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Introduction

This short article is concerned with the arithmetic properties of the most degen-
erate holomorphic Eisenstein series on quasi-split 2n-dimensional unitary similitude
groups GU(n, n) attached to totally imaginary quadratic extensions of totally real
fields. This topic has been treated in detail in the literature, especially by Shimura.
The general principle is that holomorphic Eisenstein series on Shimura varieties are
rational over the fields of definition of their constant terms. In the range of absolute
convergence this was proved in [H1] by applying a version of the Manin-Drinfeld
principle: by a combinatorial argument involving Satake parameters in the range of
convergence1, one shows that the automorphic representations generated by abso-
lutely convergent holomorphic Eisenstein series have multiplicity one in the space
of automorphic forms. Hecke operators and the constant term map are rational
over the appropriate reflex field, and this suffices to prove that Eisenstein series
inherit the rationality of their constant terms, without any further computation.

The holomorphic Eisenstein series considered in this paper are lifted from the
point boundary component of the Shimura variety associated to the quasi-split
group GH. Rationality of modular forms on such a Shimura variety can be deter-
mined by looking at Fourier coefficients relative to the parabolic subgroup stabi-
lizing the point boundary component (the Siegel parabolic). In the article [S2] and
in the two books [S3, S4], Shimura has obtained almost completely explicit formu-
las for the nondegenerate Fourier coefficients of the Eisenstein series. This should
be enough to cover all relevant cases, and indeed Shimura obtains applications to
special values of standard L-functions of unitary groups. However, Shimura makes
special hypotheses on the sections defining the Eisenstein series (equivalently, on
the constant terms) that are not natural from the point of view of representation
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theory. In the present article we consider Eisenstein series attached to Siegel-Weil
sections. These are defined representation-theoretically in terms of the local theta
correspondence between GU(n, n) and the unitary group U(V ) of a totally positive-
definite hermitian space V . Suppose dimV = m ≥ n. The Siegel-Weil Eisenstein
series are then holomorphic values of the Eisenstein series in the right-half plane de-
termined by the functional equation. Ichino, following the techniques of Kudla and
Rallis, has recently proved the Siegel-Weil formula in this setting: the Siegel-Weil
Eisenstein series is the theta lift of the constant function 1 on the adeles of U(V ),
and a simple formula relates the constant term of the Siegel-Weil Eisenstein series
to the Schwartz function defining the theta kernel in the Schrödinger model. For
dimV < n, the theta lift of 1 is identified with a residue of an explicit Eisenstein
series, and is again a holomorphic automorphic form.

The Siegel-Weil residues obtained when dimV < n are clearly singular modular
forms, in that their Fourier coefficients are supported on singular matrices. A
special case of a theorem of J.-S. Li shows that the corresponding automorphic
representations have multiplicity one. The proof of rationality now fits in a few
lines. First apply Li’s multiplicity one theorem and the Manin-Drinfeld principle to
show that the holomorphic residual Eisenstein series on GU(n, n) when dimV = 1
– call these rank one theta lifts – inherit the rationality of their constant terms.
Now let m = dimV ≥ n and apply this result to GU(nm, nm). This group contains
GU(n, n)×U(V ) (we actually work with a semi-direct product) as a subgroup. The
Siegel-Weil Eisenstein series lifted from U(V ) to GU(n, n) is obtained by integrating
the rank one theta lift on GU(nm, nm) over the adeles (mod principal adeles) of
U(V ) and restricting to GU(n, n). These operations are rational, and moreover are
compatible with a rational map on constant terms, and this completes the proof.

It might be thought that even that sketch is too long. The non-degenerate Fourier
coefficients of Siegel-Weil Eisenstein series can be calculated very simply in terms
of the moment map. Indeed, the comparison of this calculation with Shimura’s
calculation for the Eisenstein series underlies Ichino’s proofs of the extended Siegel-
Weil formula, as it did the Kudla-Rallis extension of the Siegel-Weil formula for
orthogonal-symplectic dual reductive pairs. In fact, this calculation is perfectly
sufficient for determining rationality up to roots of unity. The problem is that
the oscillator representation on finite adèles only becomes rational over the field
generated by the additive character used to define it. In the end the choice of
additive character doesn’t really matter, but it enters into the calculations. In
the present approach, the explicit calculations are concealed in the proof of the
Siegel-Weil formula.

