ALGEBRA: HOMEWORK 5

Problem 1. Does there exist a normal extension $L \supset \mathbb{Q}(\sqrt{3}) \supset \mathbb{Q}$ with cyclic Galois group $\operatorname{Gal}(L / \mathbb{Q})=\mathbb{Z} / 4 \mathbb{Z}$?

Proof. The answer is No. We will prove by contradiction. Assume there exists such L and we will have $[L: \mathbb{Q}(\sqrt{3})]=[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$. Assume $\sigma \in \operatorname{Gal}(L / \mathbb{Q})=: G$ is a generator. Since $\sqrt{3} \notin \mathbb{Q}=L^{G}$, $\sigma(\sqrt{3}) \neq \sqrt{3}$. Since $3=\sigma(3)=\sigma\left(\sqrt{3}^{2}\right)=\sigma(\pm \sqrt{3})^{2}$, we have $\sigma(\sqrt{3})=$ $-\sqrt{3}, \sigma(-\sqrt{3})=\sqrt{3}$. So $\sqrt{3} \in L^{\left\{\sigma^{2}, i d\right\}}$ and $\mathbb{Q}(\sqrt{3})=L^{\left\{\sigma^{2}, i d\right\}}$.

By elementary computations we know that there exists $c \in L \backslash \mathbb{Q}(\sqrt{3})$ such that $c^{2}=a+b \sqrt{3}$, where $a, b \in \mathbb{Q}$. Then c is a root of

$$
\left(x^{2}-a\right)^{2}-3 b^{2}=0 .
$$

Then $c, \sigma(c), \sigma^{2}(c), \sigma^{3}(c)$ are 4 different roots of above equation. So $a, b \neq 0$. Assume the 4 roots are $\pm c, \pm d$, where d satisfies that $d^{2}=$ $a-b \sqrt{3} . \sigma\left(c^{2}\right)=\sigma(a+b \sqrt{3})=a-b \sqrt{3} \neq c^{2}$, so $\sigma(c) \neq \pm c$. By the same reason we have $\sigma(d) \neq \pm d$. W.L.O.G we may assume $\sigma(c)=d$ and then $\sigma^{2}(c)=-c$. Consider the relation between roots and coefficients we have $(c d)^{2}=c^{2} d^{2}=a^{2}-3 b^{2}$. Since $\sigma(c d)=-c d, c d \in L^{\left\{\sigma^{2}, i d\right\}}=$ $\mathbb{Q}(\sqrt{3})=\mathbb{Q}+\mathbb{Q} \sqrt{3}$, and further $c d \in \mathbb{Q} \sqrt{3}$. Assume $e=c d / \sqrt{3} \in \mathbb{Q}$ and we have $3 e^{2}=a^{2}-3 b^{2}$. So $3 x^{2}=y^{2}-3 z^{2}$ has nontrivial solutions in \mathbb{Z}. Assume x, y, z is a nontrivial solution and $\operatorname{gcd}(x, y, z)=1$. Then $3 \mid y$, and $x^{2}+z^{2}=3(y / 3)^{2}=0(\bmod 3)$. By coprimeness $3 \nmid x$ or $3 \nmid z$, so $x^{2}+z^{2} \neq 0(\bmod 3)$, contradictory.

Problem 2. Determine all subfields of $\mathbb{Q}\left(\zeta_{9}\right)$.
Proof. First we note that ζ_{9} has minimal polynomial $x^{6}+x^{3}+1$, and other roots of this polynomial is $\zeta^{2}, \zeta^{4}, \zeta^{5}, \zeta^{7}, \zeta^{8}$.

Then $\zeta \mapsto \zeta^{2}$ induces a \mathbb{Q}-automorphism σ on $\mathbb{Q}\left(\zeta_{9}\right)$, and we can prove σ is of order 6 . Since $\left[\mathbb{Q}\left(\zeta_{9}\right): \mathbb{Q}\right]=6, \mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}$ is normal and

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{9}\right) / \mathbb{Q}\right)=<\sigma>\cong C_{6} .
$$

C_{6} has subgroups isomorphic to $\{e\}, C_{2}, C_{3}, C_{6}$. It is easy to check that $\mathbb{Q}\left(\zeta_{9}^{3}\right)$ and $Q\left(\zeta_{9}+\bar{\zeta}_{9}\right)$ are two subfields of $\mathbb{Q}\left(\zeta_{9}\right)$, and $\left[\mathbb{Q}\left(\zeta_{9}^{3}\right)\right.$: $\mathbb{Q}]=2,\left[\mathbb{Q}\left(\zeta_{9}+\zeta_{9}\right): \mathbb{Q}\right]=3$. So by Galois theory, $\mathbb{Q}\left(\zeta_{9}\right)$ has 4 subgroups $\mathbb{Q}, \mathbb{Q}\left(\zeta_{9}^{3}\right), \mathbb{Q}\left(\zeta_{9}+\bar{\zeta}_{9}\right), \mathbb{Q}\left(\zeta_{9}\right)$, with corresponding Galois groups $C_{6}, C_{3}, C_{2},\{e\}$ respectively.

Problem 3. Determine a polynomial $f \in \mathbb{Z}[x]$ whose roots generate a cyclic extension of \mathbb{Q} of order 5 .

