ALGEBRA: HOMEWORK 1

Problem 1. Prove that $15 x^{2}-7 y^{2}=9$ has no solutions in \mathbb{Z}.
Sketch of proof: if there exist solutions in \mathbb{Z}, consider this equation in $\mathbb{Z} / 5 \mathbb{Z}$:

$$
-7 y^{2}=9=3^{2} \quad(\bmod 5)
$$

but $-7=3(\bmod 5)$ is a QNR (quadratic nonresidue), contradiction.
Problem 2. Prove that an integer of the form $8 n+7$ cannot be written as a sum of three integer squares.

Sketch of proof: By enumeration we know that QRs in $\mathbb{Z} / 8 \mathbb{Z}$ are $\{0,1,4\}$, and then the sum of three integer squares in $\mathbb{Z} / 8 \mathbb{Z}$ is in $\{0,1,2,3,4,5,6\}$.

Problem 3. Show that if $x^{2}=a(\bmod p)$ is solvable then $x^{2}=a\left(\bmod p^{n}\right)$ is also solvable, for all positive integers n.

Sketch of proof: Clearly, this holds for $a=0$ or $a=1$. Now assume that p is odd $a \neq 0$. By induction, it suffices to prove that if $x^{2}=a\left(p^{n}\right)$, then there exists x^{\prime} of form $x^{\prime}=x+l p^{n}$ such that $x^{\prime 2}=a\left(p^{n+1}\right)$.

Assume $x^{2}-a=k p^{n}$, and we need to solve $\left(x+l p^{n}\right)^{2}=x^{2}=a=x^{2}-k p^{n}\left(p^{n+1}\right)$, i.e., $2 x l p^{n}=k p^{n}\left(p^{n+1}\right)$, i.e., $2 x l=-k(p)$. Since $p \nmid 2$ and $p \nmid x$, then there exists l such that $2 x l=-k(p)$.

Problem 4. Show that $(2,3,7)$ is the only triple of integers >1 such that

$$
c|(a b+1), \quad b|(a c+1), \text { and } \quad a \mid(b c+1)
$$

Sketch of proof: It is easy to see that a, b, c are pairwise co-prime. We have

$$
a b c \mid(a b+1)(b c+1)(c a+1)
$$

Since

$$
(a b+1)(b c+1)(a c+1)=a b c(a b c+a+b+c)+a b+b c+c a+1
$$

we have $a b c \mid a b+b c+c a+1$. and thus $a b c \leq a b+b c+c a+1$, i.e.,

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c} \geq 1
$$

Without loss of generality, we may assume $a<b<c$ and enumerate the finite cases satisfying the above inequality. (Actually there are only 2 cases $(2,3,5),(2,3,7)$ satisfying the inequality and pairwise co-prime condition.)
Problem 5. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be given by

$$
\sum_{d \mid n} f(d)=\phi(n), \quad \text { (the Euler function) }
$$

for all $n \in \mathbb{N}$. Find all such f.

Sketch of proof: Such f is uniquely defined by the inductive identity

$$
f(n)=\phi(n)-\sum_{d \mid n, d \neq n} f(d)
$$

Thus it exists and is unique. Now we compute this f. First

$$
\begin{aligned}
f\left(p^{n}\right) & =\sum_{d \mid p^{n}} f(d)-\sum_{d \mid p^{n-1}} f(d)=\phi\left(p^{n}\right)-\phi\left(p^{n-1}\right) \\
& = \begin{cases}1 & n=0 \\
(p-1)-1=p-2 \\
p^{n-1}(p-1)-p^{n-2}(p-1)=p^{n-2}(p-1)^{2} & n=1\end{cases}
\end{aligned} .
$$

Now for $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, we claim that

$$
f(n)=f\left(p_{1}^{a_{1}}\right) \ldots f\left(p_{k}^{a_{k}}\right)
$$

is a desired f.
For $n=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, we have

$$
\begin{aligned}
\sum_{d \mid n} f(d) & =\sum_{d_{1} \mid p_{1}^{a_{1}}} \ldots \sum_{d_{k} \mid p_{k}^{a_{k}}} f\left(d_{1} \ldots d_{k}\right) \\
& =\sum_{d_{1} \mid p_{1}^{a_{1}}} \ldots \sum_{d_{k} \mid p_{k}^{a_{k}}} f\left(d_{1}\right) \ldots f\left(d_{k}\right) \\
& =\sum_{d_{1} \mid p_{1}^{a_{1}}} f\left(d_{1}\right) \ldots \sum_{d_{k} \mid p_{k}^{a_{k}}} f\left(d_{k}\right) \\
& =\phi\left(p_{1}^{a_{1}}\right) \ldots \phi\left(p_{k}^{a_{k}}\right)=\phi(n) .
\end{aligned}
$$