Although the ideas of the proof fit in a few lines, the paper has stretched to
occupy over twenty pages. Most of this consists of notation and references to earlier
work. Our use of similitude groups also introduces complications, since only unitary
groups are treated in the literature. In fact, Ichino’s Siegel-Weil formula does not
quite extend to the full adelic similitude group, but only to a subgroup of index
two, denoted GU(n, n)(A)+. The values of Eisenstein series on the complement of
GU(n, n)(A)+ in the range of interest – to the right of the center of symmetry, but
to the left of the half-plane of absolute convergence – are related to values of so-
called incoherent Eisenstein series, or to an as yet unknown “second-term identity”
in the Kudla-Rallis version of the Siegel-Weil formalism. The upshot is that we only
obtain rationality of Siegel-Weil Eisenstein series over a specific quadratic extension
of Q. Adapting the arguments to GU(n, n)(A)+ involves nothing complicated but
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adds considerably to the length of the paper.
The paper concludes with the expected applications to special values of L-

functions, – up to scalars in the quadratic extension mentioned above – following
[H3]. For scalar weights, these are probably all contained in [S97]. Our results are
undoubtedly less general in some respects than Shimura’s, since the use of Siegel-
Weil Eisenstein series removes half the degrees of freedom in the choice of a twisting
character. However, the special values we can treat are sufficient for applications to
period relations anticipated in [H4]. These matters will be discussed in a subsequent
paper.

The reader is advised that the point boundary stratum of the Shimura variety
in the applications to Siegel Eisenstein series in [H1,§8] and [H3] is slightly incon-
sistent with the general formalism for boundary strata described in [H1, §6]. In
fact, the latter was treated within the framework of Shimura data, as defined in
Deligne’s Corvallis article [D1]. However, as Pink realized in [P], this is inadequate
for the boundary strata. The problem is that the connected components of the zero-
dimensional Shimura variety attached to Gm, with the norm map, are all defined
over the maximal totally real abelian extension of Q, whereas the boundary points
of the Shimura variety attached to GU(n, n) (or GL(2), for that matter) are in
general defined over the full cyclotomic field, as they correspond to level structures
on totally degenerate abelian varieties (i.e., on powers of Gm. In fact, the proof
of arithmeticity of Eisenstein series in [H86], quoted in [H3], made implicit use of
Pink’s formalism, although the author did not realize it at the time. For example,
the reciprocity law [H3, (3.3.5.4)] is correct, but is consistent with Pink’s formalism
rather than the framework of [H1,§6]. This reciprocity law is used (implicitly) in
the proof of [H3, Lemma 3.5.6], which is the only place the precise determination
of arithmetic Eisenstein series is applied. The discussion following Corollary 2.4.4
appeals explicitly to Pink’s formalism.

I thank Atsushi Ichino for several helpful exchanges, and for providing me with
the manuscript of [I2]. Everything new and substantial in the present article is
contained in [I2] and [I1]. I also thank Paul Garrett for providing an updated
and expanded version of his calculation of the archimedean zeta integrals, and for
allowing me to include his calculation as an appendix.

0. Preliminary notation

Let E be a totally real field of degree d, K a totally imaginary quadratic extension
of E. Let V be an n-dimensional K-vector space, endowed with a non-degenerate
hermitian form < •, • >V , relative to the extension K/E. We let ΣE , resp. ΣK,
denote the set of complex embeddings of E, resp. K, and choose a CM type
Σ ⊂ ΣK, i.e. a subset which upon restriction to E is identified with ΣE . Complex
conjugation in Gal(K/E) is denoted c.

The hermitian pairing < •, • >V defines an involution c̃ on the algebra End(V )
via

(0.1) < a(v), v′ >V =< v, ac̃(v′) >,

and this involution extends to End(V ⊗Q R) for any Q-algebra R. We define Q-
algebraic groups U(V ) = U(V,< •, • >V ) and GU(V ) = GU(V,< •, • >V ) over Q
such that, for any Q-algebra R,

(0.2) U(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = 1};
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(0.3) GU(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = ν(g) for some ν(g) ∈ R×}.

Thus GU(V ) admits a homomorphism ν : GU(V ) → Gm with kernel U(V ). There
is an algebraic group UE(V ) over E such that U(V ) ∼−→ RE/QUE(V ), where RE/Q
denotes Weil’s restriction of scalars functor. This isomorphism identifies automor-
phic representations of U(V ) and UE(V ).

All constructions relative to hermitian vector spaces carry over without change
to skew-hermitian spaces.

The quadratic Hecke character of A×
E corresponding to the extension K/E is

denoted
εK/E : A×

E/E
×NK/EA×

K
∼−→ ± 1.

For any hermitian or skew-hermitian space, let

(0.4) GU(V )(A)+ = ker εK/E ◦ ν ⊂ GU(V )(A).

