ALGEBRA: HOMEWORK 3

Problem 1. Determine all groups of order 18.
Proof. Assume G is a group of order 18. By Sylow's theorem G has a unique subgroup N_{9} of order 9 , and it is normal. We claim that

$$
N_{9}=C_{9} \quad \text { or } \quad N_{9}=C_{3} \times C_{3} .
$$

Proof of claim: In class we have proved such a result: if $|G|=p^{k}$, then $p||Z(G)|$. So $| Z\left(N_{9}\right) \mid=3$ or 9 . If N_{9} has an element of order 9 , then $N_{9} \cong C_{9}$. If not, then every nonunit element has order 3. Pick a nonunit element $g \in Z\left(N_{9}\right) \subset N_{9}$, and an $h \in N_{9} \backslash<g>$. It is easy to prove $\left\{g^{i} h^{j}\right\}$ with $0 \leq i \leq 2,0 \leq j \leq 2$ are mutually distinct and thus exhaust elements in N_{9}. Since $g \in Z\left(N_{9}\right)$, the group multiplication with elements in $\left\{g^{i} h^{j}\right\}$ is commutative. So N_{9} is abelian isomorphic to $<g>\times<h>\cong C_{3} \times C_{3}$.

Now we consider cases:
(1) $N_{9}=\left\langle g>\cong C_{9}\right.$, by Sylow's theorem, there exists an element h of order 2. Assume $h g h^{-1}=h g h=g^{k}$ with $1 \leq k \leq 8$. Then $g^{k^{2}}=\left(g^{k}\right)^{k}=(h g h)^{k}=h g^{k} h=g$, and then $g^{(k-1)(k+1)}=e$, and then $k=1$ or $k=8$. If $k=1, g h=h g$, and $G=\langle g\rangle \times\langle h>$ and is abelian. If $k=8, h g h=g^{-1}$, and G is isomorphic to the dihedral group D_{18}.
(2) $N_{9}=<g>\times<h>\cong C_{3} \times C_{3}$. By Sylow's theorem, assume $x \in G$ is of order 2. Assume $x g x=g^{a} h^{b}$ and $x h x=g^{c} h^{d}$. Then by

$$
\begin{aligned}
& g=x(x g x) x=x\left(g^{a} h^{b}\right) x=g^{a^{2}+b c} h^{(a+d) b} \\
& h=x(x h x) x=x\left(g^{c} h^{d}\right) x=g^{d^{2}+b c} h^{(a+d) c}
\end{aligned}
$$

we have in modulo $3, a^{2}+b c=1,(a+d) b=0, d^{2}+b c=1$, $(a+d) c=0$.
(i) If $a+d \neq 0$, then $b=c=0, a=d \neq 0$. If $a=d=1, G$ is abelian and $G=<g>\times<h>\times<x>\cong C_{3} \times C_{3} \times C_{2}$. If $a=d=2$, we have relations

$$
g^{3}=h^{3}=e, x g x=g^{2}, x h x=h^{2}
$$

and can prove $G=\left\{g, h, x \mid g^{3}=h^{3}=x^{2}=e, x g x=\right.$ $\left.g^{2}, x h x=h^{2}\right\}=: E_{18}$, and an element in E_{18} has order 1 or 2 or 3 .
(ii) $a+d=0, a=d=0$, then $b=c=1$ or $b=c=2$, and then $x(g h) x=g h, x\left(g h^{-1}\right) x=g h^{-1}$ or $x(g h) x=(g h)^{2}, x\left(g h^{-1}\right) x=\left(g h^{-1}\right)^{2}$.

Change variables as $\tilde{g}=g h, \tilde{h}=g h^{-1}$, and we have

$$
x \tilde{g} x=\tilde{g}, x \tilde{h} x=\tilde{h}^{2} \text { or } x \tilde{g} x=\tilde{g}^{2}, x \tilde{h} x=\tilde{h} .
$$

and $<g>\times<h>=<\tilde{g}>\times<\tilde{h}>$. W.L.O.G we may assume $x \tilde{g} x=\tilde{g}, x \tilde{h} x=\tilde{h}^{2}$. It is not hard to prove that (\tilde{h}, x) generate a subgroup G_{6} of order 6 and isomorphic to $D_{6} \cong \mathcal{S}_{3}$. Since \tilde{g} is commutable with \tilde{h} and x, we have $G=<\tilde{g}>\times G_{6}=C_{3} \times \mathcal{S}_{3}$.
(iii) $a=1, d=2$ or $a=2, d=1$. W.L.O.G, we may assume $a=1, d=2$, then $b=0$ or $c=0$. There are 5 cases:
(1) $b=c=0, G=C_{3} \times \mathcal{S}_{3}$ by result in (ii).
(2) $b=0, c=1$, let $\tilde{h}=g h$ and consider $\langle g\rangle \times<\tilde{h}\rangle$ we will find $G=C_{3} \times \mathcal{S}_{3}$.
(3) $b=0, c=2$, let $\tilde{h}=g^{2} h$ and consider $<g>\times<\tilde{h}>$ we will find $G=C_{3} \times \mathcal{S}_{3}$.
(4) $b=1, c=0$, let $\tilde{g}=g h^{2}$ and consider $\langle\tilde{g}>\times<h>$ we will find $G=C_{3} \times \mathcal{S}_{3}$.
(5) $b=2, c=0$, let $\tilde{g}=g h$ and consider $\langle\tilde{g}\rangle \times<h>$ we will find $G=C_{3} \times \mathcal{S}_{3}$.
In summary, G can be $C_{18}, D_{18}, C_{3} \times C_{3} \times C_{2}, \mathcal{S}_{3} \times C_{3}$, or

