FUNCTORIALITY AND SPECIAL VALUES OF L-FUNCTIONS

A. RAGHURAM AND FREYDOON SHAHIDI

ABSTRACT. This is a semi-expository article concerning Langlands functoriality
and Deligne’s conjecture on the special values of L-functions. The emphasis is on
symmetric power L-functions associated to a holomorphic cusp form.
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1. INTRODUCTION

Langlands functoriality principle reduces the study of automorphic forms on the
adelic points of a reductive algebraic group to those of an appropriate general linear
group. In particular, every automorphic L-function on an arbitrary reductive group
must be one for a suitable GL,,. One should therefore be able to reduce the study of
of special values of an automorphic L-function to those of a principal L-function of
Godement and Jacquet on GL,,.
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2 A. RAGHURAM AND FREYDOON SHAHIDI

While the integral representations of Godement and Jacquet do not seem to admit
a cohomological interpretation, there is a recent work of J. Mahnkopf [26] [27] which
provides us with such an interpretation for certain Rankin-Selberg type integrals. In
particular, modulo a nonvanishing assumption on local archimedean Rankin—Selberg
product L-functions for forms on GL, x GL,_1, he defines a pair of periods, which
seem to be in accordance with those of Deligne [9] and Shimura [42]. This work
of Mahnkopf is quite remarkable and requires the use of both Rankin—Selberg and
Langlands—Shahidi methods in studying the analytic (and arithmetic) properties of
L-functions. His work therefore brings in the theory of Eisenstein series to play an
important role. In §6 we briefly review this work of Mahnkopf.

This article is an attempt to test the philosophy—to study the special values of
L-functions while using functoriality—by means of recent cases of functoriality estab-
lished for symmetric powers of automorphic forms on GLg [17] [21]. While a proof
of the precise formulae in the conjectures of Deligne [9] still seem to be out of reach,
we expect to be able to prove explicit connections between the special values of sym-
metric power L-functions twisted by Dirichlet characters and those of the original
symmetric power L-functions using this work of Mahnkopf. These relations are for-
mulated in this paper as Conjecture 7.1 which seems to be compatible with the more
general conjectures of Blasius [3] and Panchiskin [32].

A standard assumption made in the study of special values of L-functions is that
the representations (to which are attached the L-functions) are cohomological. This
is the case in Mahnkopf’s work. A global representation being cohomological is en-
tirely determined by the archimedean components. For representations which are
symmetric power lifts of a cusp form on GLy we have the following fact. Consider a
holomorphic cusp form on the upper half plane of weight k. This corresponds to a
cuspidal automorphic representation, which is cohomological if k£ > 2, and any sym-
metric power lift, if cuspidal, is also cohomological. (If the weight £ = 1 then the
representation is not cohomological, and furthermore none of the symmetric power L-
functions have any critical points.) In §5 we review representations with cohomology
in the case of GL,,.

We recall the functorial formalism for symmetric powers in §2. We then review
Deligne’s conjecture for the special values of symmetric power L-functions in §3 and
give a brief survey as to which cases are known so far. In §4 we sketch a proof of the
conjecture for dihedral representations; the details will appear elsewhere [33].
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workshop on Eisenstein series and Applications at the American Institute of Mathematics
(AIMS) in August of 2005; he would like to thank the organizers Wee Teck Gan, Stephen
Kudla and Yuri Tschinkel as well as Brian Conrey of AIMS for a most productive meeting.
Both the authors thank Laurent Clozel, Paul Garrett, Joachim Mahnkopf and Dinakar
Ramakrishnan for helpful discussions and email correspondence. The work of the second
author is partially supported by NSF grant DMS-0200325.



SPECIAL VALUES OF L-FUNCTIONS 3

2. SYMMETRIC POWERS AND FUNCTORIALITY

In this section we recall the formalism of Langlands functoriality especially for
symmetric powers. We will be brief here as there are several very good expositions
of the principle of functoriality; see for instance [8, Chapter 2].

Let F' be a number field and let Ap be its adele ring. We let m be a cuspidal
automorphic representation of GLy(Ag), by which we mean that, for some s € R,
7 ® |-]° is an irreducible summand of

Lzusp(GL2(F)\GL2<AF)7 w)

the space of square-integrable cusp forms with central character w. We have the
decomposition 7 = ®! m, where v runs over all places of F' and 7, is an irreducible
admissible representation of GLy(F,).

The local Langlands correspondence for GLy (see [24] and [23] for the p-adic case
and [22]| for the archimedean case), says that to m, is associated a representation
o(my) : Wi — GLg(C) of the Weil-Deligne group W, of F,. (If v is infinite, we take
Wi = Wpg,.) Let n > 1 be an integer. Consider the n-th symmetric power of o(m,)
which is an n+ 1 dimensional representation. This is simply the composition of o(m,)
with Sym" : GLy(C) — GL,,41(C). Appealing to the local Langlands correspondence
for GL,4+1 ([14], [15], [22], [23]) we get an irreducible admissible representation of
GL,+1(F,) which we denote as Sym"(m,). Now define a global representation of
Sym"(7) of GL,+1(Ar) by

Sym"™(7) := ®! Sym"(m,).

Langlands principle of functoriality predicts that Sym”(7) is an automorphic rep-
resentation of GL,11(Ap), i.e., it is isomorphic to an irreducible subquotient of the
representation of GL,;1(Ar) on the space of automorphic forms [4, §4.6]. If w, is the
central character of 7 then wi ™" is the central character of Sym” (7). Actually it is
expected to be an isobaric automorphic representation. (See [8, Definition 1.1.2] for
a definition of an isobaric representation.) The principle of functoriality for the n-th
symmetric power is known for n = 2 by Gelbart—Jacquet [11]; for n = 3 by Kim—
Shahidi [21]; and for n = 4 by Kim [17]. For certain special forms m, for instance, if 7

is dihedral, tetrahedral, octahedral or icosahedral, it is know for all n (see [18] [33]).

