

ALGEBRA: HOMEWORK 7

Problem 1. Let $K = \mathbb{Q}(\sqrt{-5})$ and $I := (4 + \sqrt{-5}, 1 + 2\sqrt{-5}) \subset \mathcal{O}_K$. Show that I is not a principle ideal and that it is a prime ideal.

Proof. Since $-5 \equiv 3 \pmod{4}$, $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{-5}$.

(1) I is not a principle ideal. Assume $I = (a)$ for some $a = a_1 + a_2\sqrt{-5} \in \mathcal{O}_K$. Since $4 + \sqrt{-5}, 3 - \sqrt{-5} = 4 + \sqrt{-5} - (1 + 2\sqrt{-5}) \in I$,

$$\begin{aligned} N_{K/\mathbb{Q}}(a)|N_{K/\mathbb{Q}}(4 + \sqrt{-5}) &= 21 \\ N_{K/\mathbb{Q}}(a)|N_{K/\mathbb{Q}}(3 - \sqrt{-5}) &= 14. \end{aligned}$$

So $N(a) = 1$ or 7 , i.e., $a_1^2 + 5a_2^2 = 1$ or 7 . The only possible case is $a_1 = 1, a_2 = 0$, i.e., $a = 1$ and $I = \mathcal{O}_K$. Then there exists $p, q, r, s \in \mathbb{Z}$, such that

$$(4 + \sqrt{-5})(p + q\sqrt{-5}) + (1 + 2\sqrt{-5})(r + s\sqrt{-5}) = 1,$$

i.e.,

$$\begin{aligned} (1) \quad 4p - 5q + r - 10s &= 1 \\ (2) \quad p + 4q + 2r + s &= 0. \end{aligned}$$

$4^*(2)-(1)$ we have $21q + 7r + 14s = 7(3q + r + 2s) = -1$, contradictory!

(2) I is a prime ideal. Let $I_1 = (4 + \sqrt{-5}), I_2 = (3 - \sqrt{-5}) \subset I$. Then

$$\begin{aligned} 21 &= N(4 + \sqrt{-5}) = [\mathcal{O}_K : I_1] = [\mathcal{O}_K : I][I : I_1] \\ 14 &= N(4 + \sqrt{-5}) = [\mathcal{O}_K : I_2] = [\mathcal{O}_K : I][I : I_2]. \end{aligned}$$

So $[\mathcal{O}_K : I] | 7$. Since $I \neq \mathcal{O}_K$, $[\mathcal{O}_K : I] = 7$. For any ideal I' containing I , we have $7 = [\mathcal{O}_K : I] = [\mathcal{O}_K : I'][I' : I]$, so $I = \mathcal{O}_K$ or $I' = I$. So I is a maximal ideal, and thus a prime ideal.

□

Problem 2. Let $\alpha \in \mathcal{O}_K$ be an element such that $K = \mathbb{Q}(\alpha)$. Show that

$$disc(\alpha) = disc(K/\mathbb{Q}) \cdot t^2,$$

for some $t \in \mathbb{Z}$. This t is called the *index* of α .

Proof. Assume $\alpha_1, \dots, \alpha_n$ is a \mathbb{Z} -basis of \mathcal{O}_K , and $\alpha^{i-1} = \sum_{j=1}^n a_{ij} \alpha_j$, where $a_{ij} \in \mathbb{Z}$. Assume $A = (a_{ij})_{i,j=1}^n$, then

$$\begin{aligned} \text{disc}(\alpha) &= \text{disc}(1, \alpha, \dots, \alpha^{n-1}) = \det[(\sigma_j(\alpha^{i-1}))_{i,j=1}^n]^2 \\ &= \det[(\sigma_j(\sum_{k=1}^n a_{ik} \alpha_k))_{j,i=1}^n]^2 = \det[(\sum_{k=1}^n a_{ik} \sigma_j(\alpha_k))_{j,i=1}^n]^2 \\ &= \det[A(\sigma_j(\alpha_k))_{k,i=1}^n]^2 = \det A^2 \det[(\sigma_j(\alpha_k))_{k,i=1}^n]^2 \\ &= \det A^2 \cdot \text{disc}(K/\mathbb{Q}). \end{aligned}$$

Then $t = \det A \in \mathbb{Z}$ is what we want. \square

Problem 3. Show that if $\alpha \in \mathcal{O}_K$ has index one then $\mathcal{O}_K = \mathbb{Z}[\alpha]$.

Proof. Using the proof of problem 2, we have $\det A = \pm 1$, then $B = (b_{ij})_{i,j=1}^n := A^{-1} \in SL(n, \mathbb{Z})$, i.e., $b_{ij} \in \mathbb{Z}$. We have $\alpha_i = \sum_{j=1}^n b_{ij} \alpha^{j-1} \in \mathbb{Z}[\alpha]$, for any $i = 1, \dots, n$. So $\mathcal{O}_K = \mathbb{Z}[\alpha]$. \square

Problem 4. Given coprime integral ideals $A, B \subset \mathcal{O}_K$ and $\alpha, \beta \in \mathcal{O}_K$ show that there exists a $\lambda \in \mathcal{O}_K$ such that

$$\lambda \equiv \alpha \pmod{A}, \quad \lambda \equiv \beta \pmod{B}.$$

Proof. Since A, B are coprime, there exists $a \in A, b \in B$, such that $a + b = 1$. Then we can check that $\lambda = ba\alpha + a\beta$ satisfies the conditions. \square

Problem 5. Let $K = \mathbb{Q}(\zeta_7)$. Find a unit of infinite order.

Proof. In class we have known that $N(1 - \zeta_7) = N(1 - \zeta_7^2)$. So $N(1 + \zeta_7) = N(1) = 1$ is a unit. But its complex norm $|(1 + \zeta_7)| > 1$, so there is no $k \in \mathbb{Z}_{>0}$ such that $(1 + \zeta_7)^k = 1$. \square