For any place v of E, we let GU(V )+v = GU(V )(Ev) ∩ GU(V )(A)+. If v splits in
K/E, then GU(V )+v = GU(V )(Ev); otherwise [GU(V )(Ev) : GU(V )+v ] = 2, and
GU(V )+v is the kernel of the composition of ν with the local norm residue map. We
define GU(V )+(A) =

∏′
v GU(V )+v (restricted direct product), noting the position

of the superscript; we have

(0.5) GU(V )(E) ·GU(V )+(A) = GU(V )(A)+.

1. Eisenstein series on unitary similitude groups

(1.1) Notation for Eisenstein series. The present section is largely taken from
[H3, §3] and [H4, §I.1]. Let E and K be as in §0. Let (W,<,>W ) be any hermitian
space over K of dimension n. Define −W to be the space W with hermitian form
− <,>W , and let 2W = W ⊕ (−W ). Set

W d = {(v, v) | v ∈W}, Wd = {(v,−v) | v ∈W}

These are totally isotropic subspaces of 2W . Let P (resp. GP ) be the sta-
blizer of W d in U(2W ) (resp. GU(2W )). As a Levi component of P we take
the subgroup M ⊂ U(2W ) which is stablizer of both W d and Wd. Then M '
GL(W d) ∼−→ GL(W ), and we let p 7→ A(p) denote the corresponding homomor-
phism P → GL(W ). Similarly, we let GM ⊂ GP be the stabilizer of both W d and
Wd. Then A×ν : GM → GL(W )×Gm, with A defined as above, is an isomorphism.
There is an obvious embedding U(W )× U(W ) = U(W )× U(−W ) ↪→ U(2W ).

In this section we let H = U(2W ), viewed alternatively as an algebraic group
over E or, by restriction of scalars, as an algebraic group over Q. The individual
groups U(W ) will reappear in §4. We choose a maximal compact subgroup K∞ =∏
v∈ΣE

Kv ⊂ H(R); specific choices will be determined later. We also let GH =
GU(2W ).

Let v be any place of E, | · |v the corresponding absolute value on Qv, and let

(1.1.1) δv(p) = |NK/E ◦ det(A(p))|
n
2
v |ν(p)|−

1
2n

2
, p ∈ GP (Ev).
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This is the local modulus character of GP (Ev). The adelic modulus character of
GP (A), defined analogously, is denoted δA. Let χ be a Hecke character of K. We
view χ as a character of M(AE) ∼−→ GL(W d) via composition with det. For any
complex number s, define

δ0P,A(p, χ, s) = χ(det(A(p))) · |NK/E ◦ det(A(p))|sv|ν(p)|−ns

δA(p, χ, s) = δA(p)δ0P,A(p, χ, s) = χ(det(A(p)))·|NK/E◦det(A(p))|
n
2 +s
v |ν(p)|− 1

2n
2−ns.

The local characters δP,v(·, χ, s) and δ0P,v(·, χ, s) are defined analogously.
Let σ be a real place of E. Then H(Eσ)

∼−→ U(n, n), the unitary group of
signature (n, n). As in [H3, 3.1], we identify U(n, n), resp. GU(n, n), with the
unitary group (resp. the unitary similitude group) of the standard skew-hermitian

matrix
(

0 In
−In 0

)
. This identification depends on the choice of extension σ̃ of

σ to an element of the CM type Σ. We also write GU(n, n)σ to draw attention
to the choice of σ. Let K(n, n)σ = U(n) × U(n) ⊂ U(n, n)σ in the standard
embedding, GK(n, n)σ = Z ·Kn,n where Z is the diagonal subgroup of GU(n, n),
and let Xn,n = Xn,n,σ = GU(n, n)σ/GK(n, n)σ, X0

n,n = U(n, n)/K(n, n)σ be
the corresponding symmetric spaces. The space X0

n,n, which can be realized as
a tube domain in the space M(n,C) of complex n × n-matrices, is naturally a
connected component of Xn,n; more precisely, the identity component GU(n, n)+

of elements with positive similitude factor stabilizes X0
n,n and identifies it with

GU(n, n)+σ /GK(n, n)σ. Writing g ∈ GU(n, n) in block matrix form

g =
(
A B
C D

)
with respect to bases of W d

σ and Wd,σ, we identify GP with the set of g ∈ GU(n, n)
for which the block C = 0. In the tube domain realization, the canonical automor-
phy factor associated to GP and GK(n, n)σ is given as follows: if τ ∈ Xn,n and
g ∈ GU(n, n)+, then the triple

(1.1.2) J(g, τ) = Cτ +D, J ′(g, τ) = C̄tτ + D̄, ν(g)

defines a canonical automorphy factor with values inGL(n,C)×GL(n,C)×GL(1,R)
(note the misprint in [H3, 3.3]).