3. DELIGNE’S CONJECTURE FOR SYMMETRIC POWER L-FUNCTIONS

Deligne’s conjecture on the special values of L-functions is a conjecture which
predicts the transcendental parts of the special values of motivic L-functions at critical
points. The definitive reference is Deligne’s article [9]. We begin by introducing the
symmetric power L-functions, which are examples of motivic L-functions, and then
state Deligne’s conjecture for these L-functions.
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3.1. Symmetric power L-functions. Let ¢ € Si(N,w), i.e., ¢ is a holomorphic
cusp form on the upper half plane, for I'q(V), of weight k, and nebentypus character
w. Let ¢(z) = >0 a,q™ be the Fourier expansion of ¢ at infinity. We let L(s, ¢)
stand for the completed L-function associated to ¢ and let L (s, ) stand for its finite
part. Assume that ¢ is a primitive form in Si(N,w). By primitive, we mean that it
is an eigenform, a newform and is normalized such that a;(¢) = 1. In a suitable right
half plane the finite part Ls(s, ¢) is a Dirichlet series with an Euler product

=2 awn " =] Ly(s.9),
n=1 p

where, for all primes p, we have

Lp(S, 90) = (1 - app_s + w<p)pk_1_2s>_l = (1 - @p,¢p_s>_l(1 - ﬁp,app_s)_17
with the convention that if p|N then (,, = 0. We let Supp(/N) stand for the set of
primes dividing N and let S = Supp(N) U {oc}.
For any n > 1, the partial n-th symmetric power L-function is defined as

L%(s,Sym"y) = HL (s,Sym"p
p¢S

where, for all p ¢ S, we have
Ly(s, Sym™p) = [ [(1 = o} .30 ") ",
i=0

Using the local Langlands correspondence the partial L-function can be completed
by defining local factors L, (s, Sym"¢) for p € S and the completed L-function, which
is a product over all p including oo, will be denoted as L(s, Sym"¢). The Langlands
program predicts that L(s,Sym"p), which is initially defined only in a half plane,
admits a meromorphic continuation to the entire complex plane and that it has all
the usual properties an automorphic L-function is supposed to have. This is known for
n < 4 from the works of several people including Hecke, Shimura, Gelbart—Jacquet,
Kim and Shahidi. It is also known for all n for cusp forms of a special type, for
instance, if the representation corresponding to the cusp form is dihedral or the
other polyhedral types. (The reader is referred to the same references as in the
last paragraph of the previous section.)

3.2. Deligne’s conjecture. Let ¢ be a primitive form in Sip(N,w). Let M(p) be
the motive associated to ¢. This is a rank two motive over Q with coefficients in the
field Q(p) generated by the Fourier coefficients of ¢. (We refer the reader to Deligne
[9] and Scholl [38] for details about M (¢).) The L-function L(s, M (p)) associated to
this motive is L(s, ). Given the motive M (p) there are nonzero complex numbers,
called Deligne’s periods, ¢*(M(yp)) associated to it. Similarly, for the symmetric
powers Sym™(M (p)), we have the periods ¢*(Sym”(M(y)). In [9, Proposition 7.7]
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the periods for the symmetric powers are related to the periods of M(¢). The explicit
formulae therein have a quantity 6(M(y)) which is essentially the Gauss sum of the
nebentypus character w and is given by

S(M(p)) ~ (2mi) Fg(w) == (2mi)'~ kao u)exp(—2miu/c),

where ¢ is the conductor of w and wy is the primitive character associated to w.
We will denote the right hand side by §(w). For brevity, we will denote ¢*(M(y))
by ¢*(p). Recall [9, Definition 1.3] that an integer m is critical for any motivic L-
function L(s, M) if both L (s, M) and L (1 —s, M) are regular at s = m. We now
state Deligne’s conjecture [9, Section 7] on the special values of the symmetric power
L-functions.

Conjecture 3.1. Let ¢ be a primitive form in Sy(N,w). There exist nonzero complex
numbers c* () such that

(1) If m is a critical integer for L(s,Sym® 1), then
Lf(m, Sym2l+1¢) ~ (27m~)m(l+1) C:I:(S[))(l—i-l)(l—|—2)/2 C:':(QO)I(Z+1)/2 5(w)l(l+1)/27

where £ = (—1)™.
(2) If m is a critical integer for L(s,Sym® ), then

aty [ i) (e (p)em ()2 6(w) 2 ifm s even,
Lf(m,Sym 90) { (27m>ml (C+( )C ( ))l(l+1 ( ) 1(l1-1)/2 me is odd.
(¢0).

It adds some clarity to write down explicitly the statement of the conjecture for
the n-th symmetric power, in the special cases n = 1,2, 3,4, and while doing so we
also discuss about how much is known in these cases.

Let m be a critical integer for Ls(s, ). Then Conjecture 3.1 takes the form

(3.2) Ly(m, ) ~ (2mi)"c* (),
where £ = (—1)™. In this context, the conjecture is known and is a theorem of
Shimura [41] [42]. Shimura relates the required special values to quotients of certain
Petersson inner products, whose rationality properties can be studied.

Let m be a critical integer for L (s, Sym?y). Then Conjecture 3.1 takes the form

2 (27)2™(cT () (¢))0(w) if m is even,
(3.3) Ly (m, Sym~g) { (2mi)™ ¢+ () () if m is odd.
The conjecture is known in this case and is due to Sturm [43] [44]. Sturm uses an

integral representation for the symmetric square L-function due to Shimura [40].
Let m be a critical integer for L(s, Sym®p). Then Conjecture 3.1 takes the form

(3-4) Lg(m, Sym®¢) ~ (2mi)*"c* ()’ (9)d(w),

By ~ we mean up to an element of Q
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where £ = (—1)™. The conjecture is known in this case and is due to Garrett and
Harris [10]. The main thrust of that paper is to prove a theorem on the special
values of certain triple product L-functions L(s,¢1 X @2 X ¢3). Deligne’s conjecture
for motivic L-functions predicts the special values of such triple product L-functions,
for which an excellent reference is Blasius [2]. Via a standard argument, the case
Y1 = Yo = 3 = , gives the special values of the symmetric cube L-function for .
This was reproved by Kim and Shahidi [19] emphasizing finiteness of these L-values
which follows from their earlier work [20].

