
FUNCTORIALITY AND SPECIAL VALUES OF L-FUNCTIONS

A. RAGHURAM AND FREYDOON SHAHIDI

Abstract. This is a semi-expository article concerning Langlands functoriality
and Deligne’s conjecture on the special values of L-functions. The emphasis is on
symmetric power L-functions associated to a holomorphic cusp form.
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1. Introduction

Langlands functoriality principle reduces the study of automorphic forms on the
adèlic points of a reductive algebraic group to those of an appropriate general linear
group. In particular, every automorphic L-function on an arbitrary reductive group
must be one for a suitable GLn. One should therefore be able to reduce the study of
of special values of an automorphic L-function to those of a principal L-function of
Godement and Jacquet on GLn.
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2 A. RAGHURAM AND FREYDOON SHAHIDI

While the integral representations of Godement and Jacquet do not seem to admit
a cohomological interpretation, there is a recent work of J. Mahnkopf [26] [27] which
provides us with such an interpretation for certain Rankin–Selberg type integrals. In
particular, modulo a nonvanishing assumption on local archimedean Rankin–Selberg
product L-functions for forms on GLn × GLn−1, he defines a pair of periods, which
seem to be in accordance with those of Deligne [9] and Shimura [42]. This work
of Mahnkopf is quite remarkable and requires the use of both Rankin–Selberg and
Langlands–Shahidi methods in studying the analytic (and arithmetic) properties of
L-functions. His work therefore brings in the theory of Eisenstein series to play an
important role. In §6 we briefly review this work of Mahnkopf.

This article is an attempt to test the philosophy–to study the special values of
L-functions while using functoriality–by means of recent cases of functoriality estab-
lished for symmetric powers of automorphic forms on GL2 [17] [21]. While a proof
of the precise formulae in the conjectures of Deligne [9] still seem to be out of reach,
we expect to be able to prove explicit connections between the special values of sym-
metric power L-functions twisted by Dirichlet characters and those of the original
symmetric power L-functions using this work of Mahnkopf. These relations are for-
mulated in this paper as Conjecture 7.1 which seems to be compatible with the more
general conjectures of Blasius [3] and Panchiskin [32].

A standard assumption made in the study of special values of L-functions is that
the representations (to which are attached the L-functions) are cohomological. This
is the case in Mahnkopf’s work. A global representation being cohomological is en-
tirely determined by the archimedean components. For representations which are
symmetric power lifts of a cusp form on GL2 we have the following fact. Consider a
holomorphic cusp form on the upper half plane of weight k. This corresponds to a
cuspidal automorphic representation, which is cohomological if k ≥ 2, and any sym-
metric power lift, if cuspidal, is also cohomological. (If the weight k = 1 then the
representation is not cohomological, and furthermore none of the symmetric power L-
functions have any critical points.) In §5 we review representations with cohomology
in the case of GLn.

We recall the functorial formalism for symmetric powers in §2. We then review
Deligne’s conjecture for the special values of symmetric power L-functions in §3 and
give a brief survey as to which cases are known so far. In §4 we sketch a proof of the
conjecture for dihedral representations; the details will appear elsewhere [33].
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(AIMS) in August of 2005; he would like to thank the organizers Wee Teck Gan, Stephen
Kudla and Yuri Tschinkel as well as Brian Conrey of AIMS for a most productive meeting.
Both the authors thank Laurent Clozel, Paul Garrett, Joachim Mahnkopf and Dinakar
Ramakrishnan for helpful discussions and email correspondence. The work of the second
author is partially supported by NSF grant DMS-0200325.
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2. Symmetric powers and functoriality

In this section we recall the formalism of Langlands functoriality especially for
symmetric powers. We will be brief here as there are several very good expositions
of the principle of functoriality; see for instance [8, Chapter 2].

Let F be a number field and let AF be its adèle ring. We let π be a cuspidal
automorphic representation of GL2(AF ), by which we mean that, for some s ∈ R,
π ⊗ | · |s is an irreducible summand of

L2
cusp(GL2(F )\GL2(AF ), ω)

the space of square-integrable cusp forms with central character ω. We have the
decomposition π = ⊗′

vπv where v runs over all places of F and πv is an irreducible
admissible representation of GL2(Fv).

The local Langlands correspondence for GL2 (see [24] and [23] for the p-adic case
and [22] for the archimedean case), says that to πv is associated a representation
σ(πv) : W ′

Fv
→ GL2(C) of the Weil–Deligne group W ′

Fv
of Fv. (If v is infinite, we take

W ′
Fv

= WFv .) Let n ≥ 1 be an integer. Consider the n-th symmetric power of σ(πv)
which is an n+1 dimensional representation. This is simply the composition of σ(πv)
with Symn : GL2(C) → GLn+1(C). Appealing to the local Langlands correspondence
for GLn+1 ([14], [15], [22], [23]) we get an irreducible admissible representation of
GLn+1(Fv) which we denote as Symn(πv). Now define a global representation of
Symn(π) of GLn+1(AF ) by

Symn(π) := ⊗′
v Symn(πv).

Langlands principle of functoriality predicts that Symn(π) is an automorphic rep-
resentation of GLn+1(AF ), i.e., it is isomorphic to an irreducible subquotient of the
representation of GLn+1(AF ) on the space of automorphic forms [4, §4.6]. If ωπ is the

central character of π then ω
n(n+1)
π is the central character of Symn(π). Actually it is

expected to be an isobaric automorphic representation. (See [8, Definition 1.1.2] for
a definition of an isobaric representation.) The principle of functoriality for the n-th
symmetric power is known for n = 2 by Gelbart–Jacquet [11]; for n = 3 by Kim–
Shahidi [21]; and for n = 4 by Kim [17]. For certain special forms π, for instance, if π
is dihedral, tetrahedral, octahedral or icosahedral, it is know for all n (see [18] [33]).