Let τ0 ∈ X+
n,n denote the unique fixed point of the subgroup GK(n, n)σ. Given

a pair of integers (µ, κ), we define a complex valued function on GU(n, n)+:

(1.1.3) Jµ,κ(g) = det J(g)−µ · det(J ′(g))−µ−κ · ν(g)n(µ+κ)

More generally, let GH+ denote the identity component of GH(R), and let

GK(n, n) =
∏
σ

GK(n, n)σ, K(n, n) =
∏
σ

K(n, n)σ.

Define Jµ,κ → GH+ → C× by

(1.1.4) Jµ,κ((gσ)σ∈ΣE
) =

∏
σ∈ΣE

Jµ,κ(gσ)
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We can also let µ and κ denote integer valued functions on σ and define analo-
gous automorphy factors. The subsequent theory remains valid provided the value
2µ(σ)+κ(σ) is independent of σ. However, we will only treat the simpler case here.

In what follows, we sometimes write GU(n, n) instead of GH to designate the
quasi-split unitary similitude group of degree 2n over E or any of its completions.
Let N ⊂ P ⊂ GP be the unipotent radical, so that P = M ·N , GP = GM ·N .

(1.2) Formulas for the Eisenstein series. Consider the induced representation

(1.2.1) In(s, χ) = Ind(δ0P,A(p, χ, s)) ∼−→ ⊗v In,v(δ0P,v(p, χ, s)),

the induction being normalized; the local factors Iv, as v runs over places of E, are
likewise defined by normalized induction. Explicitly,
(1.2.2)

In(s, χ) = {f : H(A) → C | f(pg) = δP,A(p, χ, s)f(g), p ∈ P (A), g ∈ H(A)}.

With this normalization the maximal E-split torus in the center of GH acts by a
unitary character. At archimedean places we assume our sections to be K∞-finite.
For a section φ(h, s;χ) ∈ In(s, χ) (cf. [H4, I.1]) we form the Eisenstein series

(1.2.3) E(h, s;φ, χ) =
∑

γ∈P (E)\U(2V )(E)

φ(γh, s;χ)

If χ is unitary, this series is absolutely convergent for Re(s) > n−1
2 , and it can be

continued to a meromorphic function on the entire plane. Let m ≥ n be a positive
integer, and assume

(1.2.4) χ|A×
E

= εmK

Then the main result of [Tan] states that the possible poles of E(h, s;φ, χ) are all
simple, and can only occur at the points in the set

(1.2.5)
n− δ − 2r

2
, r = 0, . . . , [

n− δ − 1
2

],

where δ = 0 if m is even and δ = 1 if m is odd. We will be concerned with the
values of E(h, s0;φ, χ) for s0 in the set indicated in (1.2.5) when the Eisenstein
series is holomorphic at s0.

We write In(s, χ) = In(s, χ)∞⊗ In(s, χ)f , the factorization over the infinite and
finite primes, respectively. Define

α = χ · |NK/E |
κ
2 .

We follow [H3, 3.3] and suppose the character χ has the property that

(1.2.6) ασ(z) = zκ, αcσ(z) = 1 ∀σ ∈ Σ

Then the function Jµ,κ, defined above, belongs to

In(µ−
n

2
, α)∞ = In(µ+

κ− n

2
, χ)∞ ⊗ |ν|

nκ
2∞ .

(cf. [H3,(3.3.1)]). More generally, let

Jµ,κ(g, s+ µ− n

2
) = Jµ,κ(g)|det(J(g) · J ′(g))|−s ∈ In(s, α)∞.

When E = Q, these formulas just reduce to the formulas in [H3].
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(1.3) Holomorphic Eisenstein series.
The homogeneous space Xd

n,n can be identified with a GH(R)-conjugacy class
of homomorphisms of algebraic groups over R:

h : RC/R(Gm)C → GHR.

There is a unique conjugacy class with the property that the composition of the map
(1.3.1) with any h ∈ Xn,n induces an E-linear Hodge structure of type (0,−1) +
(−1, 0) on RK/Q2W⊗QR. The chosen subgroupGK(n, n) ⊂ GH(R) is the stabilizer
(centralizer) of a unique point h0 ∈ X0

n,n. Corresponding to h0 is a Harish-Chandra
decomposition

Lie(GH)C = Lie(GK(n, n))⊕ p+ ⊕ p−

where p+ and p− are isomorphic respectively to the holomorphic and antiholomor-
phic tangent spaces of X0

n,n at h0.
Let π∞ be an admissible (Lie(H),K(n, n))-module. By a holomorphic vector in