Let m be a critical integer for L(s, Sym*p). Then Conjecture 3.1 takes the form

4 273)3™ (et (p)e ()36 (w)?  if m is even,
(3.5) Ly(m, Sym”g) ~ { Ezmizm§C+EZ§C—§£§§35§w§ if m is odd.

In general the conjecture is not known for higher (n > 4) symmetric power L-
functions. Although, if ¢ is dihedral, then we have verified the conjecture for any
symmetric power; see §4.

We remark that a prelude to this conjecture was certain calculations made by Zagier
[46] wherein he showed that such a statement holds for the n-th symmetric power
L-function, with n < 4, of the Ramanujan A-function.

3.3. Critical points. As recalled above, an integer m is critical for any motivic
L-function L(s, M) if both L. (s, M) and L. (1 — s, M") are regular at s = m.
For example, if M = Z(0) = H*(Point) be the trivial motive, then L(s, M) is the
Riemann zeta function ((s) [9, §3.2]. Then L. (s, M) = 77*/2T'(s/2). It is an easy
exercise to see that an integer m is critical for ((s) if m is an even positive integer
or an odd negative integer. More generally, as in Blasius [2], one can calculate the
critical points for any motivic L-function in terms of the Hodge numbers of the
corresponding motive. For the specific L-functions at hand, namely the symmetric
power L-functions, one explicitly knows the L-factors at infinity [28] using which it is
a straightforward exercise to calculate the critical points. In the following two lemmas
we record the critical points of the n-th symmetric power L-function associated to a
modular form ¢. (For more details see [33].)

Lemma 3.6. Let ¢ be a primitive cusp form of weight k. The set of critical integers
for Ls(s,Sym® ) is given by integers m with
rtk—1)+1<m< (r+1)(k—1).

Lemma 3.7. Let @ be a primitive cusp form of weight k. The set of critical integers
for Ls(s,Sym* ¢) is given below.

(1) If r is odd and k is even, then
{r—1)(k=1)+1,(r=1)(k—1)+3,...,r(k—1); r(k—1)+1,r(k—=1)+3,...,(r+1)(k—1)}.

(2) If r and k are both odd, then
{(r—=1)(k—=1)+1,(r—=1)(k—1)+3,...,r(k—=1)=1; r(k—1)+2,7(k—1)+4,...,(r+1)(k—1)}.
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(3) If r and k are both even, then

{(r—1)(k—1)42, (r—1)(k—=1)+4, ..., r(k—1)—1; r(k—1)+2, r(k—1)+4, ..., (r+1)(k—1)—1}.
(4) If r is even and k is odd, then

{(r=1)

Remark 3.8. Here are some easy observations based on the above lemmas.

(k—1)+1,(r=1)(k—1)+3,...,r(k—1)—1; r(k—1)+2,7(k—1)+4,...,(r+1)(k—1)}.

(1) If K =1 then L¢(s,Sym"p) does not have any critical points for any n > 1. In
particular, this is the case if ¢ is a cusp form which is tetrahedral, octahedral
or icosahedral [33].

(2) If k = 2 then L;(s,Sym"¢) has a critical point if and only if n is not a multiple
of 4; further L;(s, Sym* ') has exactly one critical point m = r +1; and if r
is odd L (s, Sym* ¢) has two critical points r, 7+ 1. This applies in particular
for symmetric power L-functions of elliptic curves.

(3) Let m be a critical integer for L;(s, Sym®"¢). Then m is even if and only if
m is to the right of the center of symmetry.

4. DIHEDRAL CALCULATIONS

A primitive form ¢ is said to be dihedral if the associated cuspidal automorphic
representation of GLy(Ag), denoted 7(yp), is the automorphic induction of an idele
class character, say x, of a quadratic extension K/Q. This is denoted as m(p) =
Alg/o(x). (Since ¢ is a holomorphic modular form, in this situation, K is necessarily
an imaginary quadratic extension.) In [33] we have proved Deligne’s conjecture for
the special values of any symmetric power L-function for such a dihedral form. In
this section we summarize the main results of those calculations while referring the
reader to [33] for all the proofs.

Recall from Remark 3.8 that if the weight £ = 1 then there are no critical integers
for L¢(s,Sym"p). It is easy to see [33] that if m(¢) = Alk/g(x) and some nonzero
power of x is Galois invariant (under the Galois group of K/Q) then k = 1. Hence we
may, and henceforth shall, assume that for every nonzero integer n, x" is not Galois
invariant. The following lemma describes the isobaric decomposition of a symmetric
power lifting of a dihedral cusp form.

Lemma 4.1. Let x be an ideéle class character of an tmaginary quadratic extension
K/Q; assume that x" is not Galois invariant for any nonzero integer n. Let xq
denote the restriction of x to the idéeles of Q. Then we have

Sym” (Algo(x)) = BHZpALke(x™ “X") BXxg,
Sym* " (Alkjg(x)) = B_pAlk(X™ 7 X),

where X' is the nontrivial Galois conjugate of x.
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Note that every isobaric summand above is either cuspidal or is one dimensional.
This lemma can be recast in terms of L-functions. For an idele class character x of
an imaginary quadratic extension K/Q, we let ¢, denote the primitive cusp form
such that 7(py) = Alk/g(x). If v, € Si(INV,w) then wwr = X, where we make the
obvious identification of classical Dirichlet characters and idele class characters of Q,
and wg denotes the quadratic idele class character of Q associated to K via global
class field theory.