3. Deligne’s conjecture for symmetric power L-functions

Deligne’s conjecture on the special values of L-functions is a conjecture which
predicts the transcendental parts of the special values of motivic L-functions at critical
points. The definitive reference is Deligne’s article [9]. We begin by introducing the
symmetric power L-functions, which are examples of motivic L-functions, and then
state Deligne’s conjecture for these L-functions.
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3.1. Symmetric power L-functions. Let ϕ ∈ Sk(N, ω), i.e., ϕ is a holomorphic
cusp form on the upper half plane, for Γ0(N), of weight k, and nebentypus character
ω. Let ϕ(z) =

∑∞
n=1 anq

n be the Fourier expansion of ϕ at infinity. We let L(s, ϕ)
stand for the completed L-function associated to ϕ and let Lf (s, ϕ) stand for its finite
part. Assume that ϕ is a primitive form in Sk(N, ω). By primitive, we mean that it
is an eigenform, a newform and is normalized such that a1(ϕ) = 1. In a suitable right
half plane the finite part Lf (s, ϕ) is a Dirichlet series with an Euler product

Lf (s, ϕ) =
∞∑

n=1

ann
−s =

∏
p

Lp(s, ϕ),

where, for all primes p, we have

Lp(s, ϕ) = (1− app
−s + ω(p)pk−1−2s)−1 = (1− αp,ϕp−s)−1(1− βp,ϕp−s)−1,

with the convention that if p|N then βp,ϕ = 0. We let Supp(N) stand for the set of
primes dividing N and let S = Supp(N) ∪ {∞}.

For any n ≥ 1, the partial n-th symmetric power L-function is defined as

LS(s, Symnϕ) =
∏
p/∈S

Lp(s, Symnϕ),

where, for all p /∈ S, we have

Lp(s, Symnϕ) =
n∏

i=0

(1− αi
p,ϕβn−i

p,ϕ p−s)−1.

Using the local Langlands correspondence the partial L-function can be completed
by defining local factors Lp(s, Symnϕ) for p ∈ S and the completed L-function, which
is a product over all p including ∞, will be denoted as L(s, Symnϕ). The Langlands
program predicts that L(s, Symnϕ), which is initially defined only in a half plane,
admits a meromorphic continuation to the entire complex plane and that it has all
the usual properties an automorphic L-function is supposed to have. This is known for
n ≤ 4 from the works of several people including Hecke, Shimura, Gelbart–Jacquet,
Kim and Shahidi. It is also known for all n for cusp forms of a special type, for
instance, if the representation corresponding to the cusp form is dihedral or the
other polyhedral types. (The reader is referred to the same references as in the
last paragraph of the previous section.)

3.2. Deligne’s conjecture. Let ϕ be a primitive form in Sk(N, ω). Let M(ϕ) be
the motive associated to ϕ. This is a rank two motive over Q with coefficients in the
field Q(ϕ) generated by the Fourier coefficients of ϕ. (We refer the reader to Deligne
[9] and Scholl [38] for details about M(ϕ).) The L-function L(s, M(ϕ)) associated to
this motive is L(s, ϕ). Given the motive M(ϕ) there are nonzero complex numbers,
called Deligne’s periods, c±(M(ϕ)) associated to it. Similarly, for the symmetric
powers Symn(M(ϕ)), we have the periods c±(Symn(M(ϕ)). In [9, Proposition 7.7]
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the periods for the symmetric powers are related to the periods of M(ϕ). The explicit
formulae therein have a quantity δ(M(ϕ)) which is essentially the Gauss sum of the
nebentypus character ω and is given by

δ(M(ϕ)) ∼ (2πi)1−kg(ω) := (2πi)1−k

c−1∑
u=0

ω0(u)exp(−2πiu/c),

where c is the conductor of ω and ω0 is the primitive character associated to ω.
We will denote the right hand side by δ(ω). For brevity, we will denote c±(M(ϕ))
by c±(ϕ). Recall [9, Definition 1.3] that an integer m is critical for any motivic L-
function L(s, M) if both L∞(s, M) and L∞(1− s, M∨) are regular at s = m. We now
state Deligne’s conjecture [9, Section 7] on the special values of the symmetric power
L-functions.

Conjecture 3.1. Let ϕ be a primitive form in Sk(N, ω). There exist nonzero complex
numbers c±(ϕ) such that

(1) If m is a critical integer for Lf (s, Sym2l+1ϕ), then

Lf (m, Sym2l+1ϕ) ∼ (2πi)m(l+1) c±(ϕ)(l+1)(l+2)/2 c∓(ϕ)l(l+1)/2 δ(ω)l(l+1)/2,

where ± = (−1)m.
(2) If m is a critical integer for Lf (s, Sym2lϕ), then

Lf (m, Sym2lϕ) ∼
{

(2πi)m(l+1) (c+(ϕ)c−(ϕ))l(l+1)/2 δ(ω)l(l+1)/2 if m is even,
(2πi)ml (c+(ϕ)c−(ϕ))l(l+1)/2 δ(ω)l(l−1)/2 if m is odd.

By ∼ we mean up to an element of Q(ϕ).

It adds some clarity to write down explicitly the statement of the conjecture for
the n-th symmetric power, in the special cases n = 1, 2, 3, 4, and while doing so we
also discuss about how much is known in these cases.

Let m be a critical integer for Lf (s, ϕ). Then Conjecture 3.1 takes the form

(3.2) Lf (m, ϕ) ∼ (2πi)mc±(ϕ),

where ± = (−1)m. In this context, the conjecture is known and is a theorem of
Shimura [41] [42]. Shimura relates the required special values to quotients of certain
Petersson inner products, whose rationality properties can be studied.

Let m be a critical integer for Lf (s, Sym2ϕ). Then Conjecture 3.1 takes the form

(3.3) Lf (m, Sym2ϕ) ∼
{

(2πi)2m(c+(ϕ)c−(ϕ))δ(ω) if m is even,
(2πi)m(c+(ϕ)c−(ϕ)) if m is odd.

The conjecture is known in this case and is due to Sturm [43] [44]. Sturm uses an
integral representation for the symmetric square L-function due to Shimura [40].

Let m be a critical integer for Lf (s, Sym3ϕ). Then Conjecture 3.1 takes the form

(3.4) Lf (m, Sym3ϕ) ∼ (2πi)2mc±(ϕ)3c∓(ϕ)δ(ω),
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where ± = (−1)m. The conjecture is known in this case and is due to Garrett and
Harris [10]. The main thrust of that paper is to prove a theorem on the special
values of certain triple product L-functions L(s, ϕ1 × ϕ2 × ϕ3). Deligne’s conjecture
for motivic L-functions predicts the special values of such triple product L-functions,
for which an excellent reference is Blasius [2]. Via a standard argument, the case
ϕ1 = ϕ2 = ϕ3 = ϕ, gives the special values of the symmetric cube L-function for ϕ.
This was reproved by Kim and Shahidi [19] emphasizing finiteness of these L-values
which follows from their earlier work [20].

Let m be a critical integer for Lf (s, Sym4ϕ). Then Conjecture 3.1 takes the form

(3.5) Lf (m, Sym4ϕ) ∼
{

(2πi)3m(c+(ϕ)c−(ϕ))3δ(ω)3 if m is even,
(2πi)2m(c+(ϕ)c−(ϕ))3δ(ω) if m is odd.