$$
E_{18}=\left\{g, h, x \mid g^{3}=h^{3}=x^{2}=e, x g x=g^{2}, x h x=h^{2}\right\} .
$$

Problem 2. Let p be a prime number. What is the order of $S L_{2}(\mathbb{Z} / p \mathbb{Z})$?
Proof. It is equivalent to ask how many solutions to $a d-b c=1 \bmod (p)$. Just discuss in cases (i) $a d=0$, (ii) $b c=0$, (iii) $a d \neq 0, b c \neq 0$. The answer is $p^{3}-p$.
Problem 3. What is the index $\left(S L_{2}(\mathbb{Z} / p \mathbb{Z}): \Gamma_{0}(p)\right)$?
Proof. Just need to compute $\left|\Gamma_{0}(p)\right|$. This is equivalent to ask how many triples (a, b, d) satisfying $a d=1 \bmod (p)$. The answer is $p(p-1)$, and $\left(S L_{2}(\mathbb{Z} / p \mathbb{Z}): \Gamma_{0}(p)\right)=p+1$.
Remark 1.

$$
\Gamma_{0}(p):=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, b, d \in \mathbb{Z} / p \mathbb{Z}, a d=1\right\} \subset S L_{2}(\mathbb{Z} / p \mathbb{Z}) .
$$

Problem 4. Realize $\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ as subgroups of $G L_{2}(\mathbb{Z})$.
Proof. (1) $\mathbb{Z} / 3 \mathbb{Z}$:

$$
\left\{\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

(2) $\mathbb{Z} / 4 \mathbb{Z}$:

$$
\left\{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

(3) $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$:

$$
\left\{\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

Problem 5. Find all subgroups of the symmetric group \mathcal{S}_{4} of order 8 .
Proof. $\left|\mathcal{S}_{4}\right|=24$ and by Sylow's theorem there exist at most 3 subgroups of order 8 . We can take $1,2,3,4$ as 4 vertices on a square counterclockwise, then the induced dihedral group, which is isomorphic to D_{8}, can be viewed as a subgroup of \mathcal{S}_{4}. The elements are

$$
\{I d,(1234),(4321),(13)(24),(12)(34),(23)(14),(13),(24)\} .
$$

We can change the order of index of the square to (1243) and (1324), and obtain the other 2 subgroups of order 8.

Problem 6. Assume that G is generated by two elements and that $\exp (G)=3$, i.e., for every $g \in G, g^{3}=1$. Show that G is finite.

Proof. Assume G is generated by two elements a, b, and any $g \in G$ has a representation $a^{\alpha_{1}} b^{\beta_{1}} a^{\alpha_{2}} b^{\beta_{2}} \ldots$ or $b^{\beta_{1}} a^{\alpha_{1}} b^{\beta_{2}} a^{\alpha_{2}} \ldots$ It suffices to prove any $g \in G$ has a representation with word length <12.

If not, W.L.O.G., assume $g=a^{\alpha_{1}} b^{\beta_{1}} a^{\alpha_{2}} b^{\beta_{2}} \ldots$ is a representation of g with minimal length ≥ 12, and $\alpha_{i}, \beta_{i}= \pm 1$.

If there exists $\alpha_{i}=\alpha_{i+1}$, then by $e=\left(a^{\alpha_{i}} b^{\beta_{i}}\right)^{3}=a^{\alpha_{i}} b^{\beta_{i}} a^{\alpha_{i}} b^{\beta_{i}} a^{\alpha_{i}} b^{\beta_{i}}$, we can substitute $a^{\alpha_{i}} b^{\beta_{i}} a^{\alpha_{i+1}}$ by $b^{-\beta_{i}} a^{-\alpha_{i}} b^{-\beta_{i}}$ to make the representation shorter. This contradicts the minimality assumption.

So $\alpha_{i} \neq \alpha_{i+1}$ for any i and for the same reason $\beta_{i} \neq \beta_{i+1}$ for any i. So $g=a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}} a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}} a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}} \ldots$ Then we can substitute the beginning

$$
a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}} a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}} a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}}=\left(a^{\alpha_{1}} b^{\beta_{1}} a^{-\alpha_{1}} b^{-\beta_{1}}\right)^{3}
$$

by 1 to make the representation shorter. This is also contradictory.