Lemma 4.2. The symmetric power L-functions of ¢, decompose as follows:

r—1
Ly(s,Sym™¢y) = Lg(s —r(k—1),(wwr)") [] Lr(s — alk = 1), 0,200, %)
a=0
r—1
= Lg(s—r(k— 1), (wwr)") [ Ls(s — a(k = 1), 020w, (wwi)*).
a=0
Ly(s,Sym* oy ) = H Li(s —a(k — 1), 0 20-a+1,w")
a=0

= [ Zs(s—alk—1), 00001, (wWwk)).
a=0

We can now use the results of Shimura [41] [42] and classical theorems on spe-
cial values of abelian (degree 1) L-functions for the factors on the right hand side
of the above decompositions to prove Deligne’s conjecture on the special values of
L(s,Sym"p,). The proof is an extended exercise in keeping track of various con-
stants after one has related the periods of the cusp form ¢,» to the periods of ¢,.
We state this as the following theorem.

Theorem 4.3 (Period relations for dihedral forms). For any positive integer n we
have the following relations:

(1) ™ (pxn) ~ " (px)"

(2) ¢ (oyn) ~ ()" 8(wr),
where ~ means up to an element of Q(x)—the field generated by the values of x, and
g(wk) is the Gauss sum of wi.

5. REPRESENTATIONS WITH COHOMOLOGY

In the study of special values of L-functions, if the L-function at hand is associated
to a cuspidal automorphic representation, then a standard assumption made on the
representation is that it contributes to cuspidal cohomology. This cohomology space
admits a rational structure and the periods, which give the transcendental parts of
the special values, come by comparing this rational structure to the rational structure
on the Whittaker model of the representation at hand. This approach to the study
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of special values is originally due to Harder [12] and since then pursued by several
authors and in particular by Mahnkopf [27].

The purpose of this section, after setting up the context, is to record Theorem 5.5
which says that the n-th symmetric power lift of a cohomological cusp form on GLs,
if cuspidal, contributes to cuspidal cohomology of GL,, ;. This theorem is essentially
due to Labesse and Schwermer [25]. We then digress a little and discuss the issue of
functoriality and a representation being cohomological.

5.1. Cohomological representations of GL,(R). In this section we set up the
context of cohomological representations. This is entirely standard material; we refer
the reader to Borel-Wallach [6] and Schwermer [39] for generalities on the cohomology
of representations.

We let GG,, = GL,, and B, be the standard Borel subgroup of upper triangular
matrices in G,,. Let T,, be the diagonal torus in G,, and Z, be the center of G,,.
We denote by X+(7,,) the dominant (with respect to B,,) algebraic characters of T,.
For p € X*(T,,) let (p,, M,) be the irreducible representation of G, (R) with highest
weight p. The Lie algebra of G,(R) will be denoted by g,,. We let K,, = O,(R)Z,(R)
and K be the topological connected component of the identity element in K.

Let Coh(G,, i) be the set of all cuspidal automorphic representations 7 = ®
of GL,,(Ag) such that

I
pgooﬂ-l’

H*<gn7KZ ;oo @ p,u) 7 (0)

By H*(g,, K7; —) we mean relative Lie algebra cohomology. We recall the following
from [6, §1.5.1]: Given a (g,, K,) module o, one can talk about H*(g,,, K>;0) as well
as H*(gn, K,;0). Note that K, /K? ~ 7Z/27 acts on H*(g,, K2;0) and by taking
invariants under this action we get H*(g,, Ky;0).

Observe that a global representation being cohomological is entirely a function of
the representation at infinity. There are two very basic problems, one local and the
other global, which has given rise to an enormous amount of literature on this theme.

(1) The local problem is to classify all irreducible admissible representations 7,
of G,,(R) which are cohomological, i.e., H*(g,, K;; Teo ® p,) # (0), and for
such representations to actually calculate the cohomology spaces.

(2) The global problem is to construct global cuspidal representations whose rep-
resentation at infinity is cohomological in the above sense.

The reader is referred to Borel-Wallach [6] as a definitive reference for the local
problem. For the purposes of this article we discuss the solution of the local problem

for tempered representations of GL, (R). To begin, we record a very simplified version
of [6, Theorem I1.5.3] and [6, Theorem I1.5.4].

Theorem 5.1. Let G be a reductive Lie group. Let K be a maximal compact subgroup
adjoined with the center of G. Discrete series representations of G (if they exist) are
cohomological and have nonvanishing cohomology only in degree dim(G/K) /2.
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We have suppressed any mention of the finite dimensional coefficients because
Wigner’s Lemma [6, Theorem 1.4.1] gives a necessary condition for the infinitesi-
mal character, and nonvanishing cohomology of a representation pins down the finite
dimensional representation. Here is a well known example illustrating this theorem.

Example 5.2. Let G = G3(R) and K = Ky = O3(R)Z3(R). For any integer | > 1,
we let M; denote the irreducible representation of G' of dimension [ which is the
(I — 1)-th symmetric power of the standard two dimensional representation. Let D,
be the discrete series representation of lowest weight [ + 1. (If we take a weight k
holomorphic cusp form then the representation at infinity is Dy_;.) The Langlands
parameter of D is Indgik (x1), where Wr is the Weil group of R, and x; is the character
of C* sending 2 to (z/|z|)!. The representation D; is cohomological; more precisely,
we have

C iftg=1,

0 ifqg#1.

See [45, Proposition 1.4 (1)] for instance. To compare our notation to the notation
therein, take h =1+ 1,a=1—1, ¢ = 0 and put d = (h,a,€). Then our M is the r[d]
of [45] and our D; ® | - ]QHW is the 7[d] of [45]. See [25, §2.1] for an SL, version of
this example.

HY(g, K; (Di® |- 57 @ M) = {

It is a standard fact that relative Lie algebra cohomology satisfies a Kiinneth rule
6, §1.1.3]. Using this one can see that if G is a product of m copies of GLy(R) then
the representation Dy, ® --- ® D, is, up to twisting by a suitable power of | - |g,
cohomological with respect to the finite dimensional coefficients M;, ® --- ® M, .

We now recall, very roughly, a version of Shapiro’s lemma for relative Lie algebra
cohomology. Consider a parabolically induced representation. The cohomology of the
induced representation can be described in terms of the cohomology of the inducing
representation. (See [6, Theorem I11.3.3, (ii)] for a precise formulation.)