In general the conjecture is not known for higher (n ≥ 4) symmetric power L-
functions. Although, if ϕ is dihedral, then we have verified the conjecture for any
symmetric power; see §4.

We remark that a prelude to this conjecture was certain calculations made by Zagier
[46] wherein he showed that such a statement holds for the n-th symmetric power
L-function, with n ≤ 4, of the Ramanujan ∆-function.

3.3. Critical points. As recalled above, an integer m is critical for any motivic
L-function L(s, M) if both L∞(s, M) and L∞(1 − s, M∨) are regular at s = m.
For example, if M = Z(0) = H∗(Point) be the trivial motive, then L(s, M) is the
Riemann zeta function ζ(s) [9, §3.2]. Then L∞(s, M) = π−s/2Γ(s/2). It is an easy
exercise to see that an integer m is critical for ζ(s) if m is an even positive integer
or an odd negative integer. More generally, as in Blasius [2], one can calculate the
critical points for any motivic L-function in terms of the Hodge numbers of the
corresponding motive. For the specific L-functions at hand, namely the symmetric
power L-functions, one explicitly knows the L-factors at infinity [28] using which it is
a straightforward exercise to calculate the critical points. In the following two lemmas
we record the critical points of the n-th symmetric power L-function associated to a
modular form ϕ. (For more details see [33].)

Lemma 3.6. Let ϕ be a primitive cusp form of weight k. The set of critical integers
for Lf (s, Sym2r+1ϕ) is given by integers m with

r(k − 1) + 1 ≤ m ≤ (r + 1)(k − 1).

Lemma 3.7. Let ϕ be a primitive cusp form of weight k. The set of critical integers
for Lf (s, Sym2rϕ) is given below.

(1) If r is odd and k is even, then

{(r−1)(k−1)+1, (r−1)(k−1)+3, . . . , r(k−1); r(k−1)+1, r(k−1)+3, . . . , (r+1)(k−1)}.
(2) If r and k are both odd, then

{(r−1)(k−1)+1, (r−1)(k−1)+3, . . . , r(k−1)−1; r(k−1)+2, r(k−1)+4, . . . , (r+1)(k−1)}.
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(3) If r and k are both even, then

{(r−1)(k−1)+2, (r−1)(k−1)+4, . . . , r(k−1)−1; r(k−1)+2, r(k−1)+4, . . . , (r+1)(k−1)−1}.

(4) If r is even and k is odd, then

{(r−1)(k−1)+1, (r−1)(k−1)+3, . . . , r(k−1)−1; r(k−1)+2, r(k−1)+4, . . . , (r+1)(k−1)}.

Remark 3.8. Here are some easy observations based on the above lemmas.

(1) If k = 1 then Lf (s, Symnϕ) does not have any critical points for any n ≥ 1. In
particular, this is the case if ϕ is a cusp form which is tetrahedral, octahedral
or icosahedral [33].

(2) If k = 2 then Lf (s, Symnϕ) has a critical point if and only if n is not a multiple
of 4; further Lf (s, Sym2r+1ϕ) has exactly one critical point m = r+1; and if r
is odd Lf (s, Sym2rϕ) has two critical points r, r+1. This applies in particular
for symmetric power L-functions of elliptic curves.

(3) Let m be a critical integer for Lf (s, Sym2rϕ). Then m is even if and only if
m is to the right of the center of symmetry.

4. Dihedral calculations

A primitive form ϕ is said to be dihedral if the associated cuspidal automorphic
representation of GL2(AQ), denoted π(ϕ), is the automorphic induction of an idèle
class character, say χ, of a quadratic extension K/Q. This is denoted as π(ϕ) =
AIK/Q(χ). (Since ϕ is a holomorphic modular form, in this situation, K is necessarily
an imaginary quadratic extension.) In [33] we have proved Deligne’s conjecture for
the special values of any symmetric power L-function for such a dihedral form. In
this section we summarize the main results of those calculations while referring the
reader to [33] for all the proofs.

Recall from Remark 3.8 that if the weight k = 1 then there are no critical integers
for Lf (s, Symnϕ). It is easy to see [33] that if π(ϕ) = AIK/Q(χ) and some nonzero
power of χ is Galois invariant (under the Galois group of K/Q) then k = 1. Hence we
may, and henceforth shall, assume that for every nonzero integer n, χn is not Galois
invariant. The following lemma describes the isobaric decomposition of a symmetric
power lifting of a dihedral cusp form.

Lemma 4.1. Let χ be an idèle class character of an imaginary quadratic extension
K/Q; assume that χn is not Galois invariant for any nonzero integer n. Let χQ
denote the restriction of χ to the idèles of Q. Then we have

Sym2r(AIK/Q(χ)) = �r−1
a=0AIK/Q(χ2r−aχ′a) � χr

Q,

Sym2r+1(AIK/Q(χ)) = �r
a=0AIK/Q(χ2r+1−aχ′a),

where χ′ is the nontrivial Galois conjugate of χ.
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Note that every isobaric summand above is either cuspidal or is one dimensional.
This lemma can be recast in terms of L-functions. For an idèle class character χ of
an imaginary quadratic extension K/Q, we let ϕχ denote the primitive cusp form
such that π(ϕχ) = AIK/Q(χ). If ϕχ ∈ Sk(N, ω) then ωωK = χQ, where we make the
obvious identification of classical Dirichlet characters and idèle class characters of Q,
and ωK denotes the quadratic idèle class character of Q associated to K via global
class field theory.

Lemma 4.2. The symmetric power L-functions of ϕχ decompose as follows:

Lf (s,Sym2rϕχ) = Lf (s− r(k − 1), (ωωK)r)
r−1∏
a=0

Lf (s− a(k − 1), ϕχ2(r−a) , ωa)

= Lf (s− r(k − 1), (ωωK)r)
r−1∏
a=0

Lf (s− a(k − 1), ϕχ2(r−a) , (ωωK)a).

Lf (s,Sym2r+1ϕχ) =
r∏

a=0

Lf (s− a(k − 1), ϕχ2(r−a)+1 , ωa)

=
r∏

a=0

Lf (s− a(k − 1), ϕχ2(r−a)+1 , (ωωK)a).

We can now use the results of Shimura [41] [42] and classical theorems on spe-
cial values of abelian (degree 1) L-functions for the factors on the right hand side
of the above decompositions to prove Deligne’s conjecture on the special values of
Lf (s, Symnϕχ). The proof is an extended exercise in keeping track of various con-
stants after one has related the periods of the cusp form ϕχn to the periods of ϕχ.
We state this as the following theorem.