π∞ we mean a vector annihilated by p−. A holomorphic representation (called an-
tiholomorphic in [H3]) of H(R) is a (Lie(H),K(n, n))-module generated by a holo-
morphic vector. The same terminology is used for admissible (Lie(GH), GK(n, n))-
modules. As in [H3, (3.3)], the element

Jµ,κ ∈ In(µ+
κ− n

2
, χ)∞ ⊗ |ν|

nκ
2∞

is a holomorphic vector and generates an irreducible (Lie(GH), GK(n, n))-submo-
dule D(µ, κ), unitarizable up to a twist and necessarily holomorphic, which is a free
U(p+)-module provided µ+ κ−n

2 ≥ 0.
In our normalization, as in [KR] and [I], the value µ+ κ−n

2 = 0 is the center of
symmetry of the functional equation of the Eisenstein series. We will be working
with an auxiliary definite hermitian space V of dimension m. It will always be
assumed that

(1.3.2) m ≡ κ (mod 2), µ =
m− κ

2
When m < n, so that µ + κ−n

2 < 0 is to the left of the center of symmetry of the
functional equation,

D(µ, κ) ⊂ In(µ+
κ− n

2
, χ)∞ ⊗ |ν|

nκ
2∞

is still unitarizable (up to a twist) but is a torsion U(p+)-module (a singular holo-
morphic representation, cf. [J]). The lowest GK(n, n)-type of D(µ, κ) is in any case
given at each archimedean place v of E by

(1.3.3) Λ(−µ, κ) = (µ+ κ, µ+ κ, . . . , µ+ κ;−µ, . . . ,−µ;nκ)

(cf. [H3,(3.3.2)]). When m = 0, D(µ, κ) is the one-dimensional module associated
to the character det

κ
2 . We will be most concerned with the case m = 1.

Let D̃(µ, κ) be the universal holomorphic module with lowest GK(n, n)-type
Λ(−µ,−κ):

(1.3.4) D̃(µ, κ) = U(Lie(GH))⊗U(Lie(GK(n,n))⊕p−) C−µ,−κ
where GK(n, n) acts by the character Λ(−µ,−κ) on C−µ,−κ. Then D(µ, κ) is the
unique non-trivial irreducible quotient of D̃(µ, κ) [ref.**] The same notation is used
for the restrictions of these holomorphic modules to (Lie(H),K(n, n)).
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2. Rank one representations of GU(n, n)

(2.1) Local results for unitary groups.
For the time being, G is either GH or H. Unless otherwise indicated, we always

assume n > 1. Let v be a place of E that does not split in K, Ev the completion.
Choose a non-trivial additive character ψ : Ev → C×. The subgroup N(Ev) ⊂
G(Ev) is naturally isomorphic with its own Lie algebra, which we identify with the
vector group of n×n-hermitian matrices over Kv, and We can then identify N(Ev)
with its own Pontryagin dual by the pairing

(2.1.1) N(Ev)×N(Ev) → C×; (n, n′) = ψn(n′) := ψ(Tr(n · n′)).

Formula (2.1.1) defines the character ψn, which we also use to denote the space C
on which N(Ev) acts through the character ψn. For the remainder of this section
we write N,P,M,G, and so on for N(Ev), P (Ev), etc.

Let π be an irreducible admissible representation of G. The N -spectrum of π is
the set of n ∈ N such that HomN (π, ψn) 6= 0. The representation π is said to be
of rank one if its N -spectrum is contained in the subset of matrices of rank one.

The subgroup GM ⊂ GP (Ev) acts on N by conjugation. For any ν ∈ E×v , let

d(ν) =
(

1 0
0 ν

)
∈ GH.

The following facts are well-known.

Lemma 2.1.2. (a) Let G = GH (resp. H). For any π, the N -spectrum of π is
a union of GM - (resp. M -) orbits. If π is of rank one, its N -spectrum contains a
single GM - (resp. M -) orbit of rank one.

(b) Let α ∈ E×v be an element that is not a norm from Kv. The set of rank one
matrices in N is the union of two M -orbits O1 and Oα, represented respectively by
the matrices with 1 and α in the upper left-hand corner and zeros elsewhere.

(c) The set of rank one matrices in N is a single GM -orbit; the element dα of
GH exchanges O1 and Oα.

Thus the irreducible representations π of H of rank one can be classified as of
type 1 or type α, as their spectrum contains O1 or Oα. This classification is relative
to the choice of ψ.