We can now give a reasonably complete picture for tempered representations of
GL,(R) which are cohomological. See Clozel [8, Lemme 3.14]. We follow the presen-
tation in [27, §3.1].

Let £{ (G,,) stand for the set of all pairs (w,1), with 1= (ly,...,l,) € Z" such that
ly >+ >l >0and l[; = =111, and w € Z, such that

| 1 ifniseven,
w+l:{0 if n is odd.

This set £ (G,,) will parametrize certain tempered representations defined as follows.
For (w,1) € L§(G,,), define the parabolically induced representation J(w,1) by

w/2 w/2
(Dy |- ) @D, 1)

,,,,, 2

if n is even, and

J(w,1) = Indgy

,,,,, 2,1

w/2 w/2 w/2
(D@ )@@ Dy,_,, o] el 57
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if n is odd. It is well known that, up to the twist | - |ﬁ§/ ?_ the representations J(w,1)
are irreducible tempered representations of G,, [22, §2].

Now we describe the finite dimensional coefficients. Let X (7;,) stand for all dom-
inant integral weights p = (1, ..., p,) satisfying the purity condition that there is
an integer w, called the weight of y, such that y; + ptn,_s+1 = w. The sets LI (G,,) and
Xy (T,) are in bijection via the map (w,1) — p = w/2+1/2 — p,, where p,, is half the
sum of positive roots for GL,,. Let w, be the Weyl group element of G, of longest
length and let ¥ = —w,, - p. Then p,v ~ (p,)" is the contragredient of p,,.

Assume that the pair (w,1) corresponds to p as above. Using Example 5.2 on the
cohomology of discrete series representations, and appealing to the Kiinneth rule and
Shapiro’s lemma as recalled above, one can conclude that

HY(g,, K2; (J(w,1) ® sgn') ® M) = (0)

n

unless the degree ¢ is in the so-called cuspidal range b, < q < t,,, where the bottom
degree b, is given by

b { n?/4 if n is even,

" (n*=1)/4 ifnis odd,

and the top degree t,, is given by

P (n+1)2—=1)/4—1 ifnis even,
Tl (e +1)?/4-1 if n is odd,

and finally that the dimension of H%(g,, K,; (J(w,1) ® sgn’) ® M,,v) is 1 if ¢ = b, or
q = t,. The exponent ¢ of the sign character sgn is in {0, 1}. If n is even, t plays no
role since J(w,1) ® sgn = J(w,1). If n is odd, ¢ is determined by the weight of p and
the parity of (n — 1)/2, due to considerations of central character (Wigner’s lemma).

To complete the picture one notes that, given M,, there is, up to twisting by the

sign character, only one irreducible, unitary (up to twisting by |- |H£w/ ?), generic repre-
sentation with nonvanishing cohomology with respect to M,, and this representation
is a suitable J(w,1). (See [27, §3.1.3].)

Remark 5.3. Let 7 be a cohomological cuspidal algebraic ([8, §1.2.3]) automorphic
representation of G, (Ag) then the representation 7y, at infinity has to be a J(w, 1) for
some (w,1) € LI (G,,). This can be seen as follows. Since 7 is cuspidal and algebraic,
by the purity lemma [8, Lemme 4.9], we get that the parameter of 7., is pure. Since
it is cohomological the finite dimensional coefficients has a highest weight p which is
also pure, i.e., u € X (T,,). Further, 7., being generic and essentially unitary implies
that it is a J(w,1) as above.

Example 5.4. To illuminate this picture we work through the above recipe for the
case of a holomorphic cusp form. (We use the notation introduced in Example 5.2
and the previous sections.) Let ¢ € Si(N,w) and consider the cuspidal automorphic
representation 7 = 7(¢) @ | - |*. Then Moo = T(P)oo @ | [ = D1 @ | - |5-
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(1) If k is even, then the representation 7, is a J(w,1) exactly when w = 2s € Z
and w + k — 1 is odd. Hence s € Z and 7 = J(2s,(k — 1,—(k — 1))).
The corresponding dominant weight u is (s +(k—2)/2,s — (k—2)/2). The
representation M,v is M;_; ® (det)™*~(*=2/2 (For a dominant weight y =
(p, p2) € Z* the rational representation M,v is M, _,,+1 ® (det)™#1.) Using
the fact that det = sgn ® | - |g and that Dy_; ® sgn = Dy_1, we get

Too @ My = (D1 @1 [3) @ (My—y @ (det) >~ 2)72)
= (D1 @] %) @ My,

which has nontrivial (g, K')-cohomology (see Example 5.2).

(2) If k£ > 3 is odd, then 7y is a J(w,1) exactly when w = 2s is an odd integer.
Letting s = 1/2 + r, with r € Z, we have 7o, = J(2r + 1,(k — 1, —(k — 1))).
The corresponding dominant weight p is (r + (K —1)/2,7+ 1 — (k — 1)/2).
The representation M,y is My_; ® (det)™~(*=1/2_In this case we get

Too @ My = (Dp_y @ |- [>T @ (My_y @ (det) "~ *R=D/2)
= (Dp1®]|- \R /2)®Mk 1,

which has nontrivial (g, K)-cohomology as mentioned before. We have ex-
cluded the case k = 1, because, firstly, the representation at infinity is not
cohomological, and secondly, any symmetric power L-function of a weight one
form has no critical points.

We finally remark that in both cases, the condition 7., being a J(w,1) is exactly the
condition which ensures that the representation m = 7(p) ® | - |* is regular algebraic
in the sense of Clozel [8, §1.2.3 and §3.4].

5.2. Functoriality and cohomological representations. Now we turn to the
global problem, namely, to construct a cuspidal automorphic representation whose
representation at infinity is cohomological. The specific theorem we are interested in
is the following.