Theorem 4.3 (Period relations for dihedral forms). For any positive integer n we
have the following relations:

(1) c+(ϕχn) ∼ c+(ϕχ)n,
(2) c−(ϕχn) ∼ c+(ϕχ)ng(ωK),

where ∼ means up to an element of Q(χ)–the field generated by the values of χ, and
g(ωK) is the Gauss sum of ωK.

5. Representations with cohomology

In the study of special values of L-functions, if the L-function at hand is associated
to a cuspidal automorphic representation, then a standard assumption made on the
representation is that it contributes to cuspidal cohomology. This cohomology space
admits a rational structure and the periods, which give the transcendental parts of
the special values, come by comparing this rational structure to the rational structure
on the Whittaker model of the representation at hand. This approach to the study
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of special values is originally due to Harder [12] and since then pursued by several
authors and in particular by Mahnkopf [27].

The purpose of this section, after setting up the context, is to record Theorem 5.5
which says that the n-th symmetric power lift of a cohomological cusp form on GL2,
if cuspidal, contributes to cuspidal cohomology of GLn+1. This theorem is essentially
due to Labesse and Schwermer [25]. We then digress a little and discuss the issue of
functoriality and a representation being cohomological.

5.1. Cohomological representations of GLn(R). In this section we set up the
context of cohomological representations. This is entirely standard material; we refer
the reader to Borel-Wallach [6] and Schwermer [39] for generalities on the cohomology
of representations.

We let Gn = GLn and Bn be the standard Borel subgroup of upper triangular
matrices in Gn. Let Tn be the diagonal torus in Gn and Zn be the center of Gn.
We denote by X+(Tn) the dominant (with respect to Bn) algebraic characters of Tn.
For µ ∈ X+(Tn) let (ρµ, Mµ) be the irreducible representation of Gn(R) with highest
weight µ. The Lie algebra of Gn(R) will be denoted by gn. We let Kn = On(R)Zn(R)
and K◦

n be the topological connected component of the identity element in Kn.
Let Coh(Gn, µ) be the set of all cuspidal automorphic representations π = ⊗′

p≤∞πp

of GLn(AQ) such that

H∗(gn, K
◦
n ; π∞ ⊗ ρµ) 6= (0).

By H∗(gn, K
◦
n;−) we mean relative Lie algebra cohomology. We recall the following

from [6, §I.5.1]: Given a (gn, Kn) module σ, one can talk about H∗(gn, K
◦
n; σ) as well

as H∗(gn, Kn; σ). Note that Kn/K
◦
n ' Z/2Z acts on H∗(gn, K

◦
n; σ) and by taking

invariants under this action we get H∗(gn, Kn; σ).
Observe that a global representation being cohomological is entirely a function of

the representation at infinity. There are two very basic problems, one local and the
other global, which has given rise to an enormous amount of literature on this theme.

(1) The local problem is to classify all irreducible admissible representations π∞
of Gn(R) which are cohomological, i.e., H∗(gn, K

◦
n; π∞ ⊗ ρµ) 6= (0), and for

such representations to actually calculate the cohomology spaces.
(2) The global problem is to construct global cuspidal representations whose rep-

resentation at infinity is cohomological in the above sense.

The reader is referred to Borel-Wallach [6] as a definitive reference for the local
problem. For the purposes of this article we discuss the solution of the local problem
for tempered representations of GLn(R). To begin, we record a very simplified version
of [6, Theorem II.5.3] and [6, Theorem II.5.4].

Theorem 5.1. Let G be a reductive Lie group. Let K be a maximal compact subgroup
adjoined with the center of G. Discrete series representations of G (if they exist) are
cohomological and have nonvanishing cohomology only in degree dim(G/K)/2.
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We have suppressed any mention of the finite dimensional coefficients because
Wigner’s Lemma [6, Theorem I.4.1] gives a necessary condition for the infinitesi-
mal character, and nonvanishing cohomology of a representation pins down the finite
dimensional representation. Here is a well known example illustrating this theorem.

Example 5.2. Let G = G2(R) and K = K2 = O2(R)Z2(R). For any integer l ≥ 1,
we let Ml denote the irreducible representation of G of dimension l which is the
(l − 1)-th symmetric power of the standard two dimensional representation. Let Dl

be the discrete series representation of lowest weight l + 1. (If we take a weight k
holomorphic cusp form then the representation at infinity is Dk−1.) The Langlands
parameter of Dl is IndWR

C∗ (χl), where WR is the Weil group of R, and χl is the character
of C∗ sending z to (z/|z|)l. The representation Dl is cohomological; more precisely,
we have

Hq(g, K; (Dl ⊗ | · |−(l−1)/2
R )⊗Ml) =

{
C if q = 1,
0 if q 6= 1.

See [45, Proposition I.4 (1)] for instance. To compare our notation to the notation
therein, take h = l + 1, a = l− 1, ε = 0 and put d = (h, a, ε). Then our Ml is the r[d]

of [45] and our Dl ⊗ | · |−(l−1)/2
R is the π[d] of [45]. See [25, §2.1] for an SL2 version of

this example.

It is a standard fact that relative Lie algebra cohomology satisfies a Künneth rule
[6, §I.1.3]. Using this one can see that if G is a product of m copies of GL2(R) then
the representation Dl1 ⊗ · · · ⊗ Dlm is, up to twisting by a suitable power of | · |R,
cohomological with respect to the finite dimensional coefficients Ml1 ⊗ · · · ⊗Mlm .

We now recall, very roughly, a version of Shapiro’s lemma for relative Lie algebra
cohomology. Consider a parabolically induced representation. The cohomology of the
induced representation can be described in terms of the cohomology of the inducing
representation. (See [6, Theorem III.3.3, (ii)] for a precise formulation.)

We can now give a reasonably complete picture for tempered representations of
GLn(R) which are cohomological. See Clozel [8, Lemme 3.14]. We follow the presen-
tation in [27, §3.1].

Let L+
0 (Gn) stand for the set of all pairs (w, l), with l = (l1, . . . , ln) ∈ Zn such that

l1 > · · · > l[n/2] > 0 and li = −ln−i+1, and w ∈ Z, such that

w + l ≡
{

1 if n is even,
0 if n is odd.

This set L+
0 (Gn) will parametrize certain tempered representations defined as follows.

