Homework 6

1. Is it possible to construct (with ruler and compass) a square whose area is equal to the area of a given triangle?
2. Let $K=\mathbb{Q}(\alpha)$ where $\alpha=\sqrt[3]{a}$, with $a \in \mathbb{Z}, a$ squarefree. Show that if $a \neq \pm 1 \bmod 9$ then $\mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z} \alpha+\mathbb{Z} \alpha^{2}$.
3. Find an integral basis for \mathcal{O}_{K}, where $K=\mathbb{Q}(\alpha)$ and $\alpha^{3}-\alpha+1=0$.
4. Let $K=\mathbb{Q}(\alpha)$, where α is a root of $x^{3}-x-1$. Find the irreducible polynomial for $\gamma:=1+\alpha^{2}$ over \mathbb{Q}.
5. Let \mathfrak{a} be an integral ideal in \mathcal{O}_{K}. Then

$$
\cap_{n=1}^{\infty} \mathfrak{a}^{n}= \begin{cases}\mathcal{O}_{K} & \text { if } \mathfrak{a}=\mathcal{O}_{K} \\ (0) & \text { otherwise }\end{cases}
$$