Theorem 5.5. Let ¢ € Sp(N,w) with k > 2. Let n > 1. Assume that Sym"(7(p))
is a cuspidal representation of GLy11(Ag). Let

I = Sym"(x(¢)) @@ |- [°
where £ is any idéle class character such that £o = sgn®, with € € {0,1}, and |- | is

the adélic norm. We suppose that s and € satisfy:

(1) If n is even, then let s € Z and ¢ = n(k —1)/2 (mod 2).
(2) If n is odd then, we let s € Z if k is even, and we let s € 1/2+ Z if k is odd.
We impose no condition on e.
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Then I € Coh(Ghy1, i1") where p € Xo (Thy1) is given by
_9 o) (k-2 (k-2
PEE PCEL T S CE

5 s, 5 e 5

(Recall that p,.1 is half the sum of positive roots of GL,11.) In other words, the rep-
resentation Sym"(7(y))QER|-|*, with & and s as above, contributes to the cohomology
of the locally symmetric space GLpn1(Q)\GLn11(Ag)/Kf Ky, o, with coefficients in
the local system determined by p,v, where Ky is a deep enough open compact subgroup
of GLy+1(Aq,r). (Here Ag s denotes the finite adéles of Q.)

= (k—2)pns1 + s

Proof. See Labesse—Schwermer [25, Proposition 5.4] for an SL,-version of this the-
orem. When k£ = 2, the theorem has also been observed by Kazhdan, Mazur and
Schmidt [16, pp.99].

We sketch the details in the case when n = 2r is even (the case when 7 is odd being
absolutely similar.) The proof follows by observing that the representation at infin-
ity of Sym"(m(¢)) is the representation of GL,11(R) whose Langlands parameter is
Sym™ (Indg? (xx_1)) where xz_1(2) = (2/]2])¥~!. Tt is a pleasant exercise to calculate
a symmetric power of a two dimensional induced representation, after doing which
one gets that the representation Il is given by

Mo = Indy™* (Dorgeoy @+ @ Doy @sgn” " )@ € @ |- 2

,,,,, 2,1

— Indﬁg“ (Day(r1) @ + -+ @ Dyge_1y @ sgn”F V) @ | - |2

,,,,, 2,1

We deduce that Il is a J(w,l) (which, as mentioned before, is equivalent to II
being regular algebraic) exactly when w = 2s € Z, r(k — 1) + € is even,

1= (2r(k —1),...,20k — 1),0,—2(k — 1), ..., —2r(k — 1)) = 2(k — 1)ppr1.

and w + 1 is even which implies that w is even. These conditions are satisfied by the
hypothesis in the theorem. The weight p is determined by u = w/2+1/2 — p,41 and
the first part of the theorem follows from the discussion in the previous section.
Finally, the relation with the cohomology of locally symmetric spaces follows as in
(25, §1] or [27, §3.2]. OJ

One might view this theorem as an example of the possible dictum that a functorial
lift of a cohomological representation is cohomological. (However, see Example 5.6
below.) This dictum has been used in many instances to construct global representa-
tions which contribute to cuspidal cohomology. The following is a sampling of such
results—which by no means is to be considered exhaustive-to add weight to the above
dictum.

(1) Labesse and Schwermer [25] proved the existence of nontrivial cuspidal co-
homology classes for SLy and SL3 over any number field E which contains a
totally real number field F' such that FF = F, C F; C --- C F, = E with
each each Fj,;/F; either a cyclic extension of prime degree or a non-normal
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cubic extension. The functorial lifts used were base change for GL, and the
symmetric square lifting of Gelbart and Jacquet. This was generalized for SL,,
over E, in conjunction with Borel [5]; with the additional input of base change
for GL,,.

(2) Motivated by [25], Clozel [7] used automorphic induction and proved the ex-
istence of nontrivial cuspidal cohomology classes for SLs, over any number
field.

(3) Rajan [34], also motivated by [25], proved the existence of nontrivial cuspidal
cohomology classes for SL;(D) for a quaternion division algebra D over a
number field F, with E being an extension of a totally real number field F'
with solvable Galois closure. Other than base change, he used the Jacquet—
Langlands correspondence.

(4) Ash and Ginzburg [1, §4] have commented on a couple of examples of cuspidal
cohomology classes for GL, over Q. The first is by lifting from GSp, to GL4
a weight 3 Seigel modular form. The second is to use automorphic induction
from GLs over a quadratic extension.

(5) Ramakrishnan and Wang [37] used the lifting from GLy x GL3 — GLg, due
to Kim and Shahidi, to construct cuspidal cohomology classes of GLg over Q.

In almost all the above works, functoriality is used to construct cuspidal represen-
tations, and in doing so, one exercises some control over the representations at infinity
to arrange for them to be cohomological. It is an interesting question to ask if the
converse of the above dictum is true, namely, if a lift is cohomological, then whether
the preimage is, a fortiori, cohomological? (See Example 5.7 below.) We would like
to draw attention to a conjecture of Clozel [7, §1] which is motivated by the ideas
of Labesse and Schwermer. The conjecture roughly states that given a tempered
cohomological representation at infinity, one can find a global cuspidal automorphic
representation whose representation at infinity is the given one.

Example 5.6. We construct an example to show that a functorial lift of a cohomo-
logical representation need not be cohomological. For an even integer k, take two
weight k& holomorphic cusp forms ¢; and @9, and let m; = w(p;) for i = 1,2. By
Example 5.4 we have that both m; and 7y are cohomological representations. Put
IT = m X 7y (see Ramakrishnan [35]). Choose the forms ¢; and ¢y such that II is
cuspidal; this can be arranged by taking exactly one of them to be dihedral, or by
arranging that 7 is not my ® x for any character x, by virtue of [36, Theorem 11.1].
It is easy to see that Il is given by

Ty = Ind 3™ (Dygy @ sgn @ 1),

where 1 is the trivial representation of R*. Observe that Il is not a J(w,l) and
hence is not cohomological by applying Remark 5.3. (Note that II, as it stands, is
T

not algebraic, but we can replace IT by m X 7y (see [8, Definition 1.10]) and make it
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algebraic; this replaces 1, by I, ® |- %/ 2.) However, note that if we took ¢; and ¢,
to be in general position (unequal weights) then the lift IT would be cohomological.
One should therefore think of the dictum that functoriality preserves the property
of being cohomological only as a guiding principle rather than a precise conjecture.
Similarly, it is possible to construct such an example for the lifting from GLy x GL3
to GL@

Example 5.7. We would like to mention that in the converse direction the GLy X GLg
to Gl lifting is well behaved. Now let ¢; have weight k; > 1, for ¢« = 1, 2, and assume
without loss of generality that k; > ky. With II = 7(¢1) K 7(p2) we have

o = Ind3! " (D, -2 ® Dy 1y

Suppose Il is cohomological, i.e., is a J(w,l), then we would have k; + ky — 2 >
ki — ko > 0, which implies that k; > ko > 2, and hence both 7m(p;) and 7(p9) are
cohomological.