For (w, l) ∈ L+
0 (Gn), define the parabolically induced representation J(w, l) by

J(w, l) = IndGn
P2,...,2

((Dl1 ⊗ | · |w/2
R )⊗ · · · ⊗ (Dln/2

⊗ | · |w/2
R ))

if n is even, and

J(w, l) = IndGn
P2,...,2,1

((Dl1 ⊗ | · |w/2
R )⊗ · · · ⊗ (Dl(n−1)/2

⊗ | · |w/2
R )⊗ | · |w/2

R )
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if n is odd. It is well known that, up to the twist | · |w/2
R , the representations J(w, l)

are irreducible tempered representations of Gn [22, §2].
Now we describe the finite dimensional coefficients. Let X+

0 (Tn) stand for all dom-
inant integral weights µ = (µ1, . . . , µn) satisfying the purity condition that there is
an integer w, called the weight of µ, such that µi +µn−i+1 = w. The sets L+

0 (Gn) and
X+

0 (Tn) are in bijection via the map (w, l) 7→ µ = w/2 + l/2− ρn where ρn is half the
sum of positive roots for GLn. Let wn be the Weyl group element of Gn of longest
length and let µ∨ = −wn · µ. Then ρµ∨ ' (ρµ)∨ is the contragredient of ρµ.

Assume that the pair (w, l) corresponds to µ as above. Using Example 5.2 on the
cohomology of discrete series representations, and appealing to the Künneth rule and
Shapiro’s lemma as recalled above, one can conclude that

Hq(gn, K
◦
n; (J(w, l)⊗ sgnt)⊗Mµ∨) = (0)

unless the degree q is in the so-called cuspidal range bn ≤ q ≤ tn, where the bottom
degree bn is given by

bn =

{
n2/4 if n is even,
(n2 − 1)/4 if n is odd,

and the top degree tn is given by

tn =

{
((n + 1)2 − 1)/4− 1 if n is even,
(n + 1)2/4− 1 if n is odd,

and finally that the dimension of Hq(gn, Kn; (J(w, l)⊗ sgnt)⊗Mµ∨) is 1 if q = bn or
q = tn. The exponent t of the sign character sgn is in {0, 1}. If n is even, t plays no
role since J(w, l)⊗ sgn = J(w, l). If n is odd, t is determined by the weight of µ and
the parity of (n− 1)/2, due to considerations of central character (Wigner’s lemma).

To complete the picture one notes that, given Mµ, there is, up to twisting by the

sign character, only one irreducible, unitary (up to twisting by | · |−w/2
R ), generic repre-

sentation with nonvanishing cohomology with respect to Mµ and this representation
is a suitable J(w, l). (See [27, §3.1.3].)

Remark 5.3. Let π be a cohomological cuspidal algebraic ([8, §1.2.3]) automorphic
representation of Gn(AQ) then the representation π∞ at infinity has to be a J(w, l) for
some (w, l) ∈ L+

0 (Gn). This can be seen as follows. Since π is cuspidal and algebraic,
by the purity lemma [8, Lemme 4.9], we get that the parameter of π∞ is pure. Since
it is cohomological the finite dimensional coefficients has a highest weight µ which is
also pure, i.e., µ ∈ X+

0 (Tn). Further, π∞ being generic and essentially unitary implies
that it is a J(w, l) as above.

Example 5.4. To illuminate this picture we work through the above recipe for the
case of a holomorphic cusp form. (We use the notation introduced in Example 5.2
and the previous sections.) Let ϕ ∈ Sk(N, ω) and consider the cuspidal automorphic
representation π = π(ϕ)⊗ | · |s. Then π∞ = π(ϕ)∞ ⊗ | · |sR = Dk−1 ⊗ | · |sR.
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(1) If k is even, then the representation π∞ is a J(w, l) exactly when w = 2s ∈ Z
and w + k − 1 is odd. Hence s ∈ Z and π∞ = J(2s, (k − 1,−(k − 1))).
The corresponding dominant weight µ is (s + (k − 2)/2, s − (k − 2)/2). The
representation Mµ∨ is Mk−1 ⊗ (det)−s−(k−2)/2. (For a dominant weight µ =
(µ1, µ2) ∈ Z2 the rational representation Mµ∨ is Mµ1−µ2+1 ⊗ (det)−µ1 .) Using
the fact that det = sgn⊗ | · |R and that Dk−1 ⊗ sgn = Dk−1, we get

π∞ ⊗Mµ∨ = (Dk−1 ⊗ | · |sR)⊗ (Mk−1 ⊗ (det)−s−(k−2)/2)

= (Dk−1 ⊗ | · |−(k−2)/2
R )⊗Mk−1,

which has nontrivial (g, K)-cohomology (see Example 5.2).
(2) If k ≥ 3 is odd, then π∞ is a J(w, l) exactly when w = 2s is an odd integer.

Letting s = 1/2 + r, with r ∈ Z, we have π∞ = J(2r + 1, (k − 1,−(k − 1))).
The corresponding dominant weight µ is (r + (k − 1)/2, r + 1 − (k − 1)/2).
The representation Mµ∨ is Mk−1 ⊗ (det)−r−(k−1)/2. In this case we get

π∞ ⊗Mµ∨ = (Dk−1 ⊗ | · |1/2+r
R )⊗ (Mk−1 ⊗ (det)−r−(k−1)/2)

= (Dk−1 ⊗ | · |−(k−2)/2
R )⊗Mk−1,

which has nontrivial (g, K)-cohomology as mentioned before. We have ex-
cluded the case k = 1, because, firstly, the representation at infinity is not
cohomological, and secondly, any symmetric power L-function of a weight one
form has no critical points.

We finally remark that in both cases, the condition π∞ being a J(w, l) is exactly the
condition which ensures that the representation π = π(ϕ)⊗ | · |s is regular algebraic
in the sense of Clozel [8, §1.2.3 and §3.4].

5.2. Functoriality and cohomological representations. Now we turn to the
global problem, namely, to construct a cuspidal automorphic representation whose
representation at infinity is cohomological. The specific theorem we are interested in
is the following.

Theorem 5.5. Let ϕ ∈ Sk(N, ω) with k ≥ 2. Let n ≥ 1. Assume that Symn(π(ϕ))
is a cuspidal representation of GLn+1(AQ). Let

Π = Symn(π(ϕ))⊗ ξ ⊗ | · |s

where ξ is any idèle class character such that ξ∞ = sgnε, with ε ∈ {0, 1}, and | · | is
the adèlic norm. We suppose that s and ε satisfy:

(1) If n is even, then let s ∈ Z and ε ≡ n(k − 1)/2 (mod 2).
(2) If n is odd then, we let s ∈ Z if k is even, and we let s ∈ 1/2 + Z if k is odd.

