## ALGEBRA: HOMEWORK 4

Problem 1. Find a normal subgroup of symmetric group $\mathcal{S}_{4}$ of order 4.

Proof. In last homework we have known that there are 3 subgroup of $\mathcal{S}_{4}$ of order 8:

$$
\begin{aligned}
& G_{1}=\{i d,(12)(34),(23)(14),(13)(23),(13),(14),(1234),(4321)\} \\
& G_{2}=\{i d,(12)(34),(23)(14),(13)(23),(12),(34),(1324),(4231)\} \\
& G_{3}=\{i d,(12)(34),(23)(14),(13)(23),(14),(23),(1243),(3421)\} .
\end{aligned}
$$

By Sylow's theorem, any subgroup of order 4 must be contained in one of $G_{1}, G_{2}, G_{3}$, and $G_{1}, G_{2}, G_{3}$ are conjugated to each other. Assume $N$ is a normal subgroup of order 4 and $N \subset G_{1}$, and $g G_{1} g^{-1}=$ $G_{2}, h G_{1} h^{-1} G_{3}$. Then $N=g N g^{-1} \subset G_{2}, N=h N h^{-1} \subset G_{3}$. Then
$N \subset G_{1} \cap G_{2} \cap G_{3}=\{i d,(12)(34),(23)(14),(13)(23)\}$.
So $N$ must be $\{i d,(12)(34),(23)(14),(13)(23)\}$.
Now we prove $N=\{i d,(12)(34),(23)(14),(13)(23)\}$ is a normal subgroup. Since the intersection of subgroups is still a subgroup, so $N$ is clearly a subgroup. For any $g \in G$, the $g$-conjugation action on $\left\{G_{1}, G_{2}, G_{3}\right\}$ is bijective, so

$$
\begin{aligned}
g N g^{-1} & =g\left(G_{1} \cap G_{2} \cap G_{3}\right) g^{-1} \\
& =\left(g G_{1} g^{-1}\right) \cap\left(g G_{3} g^{-1}\right) \cap\left(g G_{3} g^{-1}\right) \\
& =G_{1} \cap G_{2} \cap G_{3}=N
\end{aligned}
$$

and $N$ is normal.
Problem 2. Show that a group of order 385 is solvable.
Proof. Assume $G$ is the group of order $385=5 \times 7 \times 11$ and by Sylow's theorem there exists subgroup of order 11. Assume $n$ is the number of subgroups of order 11. By Sylow's theorem $n \mid 3 \times 5$ and $n=1(\bmod$ 11), so $n=1$ and there exists a normal subgroup $H$ and the quotient group $G / H$ is of order $5 \times 7$. Since $7 \neq 1(5)$, by a result in class we know that $G / H \cong C_{15}$ is abelian. So $\{e\} \triangleleft H \triangleleft G$ is a solvable chain.

Problem 3. Write

$$
\left(x^{2}+y^{2}\right)\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)
$$

in terms of elementary symmetric functions $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
Proof.

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right) \\
= & x^{4} y^{2}+x^{4} z^{2}+y^{4} x^{2}+y^{4} z^{2}+z^{4} x^{2}+z^{4} y^{2}+2 x^{2} y^{2} z^{2} \\
= & \left(x^{2}+y^{2}+z^{2}\right)\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)-x^{2} y^{2} z^{2} \\
= & \left(\sigma_{1}^{2}-2 \sigma_{2}\right)\left(\sigma_{2}^{2}-2 \sigma_{1} \sigma_{3}\right)-\sigma_{3}^{2} \\
= & \sigma_{1}^{2} \sigma_{2}^{2}-2 \sigma_{1}^{3} \sigma_{3}-2 \sigma_{2}^{3}+4 \sigma_{1} \sigma_{2} \sigma_{3}-\sigma_{3}^{2}
\end{aligned}
$$

Problem 4. Determine the ring of invariants $\mathbb{C}[x, y, z]^{\Gamma}$ for

$$
\Gamma:=\left\{\left(\begin{array}{ccc} 
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right)\right\} \subset G L_{3}(\mathbb{C})
$$