Let ε denote the quadratic character of E×v associated to Kv. Let V be any her-
mitian space over Kv of dimension m. Let χv : K×v → C× be a character restricting
to εm on E×v . Let χ′vK×v /E×v → C× be a second character. The map x 7→ x/c(x)
defines an isomorphism

K×v /E×v
∼−→ U(1)v = kerNKv/Ev

⊂ K×;

U(1)v is also the unitary group of any 1-dimensional hermitian space. In particular,
any character β of K×v /E×v defines a character β̃ of U(1)v:

β̃(x) = β(x/c(x)),

and the map β 7→ β̃ is a bijection. Moreover, χ′v can be chosen to be the trivial
character trivv, and multiplication makes the set of χv with given restriction to
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E×v into a principal homogeneous space under the group of characters of U(1)v. As
in [HKS], the pair (χv, χ′v), together with the additive character ψ, define a Weil
representation

ωχv,χ′v,ψ
: H × U(V ) → Aut(S(V n)),

where S denotes the Schwartz-Bruhat space. The formulas for the action of H are
given in [I1]. The group U(V ) acts linearly on the argument when χ′v is trivial,
and in general the linear action is twisted by χ′v ◦ det, cf. (2.2.1), below. Let
Rn(V, χv, χ′v) = Rn(V, χv, χ′v, ψ) denote the maximal quotient of S(V n) on which
U(V ) acts trivially. We abbreviate Rn(V, χv) = Rn(V, χv, trivv).

More generally, for any irreducible representation β of U(V ), let

Θχv,χ′v,ψ(β) = Θχv,χ′v,ψ(U(V ) → U(n, n);β)

denote the maximal quotient of S(V n) ⊗ β on which U(V ) acts trivially; this is a
representation of H.

For the remainder of this section m = dimV = 1. Let V + denote the 1-
dimensional Kv-space with hermitian form (z, z′) = z · z̄′, where ¯denotes Galois
conjugation. Let V − denote the same space with the hermitian form multiplied by
α. Up to isomorphism, V + and V − are the only two hermitian spaces over Kv of
dimension 1. We let ψα be the character ψα(x) = ψ(α · x).

Proposition 2.1.3 [KS]. The spaces Rn(V ±, χv, ψ) are irreducible. More pre-
cisely, Rn(V +, χv, ψ) and Rn(V −, χv, ψ) are the unique non-trivial irreducible quo-
tients of the induced representation I(n−1

2 , χv); alternatively, they are isomorphic to
the unique non-trivial irreducible subrepresentations of the induced representation
I( 1−n

2 , χv).

The first part of the following theorem is equivalent to a special case of a result
of Li:

Theorem 2.1.4. (a) Every rank one representation π of H is isomorphic to a
representation of the form Rn(V ±, χv, χ′v, ψ) for some χv, χ′v, with fixed ψ. The N -
spectrum of Rn(V +, χv, χ

′
v, ψ) (resp. Rn(V −, χv, χ′v, ψ)) is contained in the closure

of O1 (resp. Oα).
(b) For any χv, χ′v,

Rn(V +, χv, χ
′
v, ψα) = Rn(V −, χv, χ′v, ψ), Rn(V −, χv, χ′v, ψα) = Rn(V +χv, χ

′
v, ψ).

(c) There are natural isomorphisms

Rn(V ±, χv, χ′v, ψ) ∼−→ Θχv,trivv,ψ(U(V ±) → U(n, n); (χ′v)
−1);

Rn(V ±, χv · β, χ′v, ψ) ∼−→ Rn(V ±, χv · β, χ′v, ψ)⊗ β̃ ◦ det

if β is trivial on E×v
(d) No two representations Rn(V ±, χv, χ1

v, ψ) and Rn(V ±, χv, χ2
v, ψ) are isomor-

phic if χ1
v 6= χ2

v.

Proof. The first part of (a) follows from [L1, Theorem 4.8], and the second part
is a special case of [L1,Lemma 4.4]. Actually, Li’s theorem identifies rank one
representations as theta lifts only up to character twists, but (c) shows that all
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such twists are obtained by varying χ′v. Assertion (b) is standard (cf. [MVW, p.
36 (2)]), while (c) follows from properties of splittings proved in [K] and recalled
in [HKS], specifically [HKS, (1.8)]. Finally, (d) follows from the first formula of (c)
and Howe duality for the dual reductive pair (U(1), U(n, n)).

In accordance with 2.1.4(a), we say V + (resp. V −) represents O1 (resp. Oα).
Note that this correspondence between orbits and hermitian spaces depends only
on ψ and not on the choice of characters χv, χ′v.

