmod{13}. \end{aligned}$$

For example, we can choose $f(x, y, z) = 130x + 156y + 105z$. \square

Problem 4. Determine $n \in \mathbb{Z}$ such that the congruences $5x - y \equiv 2 \pmod{n}$ and $4x + 3y \equiv 2 \pmod{n}$ are solvable.

Proof.

$$\begin{aligned} \left\{ \begin{array}{l} 5x - y \equiv 2 \pmod{n} \\ 4x + 3y \equiv 2 \pmod{n} \end{array} \right. &\Leftrightarrow \left\{ \begin{array}{l} 5x - y \equiv 2 \pmod{n} \\ x - 4y \equiv 0 \pmod{n} \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} 19y \equiv 2 \pmod{n} \\ x - 4y \equiv 0 \pmod{n} \end{array} \right.. \end{aligned}$$

So these equations are solvable if and only if $19 \nmid n$. \square

Problem 5. Give a definition of a *field*.

Proof. Omitted. \square

Problem 6. Determine the centralizer of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{Z}/3\mathbb{Z})$.

Proof. Assume $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in the centralizer of $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, and then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

We get $a = d$ and $c = 0$. So the centralizers are

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}/3\mathbb{Z}) : a = d, c = 0 \right\}.$$

□

Problem 7. Let $N \subset G$ be a normal subgroup, with $|N| = 17$ and $|G|$ an odd integer. Show that N is contained in the center $Z(G)$ of G .

Proof. Since N is normal, for any $g \in G$, $\sigma_g : h \mapsto ghg^{-1}$ is an automorphism on N , and then $\varphi : g \mapsto \sigma_g$ is a group homomorphism from G to $Aut(N)$.

$N \cong C_{17}$ is cyclic and assume h is a generator of N , then any automorphism of N can be uniquely determined by the map $h \mapsto h^k$ for $1 \leq k \leq 16$. So $|Aut(N)| = 16$. $\varphi(G) = G/\ker(\varphi)$ is a subgroup of $Aut(N)$, a quotient group of G . So $|\varphi(G)|$ divides both $|Aut(N)|$ and G , and thus $|\varphi(G)| = 1$, which means $\sigma_g = id$ for any $g \in G$. □

Problem 8. How many elements of order 3 could be contained in a group of order 30?

Proof. Assume n is the number of 3-Sylow subgroups. By Sylow's theorem $n \equiv 1 \pmod{3}$ and $n|10$, and then $n = 1$ or 10.

If $n = 1$, there is only 1 subgroup of order 3 and 2 elements of order 3. In C_{30} , we have 2 elements of order 3.

Now we prove n cannot be 10. If $n = 10$, there are 20 elements of order 3. By Sylow's theorem we have 1 subgroup N_5 of order 5 and it is normal. Pick a subgroup G_3 of order 3, then using the normality of N_5 we can show N_5G_3 is a subgroup of order 15.

By a result in class $N_5G_3 \cong C_{15}$. So there are $\phi(15) = 2 \times 4 = 8$ elements in N_5G_3 of order 15, and 4 elements of order 5. So the total number of elements $\geq 20 + 8 + 4 = 32 > 30$, contradictory. □

Problem 9. Exhibit a subgroup of the symmetric group \mathfrak{S}_7 which is nonabelian and of order 21.

Proof. Assume G is the wanted subgroup of order 21. By Sylow's theorem there exists a normal subgroup N_7 of order 7. W.L.O.G, we may assume $N_7 = \langle (1234567) \rangle$. Since G is nonabelian, G does not have elements of order 21, so there are $21 - 7 = 14$ elements of order 3.

Assume $g \in G$ and is order of 3, then g is of form (abc) or $(abc)(def)$, and $g(1234567)$ is of order 3. By trial and error we find $g = (142)(563)$ satisfies such condition and

$$g(1234567)g^{-1} = (1357246) = (123456)^2.$$

Then we can prove if $G_3 = \langle g \rangle$, $G_3 N_7$ forms a subgroup of \mathfrak{S}_7 . \square

Problem 10. Let G be a group of order 39. Show that G is generated by two elements x, y , with relations $x^{13} = y^3 = 1$, $yxy^{-1} = x^r$, for some r , $1 \leq r \leq 13$. Which r are possible?

Proof.

$$x = y^3xy^{-3} = y^2x^ry^{-2} = y(yxy^{-1})^ry^{-1} = yx^{r^2}y^{-1} = x^{r^3}.$$

So $x^{r^3-1} = e$ and $13|r^3 - 1$, and so $r = 1$ or 3 or 9 .

Now we construct G realizing $r = 1, 3, 9$. Using prime root in module 13, we can prove $\text{Aut}(C_{13}) = C_{12}$. Assume $C_{13} = \langle g \rangle$ and $C_3 = \langle h \rangle$ and there are 3 different homomorphisms $\varphi_0, \varphi_1, \varphi_2$ from C_3 to $\text{Aut}(C_{13})$ which map h to id , $(g \mapsto g^3)$, $(g \mapsto g^9)$ respectively.

Given φ_i , we define the semi-direct product on set $C_{13} \times C_3$ as follows

$$(g^a, h^b) \times_i (g^c, h^d) = (g^a(\varphi_i(h)^b(g))^c, h^{b+d}).$$

We can straightforward verify that $(C_{13} \times C_3, \times_i)$ forms a group, and if we let $x = (g, e)$, $y = (e, h)$, we have $x^{13} = y^3 = 1$, $yxy^{-1} = x^{3^i}$. \square