We impose no condition on ε.
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Then Π ∈ Coh(Gn+1, µ
∨) where µ ∈ X+

0 (Tn+1) is given by

µ =

(
n(k − 2)

2
+ s,

(n− 2)(k − 2)

2
+ s, . . . ,

−n(k − 2)

2
+ s

)
= (k − 2)ρn+1 + s.

(Recall that ρn+1 is half the sum of positive roots of GLn+1.) In other words, the rep-
resentation Symn(π(ϕ))⊗ξ⊗|·|s, with ξ and s as above, contributes to the cohomology
of the locally symmetric space GLn+1(Q)\GLn+1(AQ)/KfK

◦
n+1,∞ with coefficients in

the local system determined by ρµ∨, where Kf is a deep enough open compact subgroup
of GLn+1(AQ,f ). (Here AQ,f denotes the finite adèles of Q.)

Proof. See Labesse–Schwermer [25, Proposition 5.4] for an SLn-version of this the-
orem. When k = 2, the theorem has also been observed by Kazhdan, Mazur and
Schmidt [16, pp.99].

We sketch the details in the case when n = 2r is even (the case when n is odd being
absolutely similar.) The proof follows by observing that the representation at infin-
ity of Symn(π(ϕ)) is the representation of GLn+1(R) whose Langlands parameter is
Symn(IndWR

C∗ (χk−1)) where χk−1(z) = (z/|z|)k−1. It is a pleasant exercise to calculate
a symmetric power of a two dimensional induced representation, after doing which
one gets that the representation Π∞ is given by

Π∞ = Ind
Gn+1

P2,...,2,1
(D2r(k−1) ⊗ · · · ⊗D2(k−1) ⊗ sgnr(k−1))⊗ ξ∞ ⊗ | · |sR

= Ind
Gn+1

P2,...,2,1
(D2r(k−1) ⊗ · · · ⊗D2(k−1) ⊗ sgnr(k−1)+ε)⊗ | · |sR.

We deduce that Π∞ is a J(w, l) (which, as mentioned before, is equivalent to Π
being regular algebraic) exactly when w = 2s ∈ Z, r(k − 1) + ε is even,

l = (2r(k − 1), . . . , 2(k − 1), 0,−2(k − 1), . . . ,−2r(k − 1)) = 2(k − 1)ρn+1,

and w + l is even which implies that w is even. These conditions are satisfied by the
hypothesis in the theorem. The weight µ is determined by µ = w/2 + l/2− ρn+1 and
the first part of the theorem follows from the discussion in the previous section.

Finally, the relation with the cohomology of locally symmetric spaces follows as in
[25, §1] or [27, §3.2]. �

One might view this theorem as an example of the possible dictum that a functorial
lift of a cohomological representation is cohomological. (However, see Example 5.6
below.) This dictum has been used in many instances to construct global representa-
tions which contribute to cuspidal cohomology. The following is a sampling of such
results–which by no means is to be considered exhaustive–to add weight to the above
dictum.

(1) Labesse and Schwermer [25] proved the existence of nontrivial cuspidal co-
homology classes for SL2 and SL3 over any number field E which contains a
totally real number field F such that F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E with
each each Fi+1/Fi either a cyclic extension of prime degree or a non-normal
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cubic extension. The functorial lifts used were base change for GL2 and the
symmetric square lifting of Gelbart and Jacquet. This was generalized for SLn

over E, in conjunction with Borel [5]; with the additional input of base change
for GLn.

(2) Motivated by [25], Clozel [7] used automorphic induction and proved the ex-
istence of nontrivial cuspidal cohomology classes for SL2n over any number
field.

(3) Rajan [34], also motivated by [25], proved the existence of nontrivial cuspidal
cohomology classes for SL1(D) for a quaternion division algebra D over a
number field E, with E being an extension of a totally real number field F
with solvable Galois closure. Other than base change, he used the Jacquet–
Langlands correspondence.

(4) Ash and Ginzburg [1, §4] have commented on a couple of examples of cuspidal
cohomology classes for GL4 over Q. The first is by lifting from GSp4 to GL4

a weight 3 Seigel modular form. The second is to use automorphic induction
from GL2 over a quadratic extension.

(5) Ramakrishnan and Wang [37] used the lifting from GL2 × GL3 → GL6, due
to Kim and Shahidi, to construct cuspidal cohomology classes of GL6 over Q.

In almost all the above works, functoriality is used to construct cuspidal represen-
tations, and in doing so, one exercises some control over the representations at infinity
to arrange for them to be cohomological. It is an interesting question to ask if the
converse of the above dictum is true, namely, if a lift is cohomological, then whether
the preimage is, a fortiori, cohomological? (See Example 5.7 below.) We would like
to draw attention to a conjecture of Clozel [7, §1] which is motivated by the ideas
of Labesse and Schwermer. The conjecture roughly states that given a tempered
cohomological representation at infinity, one can find a global cuspidal automorphic
representation whose representation at infinity is the given one.

Example 5.6. We construct an example to show that a functorial lift of a cohomo-
logical representation need not be cohomological. For an even integer k, take two
weight k holomorphic cusp forms ϕ1 and ϕ2, and let πi = π(ϕi) for i = 1, 2. By
Example 5.4 we have that both π1 and π2 are cohomological representations. Put
Π = π1 � π2 (see Ramakrishnan [35]). Choose the forms ϕ1 and ϕ2 such that Π is
cuspidal; this can be arranged by taking exactly one of them to be dihedral, or by
arranging that π1 is not π2 ⊗ χ for any character χ, by virtue of [36, Theorem 11.1].
It is easy to see that Π∞ is given by

Π∞ = Ind
G4(R)
P2,1,1

(D2(k−1) ⊗ sgn⊗ 11),

where 11 is the trivial representation of R∗. Observe that Π∞ is not a J(w, l) and
hence is not cohomological by applying Remark 5.3. (Note that Π, as it stands, is

not algebraic, but we can replace Π by π1

T

� π2 (see [8, Definition 1.10]) and make it
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algebraic; this replaces Π∞ by Π∞⊗ | · |1/2
R .) However, note that if we took ϕ1 and ϕ2

to be in general position (unequal weights) then the lift Π would be cohomological.
One should therefore think of the dictum that functoriality preserves the property
of being cohomological only as a guiding principle rather than a precise conjecture.
Similarly, it is possible to construct such an example for the lifting from GL2 ×GL3

to GL6.

Example 5.7. We would like to mention that in the converse direction the GL2×GL2

to GL4 lifting is well behaved. Now let ϕi have weight ki ≥ 1, for i = 1, 2, and assume
without loss of generality that k1 ≥ k2. With Π = π(ϕ1) � π(ϕ2) we have

Π∞ = Ind
G4(R)
P2,2

(Dk1+k2−2 ⊗Dk1−k2).