Lemma 2.1.5. Suppose v is a real place and ψ(x) = eax with a > 0. Then
Rn(V +, χv, ψ) is a holomorphic representation. If χv(z) = zκ/|z|κ, then

Rn(V +, χv, ψ) ∼−→ D(µ, κ)

in the notation of (1.3), with µ = 1−κ
2 .

(2.1.6) Split places. The situation at places v that split in K/E is simpler in that
there is no dichotomy between V + and V −, there is only one orbit O1, and only
one equivalence class of additive characters. Otherwise, Theorem 2.1.4 remains
true: every rank one representation is a theta lift from U(1) = GL(1). Proposition
2.1.3 is also valid in this situation: the theta lift can be identified with an explicit
constituent of a degenerate principal series representation [KS,Theorem 1.3] with
the same parametrization as in the non-split case.

(2.2) Local results for similitude groups.
Let V and U(V ) be as in (2.1). Let GH+ ⊂ GH be the index two subgroup of

elements h such that ε◦ν(h) = 1, i.e. the similitude of h is a norm from Kv. Define
GU(V )+ ⊂ GU(V ) analogously. Let GU(V ) act on H by the map β:

β(g)(h) = d(ν(g))hd(ν(g))−1,

with d(ν(g)) ∈ GH defined as in (2.1). As in [HK, §3], the Weil representation
extends to an action of the group

R = Rv = {(g, h) ∈ GU(V )×GH | ν(h) = ν(g)}.

There is a map R → GU(V ) nH:

(g, h) 7→ (g, d(ν(h))−1h) = (g, h1)

whose image equals either GU(V )+ nH or GU(V ) nH. There is a representation
of R on S(V n) given by

(2.2.1) ωχv,χ′v,ψ(g, h1)Φ(x) = |ν(g)|− dim V
2 χ′v(det(g))(ωχv,χ′v,ψ(h1)Φ)(g−1x).

The power |ν(g)|− dim V
2 guarantees that the maximal E-split torus in the center

of GH acts by a unitary character, as in In(s, χ). This is not what we need for
arithmetic applications but is helpful for normalization.

The image U(V ) ⊂ GU(V ) in R is a normal subgroup and R/U(V ) is iso-
morphic either to GH+ or to GH. When dimV = 1, R ∼−→ GU(V )+ n H and
R/U(V ) ∼−→ GH+. If β is a representation of GU(V ) that restricts irreducibly to
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U(V ), then Θχv,χ′v,ψ(β), defined as in (2.1), extends to a representation of GH+,
which we denote Θ+

χv,χ′v,ψ
(β). We let

Θχv,χ′v,ψ(β) = IndGHGH+Θ+
χv,χ′v,ψ

(β).

This need not be irreducible, but in the cases we consider it will be. See [H2, §3]
for constructions involving similitude groups.

We again restrict attention to dimV = 1, and χ′v = trivv. Then GU(V ) =
K×, acting by scalar multiplication on V . For the character β of GU(V ) we just
take the trivial character; then Θ+

χv,trivv,ψ
(triv) is an extension of Rn(V, χv) to a

representation R+
n (V, χv) of GH+, rigged so that the maximal Ev-split torus in the

center acts by a unitary character.

Proposition 2.2.2. The representations R+
n (V +, χv) and R+

n (V −, χv) of GH+

are inequivalent and are conjugate under the element d(α) of GH − GH+. In
particular,

IndGHGH+R+
n (V +, χv) = IndGHGH+R+

n (V −, χv)

is an irreducible representation, denoted Rn(V ±, χv), of GH. It is the unique non-
trivial irreducible quotient of the induced representation I(n−1

2 , χv). Alternatively,
it is the unique non-trivial irreducible subrepresentation of the induced representa-
tion I( 1−n

2 , χv).
We have

Rn(V pm, χv) |H= Rn(V +, χv)⊕Rn(V −, χv).

Proof. Theorem 2.1.4 asserts the two irreducible representations R+
n (V +, χv) and

R+
n (V −, χv) have distinct N -spectra upon restriction to H. This implies the first

assertion. To show the two representations are conjugate under d(α), we note
first that d(α) exchanges their N -spectra (Lemma 2.1.2(c)). On the other hand,
the induced representation I(n − 1

2 , χv) of H extends (in more than one way) to
a representation of GH; one such extension is defined in (1.1). The claim then
follows from Proposition 2.1.3. The remaining assertions are then obvious, given
that I(s, χv) has also been rigged to have unitary central character on the maximal
Ev-split torus.

(2.2.3) Intertwining with induced representations. In this section m = dimV is
arbitrary. The quotient Rn(V, χ) of S(V n) can be constructed explicitly as a space
of functions on GH+. For any h ∈ GH+, let g0 ∈ GU(V ) be any element with
ν(g0) = ν(h). For Φ ∈ S(V n), define

(2.2.3.1) ϕΦ(h) = (ωχv,triv,ψ(g0, h)Φ)(0).