Proof. ζ_{11} has a minimal polynomial

$$
f(x)=\left(x^{11}-1\right) /(x-1)=x^{10}+\ldots+1
$$

So $\left[\mathbb{Q}\left(\zeta_{11}\right): \mathbb{Q}\right]=10$ and $\zeta_{11} \mapsto \zeta_{11}^{2}$ induces a \mathbb{Q}-automorphism σ on $\mathbb{Q}\left(\zeta_{11}\right)$. It is easy to check that the order of σ is 10 and thus $\mathbb{Q}\left(\zeta_{11}\right) / \mathbb{Q}$ is normal with Galois group C_{10}. Since $\sigma^{5}\left(\zeta_{11}\right)=\zeta_{11}^{32}=\zeta_{11}^{-1}=\bar{\zeta}_{11}$, $\zeta_{11}+\bar{\zeta}_{11}$ is invariant under σ^{5}. Then

$$
\mathbb{Q} \subsetneq \mathbb{Q}\left(\zeta_{11}+\bar{\zeta}_{11}\right) \subset \mathbb{Q}\left(\zeta_{11}\right)^{\left\{\sigma^{5}, i d\right\}}
$$

So by Galois theory

$$
\left\{\sigma^{5}, i d\right\} \subset \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{11}\right) / \mathbb{Q}\left(\zeta_{11}+\bar{\zeta}_{11}\right)\right) \subsetneq \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{11}\right) / \mathbb{Q}\left(\zeta_{11}\right)\right)=C_{10}
$$

So $\left\{\sigma^{5}, i d\right\}=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{11}\right) / \mathbb{Q}\left(\zeta_{11}+\bar{\zeta}_{11}\right)\right)$, and

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{11}+\bar{\zeta}_{11}\right) / \mathbb{Q}\right)=C_{10} /\left\{\sigma^{5}, i d\right\}=C_{5} .
$$

Now we just need to compute the minimal polynomial of $\zeta_{11}+\bar{\zeta}_{11}$, which is

$$
\begin{aligned}
& \left(x-\left(\zeta_{11}+\bar{\zeta}_{11}\right)\right)\left(x-\left(\zeta_{11}^{2}+\bar{\zeta}_{11}^{2}\right)\right) \ldots\left(x-\left(\zeta_{11}^{5}+\bar{\zeta}_{11}^{5}\right)\right) \\
= & x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1
\end{aligned}
$$

Problem 4. Show that $K:=\mathbb{Q}(\sqrt{2+\sqrt{-5}})$ is normal over \mathbb{Q} and determine its Galois group.

Proof. The minimal polynomial of $\sqrt{2+\sqrt{-5}}$ is $\left(x^{2}-2\right)^{2}+5$, which have 4 different roots $\pm \sqrt{2+\sqrt{-5}}$. Since $\sqrt{2+\sqrt{-5}} \cdot \sqrt{2-\sqrt{-5}}=3$, we have $\pm \sqrt{2-\sqrt{-5}} \in \mathbb{Q}(\sqrt{2+\sqrt{-5}})$. By mapping $\sqrt{2+\sqrt{-5}}$ to each root we will get 4 different \mathbb{Q}-automorphisms. Since $[\mathbb{Q}(\sqrt{2+\sqrt{-5}})$: $\mathbb{Q}]=4, \mathbb{Q}(\sqrt{2+\sqrt{-5}}) / \mathbb{Q}$ is normal.

Assume $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{2+\sqrt{-5}}) / \mathbb{Q})$. If $\sigma(\sqrt{2+\sqrt{-5}})=-\sqrt{2+\sqrt{-5}}$, $\sigma^{2}(\sqrt{2+\sqrt{-5}})=\sigma(-\sqrt{2+\sqrt{-5}})=-\sigma(\sqrt{2+\sqrt{-5}})=\sqrt{2+\sqrt{-5}}$. So $\sigma^{2}=i d$; If $\sigma(\sqrt{2+\sqrt{-5}})= \pm \sqrt{2-\sqrt{-5}}, \sigma^{2}(\sqrt{2+\sqrt{-5}})=$ $\sigma(\pm \sqrt{2-\sqrt{-5}})=\sigma(\pm 3 / \sqrt{2+\sqrt{-5}})= \pm 3 / \sigma(\sqrt{2+\sqrt{-5}})=\sqrt{2+\sqrt{-5}}$. So $\sigma^{2}=i d$.

So every element in $\operatorname{Gal}(\mathbb{Q}(\sqrt{2+\sqrt{-5}}) / \mathbb{Q})$ is of order 2 , and then $\operatorname{Gal}(\mathbb{Q}(\sqrt{2+\sqrt{-5}}) / \mathbb{Q})=C_{2} \times C_{2}$.

Problem 5. Show that it may happen that $[L K: K]<[L: L \cap K]$.

Proof. Let $K=\mathbb{Q}(\sqrt[3]{2}), L=\mathbb{Q}\left(\zeta_{3} \sqrt[3]{2}\right)$, then $L \cap K=\mathbb{Q}$. The minimal polynomial of $\zeta_{3} \sqrt[3]{2}$ in \mathbb{Q} is $x^{3}-2$, and in $\mathbb{Q}(\sqrt[3]{2})$ is $\left(x^{3}-2\right) /(x-\sqrt[3]{2})=$ $x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}$. So we have

$$
[L K: K]=\left[\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3} \sqrt[3]{2}\right): \mathbb{Q}(\sqrt[3]{2})\right]=2<[L: L \cap K]=3 .
$$

