ALGEBRA: HOMEWORK 2

Problem 1. Let $p=1(\bmod 4)$ be a prime number. Then

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a=0
$$

Proof. If $p=1 \bmod 4,\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}=1$ and $\left(\frac{-a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right)=\left(\frac{a}{p}\right)$. So

$$
2 \sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a+\sum_{a=1}^{p-1}\left(\frac{p-a}{p}\right)(p-a)=p \sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0 .
$$

Problem 2. Let $p>5$ be prime. Show that

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{2}=0(\bmod \mathrm{p})
$$

Proof.

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{2}=\sum_{a=1}^{p-1} a^{\frac{p-1}{2}} a^{2}=\sum_{a=1}^{p-1} a^{\frac{p+3}{2}}(\bmod \mathrm{p})
$$

since $p>5$, we have $p-1>\frac{p+3}{2}$, and therefore $p-1 \nmid \frac{p+3}{2}$. Then we get

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{2}=\sum_{a=1}^{p-1} a^{\frac{p+3}{2}}=0(\bmod \mathrm{p}) .
$$

Problem 3. For prime $p \nmid b$

$$
\sum_{a=1}^{p-1}\left(\frac{a(a+b)}{p}\right)=-1 .
$$

Proof. It is easy to see in modulo p,

$$
\left\{a^{-1} b: a=1, \ldots, p-1\right\}=\{1, \ldots, p-1\}
$$

and then

$$
\sum_{a=1}^{p-1}\left(\frac{a(a+b)}{p}\right)=\sum_{a=1}^{p-1}\left(\frac{1+a^{-1} b}{p}\right)=\sum_{\substack{x=1 \\ 1}}^{p-1}\left(\frac{1+x}{p}\right)=\sum_{x=1}^{p}\left(\frac{x}{p}\right)-\left(\frac{1}{p}\right)=-1 .
$$

Problem 4. Find the number of non-trivial solutions of

$$
x^{3}+y^{3}+z^{3}+t^{3}=0(\bmod 5)
$$

Proof. (By Vladimir Kobzar) Each element of $\mathbb{Z} / 5$ is a cube. Therefore, if for arbitrary x, y, z, there always exists unique t such that $t^{3}=$ $-\left(x^{3}+y^{3}+z^{3}\right)$. Therefore we have $5 \cdot 5 \cdot 5=125$ solutions, of which 124 are non-trivial.

Problem 5. Show that the congruence

$$
x^{4}-17 y^{4} \equiv 2 z^{2}(\bmod \mathrm{p})
$$

has nontrivial solutions for all primes p.
Proof. For $p=2,3,5,13,19$, we can construct solutions directly.
Now we assume $p \neq 2,3,5,13,19$ and there is no nontrivial solutions (x, y, z) to this equation. Let $Q R$ be the set of quadratic residues of p.

Let $x=1, y=0$ and we have that $1=2 z^{2}(\bmod p)$ has no solutions and then $2 \notin Q R$.

Let $y=1$ and we have that $x^{4}-17=2 z^{2}(\bmod p)$ has no solutions. By adding some constant to both sides we have that

$$
\begin{align*}
x^{4}-5^{2} & =2\left(z^{2}-4\right) \tag{1}\\
x^{4}-3^{2} & =2\left(z^{2}+4\right) \tag{2}\\
x^{4}-6^{2} & =2\left(z^{2}-19 / 2\right) \tag{3}\\
x^{4}-13^{2} & =2\left(z^{2}-76\right) \tag{4}\\
x^{4}-15^{2} & =2\left(z^{2}-104\right) \tag{5}
\end{align*}
$$

all have no solutions modulo p. Now
In (1) let $z=2$ and we know $5 \notin Q R,-5 \notin Q R$ and then $-1 \in Q R$;
In (2) let $z^{2}=-4 \in Q R$, and we know $3 \notin Q R$, and $6=2 \cdot 3 \in Q R$;
In (3) let $x^{2}=6 \in Q R$, and we know $19 / 2 \notin Q R$, and $19 \in Q R$;
In (4) let $z^{2}=2^{2} \cdot 19 \in Q R$, and then $13 \notin Q R, 104=2^{3} \cdot 13 \in Q R$;
In (5) let $x^{2}=15=3 \cdot 5 \in Q R$, and $z^{2}=104 \in Q R$ and we find a solution. Contradictory!

