
ALGEBRA: HOMEWORK 6

Problem 1. Is it possible to construct (with ruler and compass) a
square whose area is equal to the area of a given triangle?

Proof. Yes, we can construct it. Given a triangle with edge length
a, b, c, its area is A =

√
b2c2 + c2a2 + a2b2 − a4 − b4 − c4/4. We just

need to construct a segment with length
√
A. This can be done since

Q(
√
A) = Q(A)(

√
A) can be obtained by finite quadratic extensions

from Q. �

Problem 2. Let K = Q(α) where α = 3
√
a with a ∈ Z, a squarefree.

Show that if a 6= ±1 (mod 9) then OK = Z + Zα + Zα2.

Proof. Since 1, α, α2 ∈ OK and OK is a ring, we easily have

Z + Zα + Zα2 ⊂ OK .

Assume b = a0 + a1α+ a2α
2 ∈ OK , where a0, a1, a2 ∈ Q. It remains to

prove a0, a1, a2 ∈ Z.
Since α, ζ3α, ζ

2
3α are three roots of x3−a = 0, then b′ = a0 +a1ζ3α+

a2ζ
2
3α

2, b′′ = a0 + ζ23a1 + ζ3a2 are the other two roots of the minimal
polynomial of b, and both are algebraic integers. So

b+ b′ + b′′ ∈ Z̄
bb′ + bb′′ + b′b′′ ∈ Z̄
bb′b′′ ∈ Z̄,

i.e.,

3a0 ∈ Z(1)

3a20 − 3a1a2a ∈ Z(2)

a30 + aa31 + a2a32 − 3aa0a1a2 ∈ Z.(3)

For i = 0, 1, 2, assume ai = pi/qi where gcd(pi, qi) = 1, qi > 0.
If at least one of a0, a1, a2 is not an integer, we may modify a0, a1, a2

by multiplying a constant integer such that qi|p for some prime p and
at least one of q0, q1, q2 is p.

(i) if a0 ∈ Z, then

3aa1a2 ∈ Z(4)

aa31 + a2a32 ∈ Z.(5)
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If a1 ∈ Z or a2 ∈ Z, by (5) we have that p3|a2, which is contradictory
to that a is a squarefree. So q1 = q2 = p, then by (4) we have 3 = p
and 3||a, and identity (5) cannot be true, contradictory!

(ii) now we assume a0 /∈ Z, then by (1) we have p = 3. By (2) we
have 3aa1a2 /∈ Z, and thus 3 - a and q1 = q2 = 3. Then by (3) we have

a2p32 + a(p31 − 3p0p1p2) + p30 = 0 (mod 27).

Let r = p0/p2, s = p0/p2 (mod 27) and we have

a2 + a(s3 − 3rs) + r3 = 0 (mod 27).

It is easy to verify that r = 1 (mod 3).
Assume s = 1 (mod 3), otherwise we can substitute (a, s) by (−a,−s).

Then

r2 + s2 + 1− 3rs = (r + s+ 1)[(r + s+ 1)2 − 3(rs+ r + s)],

and 3|(r+ s+ 1), 9|(r+ s+ 1)2, 9|3(rs+ r+ s), so r2 + s2 + 1− 3rs = 0
(mod 27). So

0 = a2+a(s3−3rs)+r3 = a2−(1+r3)a+r3 = (a−1)(a−r3) (mod 27).

since a 6= ±1 (mod 9), so 9|(a − r3). But r3 = ±1 (mod 9) for any r
not divisible by 3, contradictory! �

Problem 3. Find an integral basis for OK , where K = Q(α) and
α3 − α + 1 = 0.

Proof. It is easy to see that O := Z(α) = Z + Zα + Zα2 ⊂ OK , and

disc(O) = disc(1, α, α2) = −4(−1)3 − 27 = −23

disc(O) = disc(OK)[OK ,O]2.

Since -23 is a squarefree, [OK ,O] = 1 and OK = O = Z(α). �

Problem 4. Let K = Q(α), where α is a root of x3 − x+ 1. Find the
irreducible polynomial for γ := 1 + α2 over Q.

Proof. Assume α, β, γ are three roots of x3 − x+ 1 = 0. Then

α + β + γ = 0

αβ + βγ + γα = −1

αβγ = −1.

We can compute

(x− (1 + α2))(x− (1 + β2))(x− (1 + γ2)) = x3 − 5x2 + 8x− 5

is an irreducible polynomial. �
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Problem 5. Let I be an integral ideal in OK . Then

∩∞n=1I =

{
OK if I = OK

(0) otherwise.

Proof. If I = OK or (0), the conclusion is trivial. In the other cas-
es, assume I∞ = ∩∞n=1I 6= (0) and by unique factorization theorem,
I∞ =

∏n
i=1 pi where pi is a prime ideal. By the definition of I we have

that I∞ = I2∞. So
∏n

i=1 pi =
∏n

i=1 p
2
i , which is contradictory to the

uniqueness of factorization. �


