Homework 8

1. Let K / \mathbb{Q} be a cubic extension and $(p)=\wp_{1} \cdot \wp_{2} \cdot \wp_{3}$ a product of distinct prime ideals. Let $\alpha \in \mathcal{O}_{K}$ be an integer with $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=0$. Show that if $\wp_{1} \cdot \wp_{2} \mid(\alpha)$ then $\wp_{3} \mid(\alpha)$.
2. Assume that $C l_{K}$ contains distinct nontrivial classes C_{1}, C_{2}. Show that there exist integral ideals $\mathfrak{a}_{i} \in C_{i}$ which are coprime.
3. Show that $\epsilon_{1}:=1+\zeta_{7}+\zeta_{7}^{6}, \epsilon_{2}:=1+\zeta_{7}^{3}+\zeta_{7}^{4}$ are multiplicatively independent units, i.e.,

$$
\epsilon_{1}^{a} \cdot \epsilon_{2}^{b}=1 \Rightarrow a=b=0
$$

4. Let $K=\mathbb{Q}(\eta), \eta^{3}=6$. Show that $h_{K}=1$.
5. Compute the class number of $\mathbb{Q}(\sqrt{-13})$.