6. SPECIAL VALUES OF L-FUNCTIONS OF GL,: THE WORK OF MAHNKOPF

6.1. General remarks on functoriality and special values. This section is a
summary of some recent results due to Joachim Mahnkopf [26] [27]. In this work
he proves certain special values theorems for the standard L-functions of cohomo-
logical cuspidal automorphic representations of GL,. In principle one can appeal to
functoriality and this work of Mahnkopf to prove new special values theorems. For
example, given a cusp form ¢ € S,(N,w), let () denote the cuspidal automorphic
representation of GLg(Ag). Functoriality predicts the existence of an automorphic
representation Sym"™ (7w (y)) of GL,+1(Ag). (See §2.) Then it is easy to check that

L(s, Sym™(7(p)) = L(s + n(k — 1)/2, Sym"¢p),

where the left hand side is the standard L-function of Sym"(7(¢)). Using Mahnkopf’s
work for the function on the left, one can hope to prove a special values theorem for
the function on the right. This is fine in principle, but there are several obstacles to
overcome before it can be made to work.

6.2. The main results of Mahnkopf [27]. Let u € X (T;,) and let 7 € Coh(G,,, ).
We let L(s,m) = [[,<. L(s,m) be the standard L-function attached to 7. Any
character yo of R* is of the form xo, = €|+ |™ for a complex number m. We say Xoo
is critical for my if

(1) me 1/2+4 Z if n is even, and m € Z if n is odd; and

(2) L(Too ® Xoo,0) and L(mY, @ !, 1) are regular values.
We say x : Q*\Ag — C* is critical for 7 if X is critical for 7. Let Crit(r) stand for

all such characters y which are critical for 7. Let Crit(m)= stand for all x € Crit(m)
such that if oo = €00 - | then m < (1 — wt(p))/2.
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Let m € Coh(G,,u) and let x € Crit(m). Let XYoo = €xo| + |™ Given p =
(1, ..., ) € XT(T,) choose a A = (A1,..., A1) € X1 (T),_1) such that
(1) g > Ay > pg > -+ > Ay > iy and
(2) Anj2 = —m+1/2if nis even, and A(,11)/2 = —m if n is odd.
Proposition 1.1 of [26] says that such a A exists. Let P be the standard parabolic

subgroup of G,_; of type (n — 2,1) and let W be a system of representatives for
War,\Wg,,_,. Let @ € WF be given by

o 12 - [2]-1 [2] [2]+1 -+ n-1 .
12 o [2l-1 n-1 (2] - n-2
Define the weight i/ = (W(A+pn_1)— pn_1)|r,_, € X (T_2) where T,,_5 is embedded
in T, as t — diag(¢, 1).

Theorem 6.1 (Theorem 5.4 in Mahnkopf [27]). Let u € X (T,,) be reqular and let
m € Coh(GL,,, 1"). Let ' € XT(T,,—2) be as above and w' € Coh(GL,,—o, 1t'); if n is
odd then 7' has to satisfy a parity condition. We have

(1) Crit(m)s C Crit(r)=.

(2) Let x € Crit(m)S, with Xoo = €oo| - |™. There exists a collection of com-
plex numbers Q(m, 7', ex,) € C*/Q(m)Q(n") such that for any finite extension
E/Q(r)Q(r") the tuple {7, éx0) boettomz.cy € (E ® C)/(Q(m)Q(w))* is
well defined. There exists a complex number P,(m), depending only on p and
m, subject to Assumption 6.2 below, such that for all 0 € Aut(C/Q) and

almost all x as above, we have
9008 () Lu(m) L(m @ xn,0)\” _ a(x")& (") Pu(m) L(77 @ x7n”,0)

Q(m, 7€)  L(7"V ® x,0) Q(r7, 77 6so)  L((7"V)7 @ x°,0)’
where 0 is a certain auziliary character and &(n) a certain product of Gauss
sums associated to n.

The above theorem is valid only under the following assumption.
Assumption 6.2. P,(m) # 0.

The quantity P,(m) is the value at s = 1/2 of an archimedean Rankin-Selberg
integral attached to certain cohomological choice of Whittaker functions. Mahnkopf
proves a necessary condition for this nonvanishing assumption [27, §6]. At present
this seems to be a serious limitation of this technique. It is widely believed that this
assumption is valid and it has shown up in several other works based on the same, or
at any rate similar, techniques. See for instance Ash-Ginzburg [1], Kazhdan-Mazur-
Schmidt [16] and Harris [13]. It is an important technical problem to be able to prove
this nonvanishing hypothesis.

The proof of the above theorem combines both the Langlands—Shahidi and the
Rankin-Selberg methods of studying L-functions. One considers the pair of repre-
sentations m x Ind$" " (' ® x) of Gp(Ag) X Gu_1(Ag) and carefully chooses a cusp
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form ¢ € 7 and an Eisenstein series £ corresponding to a section in Ind$" ' (7' @ x).
To this pair (¢, £) a certain Rankin—Selberg type zeta integral [27, 2.1.2], which has a
cohomological interpretation, computes the quotient of L-functions appearing in the
theorem.

The theorem roughly says that the special values of a standard L-function for GL,
are determined in terms of those of a standard L-function for GL,_s. This descent
process terminates since we know the special values of L-functions for GL; and GL,
and we get the following theorem; see [27, §5.5] for making the right choices in the
induction on n.

