Homework 7

1. Let $K=\mathbb{Q}(\sqrt{-5})$ and $\mathfrak{a}:=(4+\sqrt{-5}, 1+2 \sqrt{-5}) \subset \mathcal{O}_{K}$. Show that \mathfrak{a} is not a principal ideal and that it is a prime ideal.
2. Let $\alpha \in \mathcal{O}_{K}$ be an element such that $K=\mathbb{Q}(\alpha)$. Show that

$$
\operatorname{disc}(\alpha)=\operatorname{disc}(K / \mathbb{Q}) \cdot t^{2}
$$

for some $t \in \mathbb{Z}$. This t is called the index of α.
3. Show that if $\alpha \in \mathcal{O}_{K}$ has index one then $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
4. Given coprime integral ideals $\mathfrak{a}, \mathfrak{b} \subset \mathcal{O}_{K}$ and $\alpha, \beta \in \mathcal{O}_{K}$ show that there exists a $\lambda \in \mathcal{O}_{K}$ such that

$$
\lambda \equiv \alpha \quad(\bmod \mathfrak{a}), \quad \lambda \equiv \beta \quad(\bmod \mathfrak{b})
$$

5. Let $K=\mathbb{Q}\left(\zeta_{7}\right)$. Find a unit of infinite order.