Suppose Π∞ is cohomological, i.e., is a J(w, l), then we would have k1 + k2 − 2 >
k1 − k2 > 0, which implies that k1 > k2 ≥ 2, and hence both π(ϕ1) and π(ϕ2) are
cohomological.

6. Special values of L-functions of GLn: The work of Mahnkopf

6.1. General remarks on functoriality and special values. This section is a
summary of some recent results due to Joachim Mahnkopf [26] [27]. In this work
he proves certain special values theorems for the standard L-functions of cohomo-
logical cuspidal automorphic representations of GLn. In principle one can appeal to
functoriality and this work of Mahnkopf to prove new special values theorems. For
example, given a cusp form ϕ ∈ Sk(N, ω), let π(ϕ) denote the cuspidal automorphic
representation of GL2(AQ). Functoriality predicts the existence of an automorphic
representation Symn(π(ϕ)) of GLn+1(AQ). (See §2.) Then it is easy to check that

L(s, Symn(π(ϕ)) = L(s + n(k − 1)/2, Symnϕ),

where the left hand side is the standard L-function of Symn(π(ϕ)). Using Mahnkopf’s
work for the function on the left, one can hope to prove a special values theorem for
the function on the right. This is fine in principle, but there are several obstacles to
overcome before it can be made to work.

6.2. The main results of Mahnkopf [27]. Let µ ∈ X+
0 (Tn) and let π ∈ Coh(Gn, µ).

We let L(s, π) =
∏

p≤∞ L(s, πp) be the standard L-function attached to π. Any

character χ∞ of R∗ is of the form χ∞ = ε∞| · |m for a complex number m. We say χ∞
is critical for π∞ if

(1) m ∈ 1/2 + Z if n is even, and m ∈ Z if n is odd; and
(2) L(π∞ ⊗ χ∞, 0) and L(π∨∞ ⊗ χ−1

∞ , 1) are regular values.

We say χ : Q∗\A×
Q → C∗ is critical for π if χ∞ is critical for π∞. Let Crit(π) stand for

all such characters χ which are critical for π. Let Crit(π)≤ stand for all χ ∈ Crit(π)
such that if χ∞ = ε∞| · |m then m ≤ (1− wt(µ))/2.
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Let π ∈ Coh(Gn, µ) and let χ ∈ Crit(π). Let χ∞ = ε∞| · |m. Given µ =
(µ1, . . . , µn) ∈ X+(Tn) choose a λ = (λ1, . . . , λn−1) ∈ X+(Tn−1) such that

(1) µ1 ≥ λ1 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn; and
(2) λn/2 = −m + 1/2 if n is even, and λ(n+1)/2 = −m if n is odd.

Proposition 1.1 of [26] says that such a λ exists. Let P be the standard parabolic
subgroup of Gn−1 of type (n − 2, 1) and let W P be a system of representatives for
WMP

\WGn−1 . Let ŵ ∈ W P be given by

ŵ =

(
1 2 · · ·

[
n
2

]
− 1

[
n
2

] [
n
2

]
+ 1 · · · n− 1

1 2 · · ·
[

n
2

]
− 1 n− 1

[
n
2

]
· · · n− 2

)
.

Define the weight µ′ = (ŵ(λ+ρn−1)−ρn−1)|Tn−2 ∈ X+(Tn−2) where Tn−2 is embedded
in Tn−1 as t 7→ diag(t, 1).

Theorem 6.1 (Theorem 5.4 in Mahnkopf [27]). Let µ ∈ X+
0 (Tn) be regular and let

π ∈ Coh(GLn, µ
∨). Let µ′ ∈ X+(Tn−2) be as above and π′ ∈ Coh(GLn−2, µ

′); if n is
odd then π′ has to satisfy a parity condition. We have

(1) Crit(π)≤ ⊂ Crit(π′)≤.
(2) Let χ ∈ Crit(π)≤, with χ∞ = ε∞| · |m. There exists a collection of com-

plex numbers Ω(π, π′, ε∞) ∈ C∗/Q(π)Q(π′) such that for any finite extension
E/Q(π)Q(π′) the tuple {Ω(π, π′, ε∞)}σ∈Hom(E,C) ∈ (E ⊗ C)∗/(Q(π)Q(π′))∗ is
well defined. There exists a complex number Pµ(m), depending only on µ and
m, subject to Assumption 6.2 below, such that for all σ ∈ Aut(C/Q) and
almost all χ as above, we have(
g(χ)G(η)Pµ(m)

Ω(π, π′, ε∞)

L(π ⊗ χη, 0)

L(π′∨ ⊗ χ, 0)

)σ

=
g(χσ)G(ησ)Pµ(m)

Ω(πσ, π′σ, ε∞)

L(πσ ⊗ χσησ, 0)

L((π′∨)σ ⊗ χσ, 0)
,

where η is a certain auxiliary character and G(η) a certain product of Gauss
sums associated to η.

The above theorem is valid only under the following assumption.

Assumption 6.2. Pµ(m) 6= 0.

The quantity Pµ(m) is the value at s = 1/2 of an archimedean Rankin–Selberg
integral attached to certain cohomological choice of Whittaker functions. Mahnkopf
proves a necessary condition for this nonvanishing assumption [27, §6]. At present
this seems to be a serious limitation of this technique. It is widely believed that this
assumption is valid and it has shown up in several other works based on the same, or
at any rate similar, techniques. See for instance Ash–Ginzburg [1], Kazhdan-Mazur-
Schmidt [16] and Harris [13]. It is an important technical problem to be able to prove
this nonvanishing hypothesis.

The proof of the above theorem combines both the Langlands–Shahidi and the
Rankin–Selberg methods of studying L-functions. One considers the pair of repre-
sentations π × Ind

Gn−1

P (π′ ⊗ χ) of Gn(AQ) × Gn−1(AQ) and carefully chooses a cusp
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form φ ∈ π and an Eisenstein series E corresponding to a section in Ind
Gn−1

P (π′ ⊗ χ).
To this pair (φ, E) a certain Rankin–Selberg type zeta integral [27, 2.1.2], which has a
cohomological interpretation, computes the quotient of L-functions appearing in the
theorem.

The theorem roughly says that the special values of a standard L-function for GLn

are determined in terms of those of a standard L-function for GLn−2. This descent
process terminates since we know the special values of L-functions for GL1 and GL2,
and we get the following theorem; see [27, §5.5] for making the right choices in the
induction on n.