Proof. Assume $f(x, y, z)=\sum a_{i j k} x^{i} y^{j} z^{k} \subset \mathbb{C}[x, y, z]^{\Gamma}$. Then by $f(x, y, z)=$ $f(-x, y, z)$, we have $\sum a_{i j k} x^{i} y^{j} z^{k} \equiv \sum(-1)^{i} a_{i j k} x^{i} y^{j} z^{k}$, i.e., $a_{i j k}=$ $(-1)^{i} a_{i j k}$. So for odd $i, a_{i j k}=0$ and for the same reason $a_{i j k}=0$ if $j$ or $k$ is odd. So $f$ have the form $f=\sum b_{i j k} x^{2 i} y^{2 j} z^{2 k} \in \mathbb{C}\left[x^{2}, y^{2}, z^{2}\right]$. So $\mathbb{C}[x, y, z]^{\Gamma} \subset \mathbb{C}\left[x^{2}, y^{2}, z^{2}\right]$, and it is easy to verify $\mathbb{C}\left[x^{2}, y^{2}, z^{2}\right] \subset$ $\mathbb{C}[x, y, z]^{\Gamma}$. So $\mathbb{C}[x, y, z]^{\Gamma}=\mathbb{C}\left[x^{2}, y^{2}, z^{2}\right]$.

Problem 5. Find generators of the ring of invariants $\mathbb{F}_{2}[x, y, z]^{\Gamma}$ for

$$
\Gamma:=\left\{\left(\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} \subset G L_{3}\left(\mathbb{F}_{2}\right)
$$

where $*$ is 0 or 1 , i.e., $\Gamma$ is the Heisenberg group over $\mathbb{F}_{2}$.
Proof. We claim that $x(x+y)(x+z)(x+y+z), y(y+z), z$ are generators of $\mathbb{F}_{2}[x, y, z]^{\Gamma}$.

It is easy to check that these three polynomials are invariant under $\Gamma$ and now we prove that any $f \in \mathbb{F}_{2}[x, y, z]^{\Gamma}$ is a polynomial of there three.

Assume $f=\sum a_{i j k} x^{i} y^{j} z^{k} \in \mathbb{F}_{2}[x, y, z]^{\Gamma}$. Use the lexicographical order defined in class and assume $x^{p} y^{q} z^{r}$ is the leading term of $f$.
(1) If $p>0$,
expand both sides in $f(x+y, y, z) \equiv f(x, y, z)$ and compare the coefficients of $x^{p-1} y^{q+1} z^{r}$, we have $2 \mid p$;
expand both sides of $f(x, y+z, z) \equiv f(x, y, z)$ and compare the coefficients of $x^{p} y^{q-1} z^{r+1}$, we have $2 \mid q$;
expand both sides in $f(x+y, y, z) \equiv f(x, y, z)$ and compare the coefficients of $x^{p-2} y^{q+2} z^{r}$, we have that the coefficient of $x^{p-1} y^{q+1} z^{r}$ in $f$ is equal to $C_{p}^{2}=p(p-1) / 2 \bmod (2)$.
expand both sides in $f(x, y+z, z) \equiv f(x, y, z)$ and compare the coefficients of $x^{p-1} y^{q} z^{r+1}$, we have that the coefficient of $x^{p-1} y^{q+1} z^{r}$ in $f$ is even, i.e., $C_{p}^{2}=p(p-1) / 2$ is even. So $4 \mid p$.
(2) If $p=0$, expand both sides of $f(x, y+z, z) \equiv f(x, y, z)$ and compare the coefficients of $y^{q-1} z^{r+1}$, we have $2 \mid q$.

Now we prove by induction on the leading term of $f$. If $p>0$, $f-[x(x+y)(x+z)(x+y+z)]^{p / 4}$ is invariant and has strictly smaller leading term; if $p=0, q \neq 0, f-[y(y+z)]^{q / 2}$ has strictly smaller leading term; if $p=q=0$, then $f$ is a polynomial of $z$.

