ALGEBRA: HOMEWORK 6

Problem 1. Is it possible to construct (with ruler and compass) a square whose area is equal to the area of a given triangle?

Proof. Yes, we can construct it. Given a triangle with edge length a, b, c, its area is $A=\sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}-a^{4}-b^{4}-c^{4}} / 4$. We just need to construct a segment with length \sqrt{A}. This can be done since $\mathbb{Q}(\sqrt{A})=\mathbb{Q}(A)(\sqrt{A})$ can be obtained by finite quadratic extensions from \mathbb{Q}.

Problem 2. Let $K=\mathbb{Q}(\alpha)$ where $\alpha=\sqrt[3]{a}$ with $a \in \mathbb{Z}$, a squarefree. Show that if $a \neq \pm 1(\bmod 9)$ then $\mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z} \alpha+\mathbb{Z} \alpha^{2}$.

Proof. Since 1, $\alpha, \alpha^{2} \in \mathcal{O}_{K}$ and \mathcal{O}_{K} is a ring, we easily have

$$
\mathbb{Z}+\mathbb{Z} \alpha+\mathbb{Z} \alpha^{2} \subset \mathcal{O}_{K}
$$

Assume $b=a_{0}+a_{1} \alpha+a_{2} \alpha^{2} \in \mathcal{O}_{K}$, where $a_{0}, a_{1}, a_{2} \in \mathbb{Q}$. It remains to prove $a_{0}, a_{1}, a_{2} \in \mathbb{Z}$.

Since $\alpha, \zeta_{3} \alpha, \zeta_{3}^{2} \alpha$ are three roots of $x^{3}-a=0$, then $b^{\prime}=a_{0}+a_{1} \zeta_{3} \alpha+$ $a_{2} \zeta_{3}^{2} \alpha^{2}, b^{\prime \prime}=a_{0}+\zeta_{3}^{2} a_{1}+\zeta_{3} a_{2}$ are the other two roots of the minimal polynomial of b, and both are algebraic integers. So

$$
\begin{aligned}
& b+b^{\prime}+b^{\prime \prime} \in \overline{\mathbb{Z}} \\
& b b^{\prime}+b b^{\prime \prime}+b^{\prime} b^{\prime \prime} \in \overline{\mathbb{Z}} \\
& b b^{\prime} b^{\prime \prime} \in \overline{\mathbb{Z}}
\end{aligned}
$$

i.e.,

$$
\begin{align*}
& 3 a_{0} \in \mathbb{Z} \tag{1}\\
& 3 a_{0}^{2}-3 a_{1} a_{2} a \in \mathbb{Z} \tag{2}\\
& a_{0}^{3}+a a_{1}^{3}+a^{2} a_{2}^{3}-3 a a_{0} a_{1} a_{2} \in \mathbb{Z}
\end{align*}
$$

For $i=0,1,2$, assume $a_{i}=p_{i} / q_{i}$ where $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1, q_{i}>0$.
If at least one of a_{0}, a_{1}, a_{2} is not an integer, we may modify a_{0}, a_{1}, a_{2} by multiplying a constant integer such that $q_{i} \mid p$ for some prime p and at least one of q_{0}, q_{1}, q_{2} is p.
(i) if $a_{0} \in \mathbb{Z}$, then

$$
\begin{align*}
& 3 a a_{1} a_{2} \in \mathbb{Z} \tag{4}\\
& a a_{1}^{3}+a^{2} a_{2}^{3} \in \mathbb{Z} \tag{5}
\end{align*}
$$

If $a_{1} \in \mathbb{Z}$ or $a_{2} \in \mathbb{Z}$, by (5) we have that $p^{3} \mid a^{2}$, which is contradictory to that a is a squarefree. So $q_{1}=q_{2}=p$, then by (4) we have $3=p$ and $3 \| a$, and identity (5) cannot be true, contradictory!
(ii) now we assume $a_{0} \notin \mathbb{Z}$, then by (1) we have $p=3$. By (2) we have $3 a a_{1} a_{2} \notin \mathbb{Z}$, and thus $3 \nmid a$ and $q_{1}=q_{2}=3$. Then by (3) we have

$$
a^{2} p_{2}^{3}+a\left(p_{1}^{3}-3 p_{0} p_{1} p_{2}\right)+p_{0}^{3}=0 \quad(\bmod 27)
$$

