ALGEBRA: HOMEWORK 8

Problem 1. Let K / \mathbb{Q} be a cubic extension and $(p)=p_{1} \cdot p_{2} \cdot p_{3}$ a product of distinct prime ideals. Let $\alpha \in \mathcal{O}_{K}$ be an integer with $T r_{K / \mathbb{Q}}(\alpha)=0$. Show that if $p_{1} \cdot p_{2} \mid(\alpha)$ then $p_{3} \mid(\alpha)$.

Proof.
Problem 2. Assume that $C l_{K}$ contains distinct nontrivial classes C_{1}, C_{2}. Show that there exist integral ideals $I_{i} \in C_{i}$ which are coprime.

Proof. Assume $I_{1} \in C_{1}, J \in C_{3}:=C_{2}^{-1}$ are two ideals. Let p_{1}, \ldots, p_{r} be the prime divisors of J. For each n, let v_{n} be the largest power of p_{n} that divides I_{1}. Choose an element $a_{n} \in p_{n}^{v_{n}}-p_{n}^{v_{n}+1}$. By Chinese remainder theorem (a generalized version of problem 4, homework 7), there exists $a \in \mathcal{O}_{K}$ such that

$$
a \equiv a_{n} \quad\left(\bmod p_{n}^{v_{n}+1}\right)
$$

for all $n=1, \ldots, r$ and also

$$
a \equiv 0 \quad\left(\bmod I_{1} / \prod p_{n}^{v_{n}}\right)
$$

Then $(a) \subset I_{1}$ and let $I_{2}=(a) / I_{1} \in C_{2}$. It suffices to prove that I_{1} and I_{2} are coprime, which can be done directly by counting the powers of prime divisors in I_{1} and I_{2}.

Problem 3. Show that $\varepsilon_{1}:=1+\zeta_{7}+\zeta_{7}^{6}, \varepsilon_{2}:=1+\zeta_{7}^{3}+\zeta_{7}^{4}$ are multiplicatively independent units, i.e.,

$$
\varepsilon_{1}^{a} \cdot \varepsilon_{2}^{b}=1 \Rightarrow a=b=0 .
$$

Proof. Assume $\sigma: \zeta_{7} \mapsto \zeta_{7}^{2}$ is the automorphism on $\mathbb{Q}\left(\zeta_{7}\right)$, and $\varepsilon_{3}:=$ $1+\zeta_{7}^{2}+\zeta_{7}^{5}$. Then we have

$$
1=\varepsilon_{1}^{a} \varepsilon_{2}^{b}=\sigma\left(\varepsilon_{1}^{a} \varepsilon_{2}^{b}\right)=\sigma^{2}\left(\varepsilon_{1}^{a} \varepsilon_{2}^{b}\right),
$$

i.e.,

$$
\varepsilon_{1}^{a} \varepsilon_{2}^{b}=1, \varepsilon_{3}^{a} \varepsilon_{1}^{b}=1, \varepsilon_{2}^{a} \varepsilon_{3}^{b}=1 .
$$

Eliminate unknowns ε_{2} and ε_{3}, we get $\varepsilon_{1}^{a^{3}+b^{3}}=1$. Since $\varepsilon_{1} \neq 1$, we have $a+b=0$, and then $\varepsilon_{1}^{a} \varepsilon_{2}^{-a}=1$. Since $\varepsilon_{1} / \varepsilon_{2} \neq 1, a=b=0$.

Problem 4. Let $K=\mathbb{Q}(\eta), \eta^{3}=6$. Show that $h_{K}=1$.

Proof. First by Homework $6, \# 2$ we know that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{6}]$. The Minkowski's bound of K is

$$
\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}} \sqrt{\operatorname{disc}(K)}=\left(\frac{4}{\pi}\right)^{1} \frac{3!}{3^{3}} \sqrt{27 \cdot 6^{2}} \approx 8.82 .
$$

So we need to factor primes $2,3,5,7$.
(i) modulo (2), we have

$$
x^{3}-6 \equiv x^{3} \quad(\bmod 2),
$$

and $(2)=p_{2}^{3}$, where $p_{2}=(2, \sqrt[3]{6})=(\sqrt[3]{6}-2)$ is principal.
(ii) modulo (3), we have

$$
x^{3}-6 \equiv x^{3} \quad(\bmod 3),
$$

and $(3)=p_{3}^{3}$, where $p_{3}=(3, \sqrt[3]{6})=(3+2 \sqrt[3]{6}+\sqrt[3]{36})$ is principal.
(iii) modulo (5), we have

$$
x^{3}-6 \equiv(x-1)\left(x^{2}+x+1\right) \quad(\bmod 5),
$$

and $(5)=p_{5} \cdot p_{5}^{\prime}$, where $p_{5}=(5, \sqrt[3]{6}-1)=(\sqrt[3]{6}-1)$ is principal and thus p_{5}^{\prime} is also principal.
(iv) modulo (7), we have

$$
x^{3}-6 \equiv(x+1)(x+2)(x-3) \quad(\bmod 5),
$$

and $(7)=p_{7} \cdot p_{7}^{\prime} \cdot p_{7}^{\prime \prime}$.
Here $p_{7}=(7, \sqrt[3]{6}+1)=(\sqrt[3]{6}+1)$ and $p_{7}^{\prime}=(7+4 \sqrt[3]{6}+2 \sqrt[3]{36})$ are principal, and thus $p_{7}^{\prime \prime}$ is principal.

Problem 5. Compute the class number of $\mathbb{Q}(\sqrt{-13})$.
Proof. The Minkowski's bound of $K=\mathbb{Q}(13)$ is

$$
\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}} \sqrt{\operatorname{disc}(K)}=\left(\frac{4}{\pi}\right)^{1} \frac{2!}{2^{2}} \sqrt{4 \cdot 13}<5 .
$$

So we want to factor prime 2,3 .
(i) modulo (2), we have

$$
x^{2}+13 \equiv(x-1)^{2} \quad(\bmod 2)
$$

and $(2)=p_{2}=(2, \sqrt{-13}-1)^{2}$, and $N\left(p_{2}\right)=\sqrt{N(2)}=2$. Since $x^{2}+13 y^{2}=2$ has no integer solutions, p_{2} is not principal.
(ii) modulo (3), we have that $x^{2}+13$ is irreducible. So (3) itself is a prime principal ideal.

