ALGEBRA: HOMEWORK 7

Problem 1. Let $K=\mathbb{Q}(\sqrt{-5})$ and $I:=(4+\sqrt{-5}, 1+2 \sqrt{-5}) \subset \mathcal{O}_{K}$. Show that I is not a principle ideal and that it is a prime ideal.

Proof. Since $-5 \equiv 3(\bmod 4), \mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z} \sqrt{-5}$.
(1) I is not a principle ideal. Assume $I=(a)$ for some $a=a_{1}+$ $a_{2} \sqrt{-5} \in \mathcal{O}_{K}$. Since $4+\sqrt{-5}, 3-\sqrt{-5}=4+\sqrt{-5}-(1+2 \sqrt{-5}) \in I$,

$$
\begin{aligned}
& N_{K / \mathbb{Q}}(a) \mid N_{K / \mathbb{Q}}(4+\sqrt{-5})=21 \\
& N_{K / \mathbb{Q}}(a) \mid N_{K / \mathbb{Q}}(3-\sqrt{-5})=14 .
\end{aligned}
$$

So $N(a)=1$ or 7 , i.e., $a_{1}^{2}+5 a_{2}^{2}=1$ or 7 . The only possible case is $a_{1}=1, a_{2}=0$, i.e., $a=1$ and $I=\mathcal{O}_{K}$. Then there exists $p, q, r, s \in \mathbb{Z}$, such that

$$
(4+\sqrt{-5})(p+q \sqrt{-5})+(1+2 \sqrt{-5})(r+s \sqrt{-5})=1,
$$

i.e.,

$$
\begin{equation*}
4 p-5 q+r-10 s=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
p+4 q+2 r+s=0 . \tag{2}
\end{equation*}
$$

$4^{*}(2)-(1)$ we have $21 q+7 r+14 s=7(3 q+r+2 s)=-1$, contradictory!
(2) I is a prime ideal. Let $I_{1}=(4+\sqrt{-5}), I_{2}=(3-\sqrt{-5}) \subset I$. Then

$$
\begin{aligned}
& 21=N(4+\sqrt{-5})=\left[\mathcal{O}_{K}: I_{1}\right]=\left[\mathcal{O}_{K}: I\right]\left[I: I_{1}\right] \\
& 14=N(4+\sqrt{-5})=\left[\mathcal{O}_{K}: I_{2}\right]=\left[\mathcal{O}_{K}: I\right]\left[I: I_{2}\right] .
\end{aligned}
$$

So $\left[\mathcal{O}_{K}: I\right] \mid$. Since $I \neq \mathcal{O}_{K},\left[\mathcal{O}_{K}: I\right]=7$. For any ideal I^{\prime} containing I, we have $7=\left[\mathcal{O}_{K}: I\right]=\left[\mathcal{O}_{K}: I^{\prime}\right]\left[I^{\prime}: I\right]$, so $I=\mathcal{O}_{k}$ or $I^{\prime}=I$. So I is a maximal ideal, and thus a prime ideal.

Problem 2. Let $\alpha \in \mathcal{O}_{K}$ be an element such that $K=\mathbb{Q}(\alpha)$. Show that

$$
\operatorname{disc}(\alpha)=\operatorname{disc}(K / \mathbb{Q}) \cdot t^{2},
$$

for some $t \in \mathbb{Z}$. This t is called the index of α.

Proof. Assume $\alpha_{1}, \ldots, \alpha_{n}$ is a \mathbb{Z}-basis of \mathcal{O}_{K}, and $\alpha^{i-1}=\sum_{j=1}^{n} a_{i j} \alpha_{j}$, where $a_{i j} \in \mathbb{Z}$. Assume $A=\left(a_{i j}\right)_{i, j=1}^{n}$, then

$$
\begin{aligned}
\operatorname{disc}(\alpha) & =\operatorname{disc}\left(1, \alpha, \ldots, \alpha^{n-1}\right)=\operatorname{det}\left[\left(\sigma_{j}\left(\alpha^{i-1}\right)\right)_{i, j=1}^{n}\right]^{2} \\
& =\operatorname{det}\left[\left(\sigma_{j}\left(\sum_{k=1}^{n} a_{i k} \alpha_{k}\right)\right)_{j, i=1}^{n}\right]^{2}=\operatorname{det}\left[\left(\sum_{k=1}^{n} a_{i k} \sigma_{j}\left(\alpha_{k}\right)\right)_{j, i=1}^{n}\right]^{2} \\
& =\operatorname{det}\left[A\left(\sigma_{j}\left(\alpha_{k}\right)\right)_{k, i=1}^{n}\right]^{2}=\operatorname{det} A^{2} \operatorname{det}\left[\left(\sigma_{j}\left(\alpha_{k}\right)\right)_{k, i=1}^{n}\right]^{2} \\
& =\operatorname{det} A^{2} \cdot \operatorname{disc}(K / \mathbb{Q}) .
\end{aligned}
$$

Then $t=\operatorname{det} A \in \mathbb{Z}$ is what we want.
Problem 3. Show that if $\alpha \in \mathcal{O}_{K}$ has index one then $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
Proof. Using the proof of problem 2, we have $\operatorname{det} A= \pm 1$, then $B=$ $\left(b_{i j}\right)_{i, j=1}^{n}:=A^{-1} \in S L(n, \mathbb{Z})$, i.e., $b_{i j} \in \mathbb{Z}$. We have $\alpha_{i}=\sum_{j=1}^{n} b_{i j} \alpha^{j-1} \in$ $\mathbb{Z}[\alpha]$, for any $i=1, \ldots, n$. So $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
Problem 4. Given coprime integral ideals $A, B \subset \mathcal{O}_{K}$ and $\alpha, \beta \in \mathcal{O}_{K}$ show that there exists a $\lambda \in \mathcal{O}_{K}$ such that

$$
\lambda \equiv \alpha \quad(\bmod A), \quad \lambda \equiv \beta \quad(\bmod B)
$$

Proof. Since A, B are coprime, there exists $a \in A, b \in B$, such that $a+$ $b=1$. Then we can check that $\lambda=b \alpha+a \beta$ satisfies the conditions.

Problem 5. Let $K=\mathbb{Q}\left(\zeta_{7}\right)$. Find a unit of infinite order.
Proof. In class we have known that $N\left(1-\zeta_{7}\right)=N\left(1-\zeta_{7}^{2}\right)$. So $N(1+$ $\left.\zeta_{7}\right)=N(1)=1$ is a unit. But its complex norm $\left|\left(1+\zeta_{7}\right)\right|>1$, so there is no $k \in \mathbb{Z}_{>0}$ such that $\left(1+\zeta_{7}\right)^{k}=1$.