Theorem 6.3 (Theorem A in Mahnkopf [27]). Assume that p € X (T},) is reqular
and let m € Coh(G,,p"). Let x € Crit(m)S. To 7 and X is attached Q(7, xo) € C
such that for all but finitely many such x we have

n/2 g o\[n/2 o
(B0, ) = 80
QT Xoo) Q7. x5
where 1 is a certain auxiliary character and &(n) a certain product of Gauss sums
associated to 1. Moreover, write Xoo = €. | - |5 and set €(xo) = €. sgn'. There are
periods Q(m) € C* if n is even, and Qw) € C* if n is odd, and a collection P, € C,
such that Q(m, Xoo) = PLOUT) if n is odd, and T, Xso) = PpQe(yo)(m) if . is even.

L(m” ® x°n”,0),

Note that Theorem 6.3, since it uses Theorem 6.1, also depends on Assumption 6.2.

7. A CONJECTURE ON TWISTED L-FUNCTIONS

The periods ¢t and ¢~ which appear in Deligne’s conjecture are motivically defined.
(See Deligne [9, (1.7.2)].) On the other hand, the periods which appear in the work
of Harder, and also Mahnkopf, have an entirely different origin, namely, they come
by a comparison of rational structures on cuspidal cohomology on the one hand and
a Whittaker model for the representation, on the other. See Harder [12, p. 81] and
Mahnkopf [27, §3.4]. It is not at the moment clear how one might explicitly compare
these different periods attached to the same object. (See also Remark (2) in Harder’s
paper [12, p. 85].)

However, one might ask if these different periods behave in the same manner under
twisting. Here is a simple example to illustrate this. Let y be an even Dirichlet
character. Let m be an even positive integer. Such an m is critical for L(s,x). It is
well known [30, Corollary VII.2.10] that

Ly(m, x) ~an (2m)"g(x)-

By ~q(y) we mean up to an element of the (rationality) field Q(x) generated by the
values of x. Now let n be possibly another even Dirichlet character. Applying the
result to the character xn, and using [41, Lemma 8], we get

Ly(m,xn)/Ls(m, x) ~oeoem 8(1).
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Observe that the period, namely the (27i)™, does not show up, and we have the
relation that the special value of the twisted L-function and the original L-function
differ, up to rational quantities, by the Gauss sum of the twisting character.

Another example along these lines which follows from Shimura [42] is the following.
Let ¢ € Si(N,w) and let n be an even Dirichlet character. For any integer m, with
1<m< k-1, we have

Li(m,,n) ~a)am 8(n)Li(m,¢).

The point being that, in the above relation, the periods ¢*(¢) do not show up, and so
the definition of these periods is immaterial. (One can rewrite this relation entirely in
terms of periods of the associated motives and it takes the form ¢*(M(p) @ M(n)) ~
a(n)ct(M(p)), the notation being obvious.)

Even if one cannot prove a precise theorem on special values of L-functions in terms
of these—motivically or otherwise defined—periods, one can still hope to prove such
period relations. Sometimes such period relations are sufficient for applications; see
for instance Murty—Ramakrishnan [29] where such a period relation is used to prove
Tate’s conjecture in a certain case.

With this motivation, we formulate the following conjecture on the behavior of the
special values of symmetric power L-functions under twisting by Dirichlet characters.

Conjecture 7.1. Let ¢ € Sp(N,w) be a primitive form. Let n be a primitive Dirichlet
character.

(1) Suppose n is even, i.e., n(—1) = 1. Then the critical set for L¢(s,Sym"¢,n)
is the same as the critical set for L;(s,Sym"y), and if m is critical, then

L¢(m, Sym™p,n) ~ g(n)!"T/21L(m, Sym™p),

unless n is even and m is odd (to the left of center of symmetry), in which
case we have

L(m, Sym™p,n) ~ g(n)™2L;(m, Sym™y).

(2) Suppose n is odd, i.e., n(—1) = —1, and n is even. Then, if m is critical for
L(s,Sym"p,n), then either m+1 or m —1 is critical for L;(s, Sym"y). For
such an m to the right of the center of symmetry we have

Ly(m, Sym™p,n) ~ ((2mi)Fg(n)"/**" Ly(m £ 1,Sym"p),
and if m is to the left of the center of symmetry, we have

Lg(m, Sym" . 1) ~ ((2mi)Tg(n))"*L(m £ 1, Sym").
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(3) Suppose n is odd, i.e., n(—1) = —1, and n is odd. Then the critical set for
L¢(s,Sym"p,n) is the same as the critical set for Ly(s,Sym"y). Let k > 3.
If m is critical for Ly(s,Sym"p,n), then either m+1 or m — 1 is critical for
Ly(s,Sym"p), and for such an m

Ly(m, Sym"p, 1) ~ ((2mi)Tg(n)) " V2L p(m £ 1,Sym"p).
In all the three cases ~ means up to an element of Q(v)Q(n).

Now we elaborate on the heuristics on which we formulated the above conjecture.
For n = 1 and n = 2 this is contained in the theorems of Shimura [41] [42] and
Sturm [43] [44] respectively. For n = 3, using results on triple product L-functions
for which Blasius [2] is a convenient reference and using Garrett—Harris [10, §6], one
can verify that the above conjecture is true. Further, for n > 4 and if ¢ is dihedral,
ie., m(p) = Alg/g(x), then the conjecture follows by applying the known cases of
n = 1,2 to each summand in the isobaric decomposition in Lemma 4.1. Observe that
the exponent [(n + 1)/2] appearing in the conjecture is the number of summands in
the isobaric decomposition.

We leave it to the reader to check that the above conjecture is compatible with
conjectures of Blasius [3, Conjecture 1.9.8] and Panchiskin [32, Conjecture 2.3] on
the behavior of periods of motives twisted by Artin motives.

It appears that the authors can prove this conjecture, at least in part, and so
really prove a relation amongst appropriate periods, using Theorem 6.3 of Mahnkopf;
at least in the case when Sym"(7w(p)) is known to exist as a cuspidal automorphic
representation.
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