Theorem 6.3 (Theorem A in Mahnkopf [27]). Assume that µ ∈ X+
0 (Tn) is regular

and let π ∈ Coh(Gn, µ
∨). Let χ ∈ Crit(π)≤. To π and χ∞ is attached Ω(π, χ∞) ∈ C

such that for all but finitely many such χ we have(
g(χ)[n/2]G(η)

Ω(π, χ∞)
L(π ⊗ χη, 0)

)σ

=
g(χσ)[n/2]G(ησ)

Ω(πσ, χσ
∞)

L(πσ ⊗ χσησ, 0),

where η is a certain auxiliary character and G(η) a certain product of Gauss sums
associated to η. Moreover, write χ∞ = ε′∞| · |l∞ and set ε(χ∞) = ε′∞sgnl. There are
periods Ωε(π) ∈ C∗ if n is even, and Ω(π) ∈ C∗ if n is odd, and a collection P l

µ ∈ C,

such that Ω(π, χ∞) = P l
µΩ(π) if n is odd, and Ω(π, χ∞) = P l

µΩε(χ∞)(π) if n is even.

Note that Theorem 6.3, since it uses Theorem 6.1, also depends on Assumption 6.2.

7. A conjecture on twisted L-functions

The periods c+ and c− which appear in Deligne’s conjecture are motivically defined.
(See Deligne [9, (1.7.2)].) On the other hand, the periods which appear in the work
of Harder, and also Mahnkopf, have an entirely different origin, namely, they come
by a comparison of rational structures on cuspidal cohomology on the one hand and
a Whittaker model for the representation, on the other. See Harder [12, p. 81] and
Mahnkopf [27, §3.4]. It is not at the moment clear how one might explicitly compare
these different periods attached to the same object. (See also Remark (2) in Harder’s
paper [12, p. 85].)

However, one might ask if these different periods behave in the same manner under
twisting. Here is a simple example to illustrate this. Let χ be an even Dirichlet
character. Let m be an even positive integer. Such an m is critical for L(s, χ). It is
well known [30, Corollary VII.2.10] that

Lf (m, χ) ∼Q(χ) (2πi)mg(χ).

By ∼Q(χ) we mean up to an element of the (rationality) field Q(χ) generated by the
values of χ. Now let η be possibly another even Dirichlet character. Applying the
result to the character χη, and using [41, Lemma 8], we get

Lf (m,χη)/Lf (m, χ) ∼Q(χ)Q(η) g(η).
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Observe that the period, namely the (2πi)m, does not show up, and we have the
relation that the special value of the twisted L-function and the original L-function
differ, up to rational quantities, by the Gauss sum of the twisting character.

Another example along these lines which follows from Shimura [42] is the following.
Let ϕ ∈ Sk(N, ω) and let η be an even Dirichlet character. For any integer m, with
1 ≤ m ≤ k − 1, we have

Lf (m, ϕ, η) ∼Q(ϕ)Q(η) g(η)Lf (m, ϕ).

The point being that, in the above relation, the periods c±(ϕ) do not show up, and so
the definition of these periods is immaterial. (One can rewrite this relation entirely in
terms of periods of the associated motives and it takes the form c±(M(ϕ)⊗M(η)) ∼
g(η)c±(M(ϕ)), the notation being obvious.)

Even if one cannot prove a precise theorem on special values of L-functions in terms
of these–motivically or otherwise defined–periods, one can still hope to prove such
period relations. Sometimes such period relations are sufficient for applications; see
for instance Murty–Ramakrishnan [29] where such a period relation is used to prove
Tate’s conjecture in a certain case.

With this motivation, we formulate the following conjecture on the behavior of the
special values of symmetric power L-functions under twisting by Dirichlet characters.

Conjecture 7.1. Let ϕ ∈ Sk(N, ω) be a primitive form. Let η be a primitive Dirichlet
character.

(1) Suppose η is even, i.e., η(−1) = 1. Then the critical set for Lf (s, Symnϕ, η)
is the same as the critical set for Lf (s, Symnϕ), and if m is critical, then

Lf (m, Symnϕ, η) ∼ g(η)d(n+1)/2eLf (m, Symnϕ),

unless n is even and m is odd (to the left of center of symmetry), in which
case we have

Lf (m, Symnϕ, η) ∼ g(η)n/2Lf (m, Symnϕ).

(2) Suppose η is odd, i.e., η(−1) = −1, and n is even. Then, if m is critical for
Lf (s, Symnϕ, η), then either m + 1 or m− 1 is critical for Lf (s, Symnϕ). For
such an m to the right of the center of symmetry we have

Lf (m, Symnϕ, η) ∼ ((2πi)∓g(η))n/2+1Lf (m± 1, Symnϕ),

and if m is to the left of the center of symmetry, we have

Lf (m, Symnϕ, η) ∼ ((2πi)∓g(η))n/2Lf (m± 1, Symnϕ).
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(3) Suppose η is odd, i.e., η(−1) = −1, and n is odd. Then the critical set for
Lf (s, Symnϕ, η) is the same as the critical set for Lf (s, Symnϕ). Let k ≥ 3.
If m is critical for Lf (s, Symnϕ, η), then either m + 1 or m− 1 is critical for
Lf (s, Symnϕ), and for such an m

Lf (m, Symnϕ, η) ∼ ((2πi)∓g(η))(n+1)/2Lf (m± 1, Symnϕ).

In all the three cases ∼ means up to an element of Q(ϕ)Q(η).

Now we elaborate on the heuristics on which we formulated the above conjecture.
For n = 1 and n = 2 this is contained in the theorems of Shimura [41] [42] and
Sturm [43] [44] respectively. For n = 3, using results on triple product L-functions
for which Blasius [2] is a convenient reference and using Garrett–Harris [10, §6], one
can verify that the above conjecture is true. Further, for n ≥ 4 and if ϕ is dihedral,
i.e., π(ϕ) = AIK/Q(χ), then the conjecture follows by applying the known cases of
n = 1, 2 to each summand in the isobaric decomposition in Lemma 4.1. Observe that
the exponent d(n + 1)/2e appearing in the conjecture is the number of summands in
the isobaric decomposition.

We leave it to the reader to check that the above conjecture is compatible with
conjectures of Blasius [3, Conjecture L.9.8] and Panchiskin [32, Conjecture 2.3] on
the behavior of periods of motives twisted by Artin motives.

It appears that the authors can prove this conjecture, at least in part, and so
really prove a relation amongst appropriate periods, using Theorem 6.3 of Mahnkopf;
at least in the case when Symn(π(ϕ)) is known to exist as a cuspidal automorphic
representation.
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