Homework 4 / due October 9

1. Find a normal subgroup of \mathfrak{S}_{4} of order 4 .
2. Show that a group of order 385 is solvable.
3. Write

$$
\left(x^{2}+y^{2}\right)\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)
$$

in terms of elementary symmetric functions $\sigma_{1}, \sigma_{2}, \sigma_{3}$.
4. Determine the ring of invariants $\mathbb{C}[x, y, z]^{\Gamma}$ for

$$
\Gamma:=\left\{\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right)\right\} \subset \mathrm{GL}_{3}(\mathbb{C})
$$

5. Find generators of the ring of invariants $\mathbb{F}_{2}[x, y, z]^{\Gamma}$ for

$$
\Gamma:=\left\{\left(\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right)\right\} \subset \operatorname{GL}_{3}\left(\mathbb{F}_{2}\right)
$$

where $*$ is 0 or 1 , i.e., Γ is the Heisenberg group over \mathbb{F}_{2}.