Let $r=p_{0} / p_{2}, s=p_{0} / p_{2}(\bmod 27)$ and we have

$$
a^{2}+a\left(s^{3}-3 r s\right)+r^{3}=0 \quad(\bmod 27) .
$$

It is easy to verify that $r=1(\bmod 3)$.
Assume $s=1(\bmod 3)$, otherwise we can substitute (a, s) by $(-a,-s)$. Then

$$
r^{2}+s^{2}+1-3 r s=(r+s+1)\left[(r+s+1)^{2}-3(r s+r+s)\right]
$$

and $3|(r+s+1), 9|(r+s+1)^{2}, 9 \mid 3(r s+r+s)$, so $r^{2}+s^{2}+1-3 r s=0$ $(\bmod 27)$. So
$0=a^{2}+a\left(s^{3}-3 r s\right)+r^{3}=a^{2}-\left(1+r^{3}\right) a+r^{3}=(a-1)\left(a-r^{3}\right) \quad(\bmod 27)$. since $a \neq \pm 1(\bmod 9)$, so $9 \mid\left(a-r^{3}\right)$. But $r^{3}= \pm 1(\bmod 9)$ for any r not divisible by 3 , contradictory!
Problem 3. Find an integral basis for \mathcal{O}_{K}, where $K=\mathbb{Q}(\alpha)$ and $\alpha^{3}-\alpha+1=0$.

Proof. It is easy to see that $\mathcal{O}:=\mathbb{Z}(\alpha)=\mathbb{Z}+\mathbb{Z} \alpha+\mathbb{Z} \alpha^{2} \subset \mathcal{O}_{K}$, and

$$
\begin{aligned}
\operatorname{disc}(\mathcal{O}) & =\operatorname{disc}\left(1, \alpha, \alpha^{2}\right)=-4(-1)^{3}-27=-23 \\
\operatorname{disc}(\mathcal{O}) & =\operatorname{disc}\left(\mathcal{O}_{K}\right)\left[\mathcal{O}_{K}, \mathcal{O}\right]^{2}
\end{aligned}
$$

Since - 23 is a squarefree, $\left[\mathcal{O}_{K}, \mathcal{O}\right]=1$ and $\mathcal{O}_{K}=\mathcal{O}=\mathbb{Z}(\alpha)$.
Problem 4. Let $K=\mathbb{Q}(\alpha)$, where α is a root of $x^{3}-x+1$. Find the irreducible polynomial for $\gamma:=1+\alpha^{2}$ over \mathbb{Q}.
Proof. Assume α, β, γ are three roots of $x^{3}-x+1=0$. Then

$$
\begin{aligned}
& \alpha+\beta+\gamma=0 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=-1 \\
& \alpha \beta \gamma=-1
\end{aligned}
$$

We can compute

$$
\left(x-\left(1+\alpha^{2}\right)\right)\left(x-\left(1+\beta^{2}\right)\right)\left(x-\left(1+\gamma^{2}\right)\right)=x^{3}-5 x^{2}+8 x-5
$$

is an irreducible polynomial.

Problem 5. Let I be an integral ideal in \mathcal{O}_{K}. Then

$$
\cap_{n=1}^{\infty} I= \begin{cases}\mathcal{O}_{K} & \text { if } I=\mathcal{O}_{K} \\ (0) & \text { otherwise }\end{cases}
$$

Proof. If $I=\mathcal{O}_{K}$ or (0), the conclusion is trivial. In the other cases, assume $I_{\infty}=\cap_{n=1}^{\infty} I \neq(0)$ and by unique factorization theorem, $I_{\infty}=\prod_{i=1}^{n} p_{i}$ where p_{i} is a prime ideal. By the definition of I we have that $I_{\infty}=I_{\infty}^{2}$. So $\prod_{i=1}^{n} p_{i}=\prod_{i=1}^{n} p_{i}^{2}$, which is contradictory to the uniqueness of factorization.

