Homework 1

1. Prove that $15 x^{2}-7 y^{2}=9$ has no solutions in \mathbb{Z}.
2. Prove that an integer of the form $8 n+7$ cannot be written as a sum of three integer squares.
3. Show that if $x^{2}=a$ is solvable modulo p then it is also solvable modulo p^{n}, for all positive integers n.
4. Show that $(2,3,7)$ is the only triple of integers >1 such that

$$
c|(a b+1), \quad b|(a c+1) \quad \text { and } \quad a \mid(b c+1)
$$

5. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be given by

$$
\sum_{d \mid n} f(d)=\phi(n), \quad(\text { the Euler function }),
$$

for all $n \in \mathbb{N}$. Find all such f.