This function does not depend on the choice of g0 (cf. [HK, loc. cit.]) and belongs
to the space of restrictions to GH+ of functions in In(s0, χv) with s0 = m−n

2 . The
action of GH+ on In(s0, χv) by right translation extends to the natural action of
GH, and in this way the function ϕΦ on GH+ extends canonically to a function
on GH. Since d(ν) ∈ GP for all ν ∈ E×v , the formula for this extension is simply

(2.2.3.2) ϕΦ(h+d(ν)) = δP,v(d(ν), χ, s0) · ϕΦ(d(ν)−1h+d(ν)),

which is consistent with (2.2.3.1) when d(ν) ∈ GH+.
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Lemma 2.2.4. Suppose v is a real place and ψ(x) = eax with a > 0. Then
Rn(V +, χv, ψ) is a holomorphic representation of GH+

v . If χv(z) = zκ/|z|κ, then

Rn(V +, χv, ψ)⊗ |ν|
nκ
2∞

∼−→ D(µ, κ)

in the notation of (1.3), with µ = 1−κ
2 .

Proof. This is an elementary calculation, and the result is in any case a special case
of the general results of [LZ], specifically the K-type calculations in §2, Proposition
2.1 and 2.2.

(2.3) Global multiplicity one results.
As above, we always assume n ≥ 2 unless otherwise indicated. We fix an additive

character ψ : AE/E → C× and a Hecke character χ of K× satisfying (1.2.4), with
m = 1.

Definition (2.3.1). An automorphic representation π of GH or H is said to be
locally of rank one at the place v of E if πv is of rank one. The representation π is
said to be globally of rank one if πv is of rank one for all v.

The main results on rank one representations are summarized in the following
theorem. Most of the assertions are special cases of a theorem of J.-S. Li [L2].

Theorem 2.3.2. (a) An automorphic representation of H is globally of rank one
if and only if it is locally of rank one at some place v.

(b) Let π be an automorphic representation of H of rank one. Then there is a
K hermitian space V of dimension one, a character β of U(V )(E)\U(V )(A), and
a Hecke character χ of K× satisfying (1.2.4), such that

π = Θχ,triv,ψ(U(V ) → U(n, n);β).

(c) Any automorphic representation of H of rank one occurs with multiplicity
one in the space of automorphic forms on H.

(d) Suppose ψv(x) = eavx with av > 0 for all archimedean v. Then an auto-
morphic representation of H of rank one is holomorphic (resp. anti-holomorphic)
if and only if Vv = V + (resp. V −) for all archimedean v.

(e) Every automorphic representation of H of rank one is contained in the space
of square-integrable automorphic forms on H.

(f) Let π = ⊗vπv be an irreducible admissible representation of H with πv of
rank one for all v. Let the orbit Ov be the Nv spectrum of πv, and let Vv be the
equivalence class of one-dimensional hermitian spaces over Kv representing Ov.
Suppose there is no global one-dimensional hermitian space V that localizes to Vv
at each v. Then π has multiplicity zero in the space of automorphic forms.

Proof. Assertions (a) is due to Howe [Ho]. In view of Li’s Theorem 2.1.4 (a),
assertions (b), (c), and (e) are contained in Theorem A of [L2]; note that any
automorphic form on any U(1) relative to K/E is necessarily square-integrable!
Assertion (d) is a calculation of the local Howe correspondence (cf. [H4, II (3.8)]).
Finally, assertion (f) is a formal consequence of (b), and equivalently of the fact
that such a π can have no non-constant Fourier coefficients.
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Corollary 2.3.3. (a) An automorphic representation of GH is globally of rank
one if and only if it is locally of rank one at some place v.

(b) Let π be an automorphic representation of GH of rank one. Then there is a
K hermitian space V of dimension one, a character β of GU(V )(E)\GU(V )(A),
and a Hecke character χ of K× satisfying (1.2.4), such that π = Θχ,triv,ψ(β).

(c) Any automorphic representation of GH of rank one occurs with multiplicity
one in the space of automorphic forms on GH.

(d) Let π be an automorphic representation of GH of rank one. As representation
of Lie(GH)C × GH(Af ), π is generated by {±1}ΣE vectors v(eσ), with each eσ ∈
{±1}. The vector v(eσ) is holomorphic (resp. anti-holomorphic) at each place σ
with eσ = +1 (resp. eσ = −1.

(e) Every automorphic representation of GH of rank one is contained in the
space of essentially square-integrable automorphic forms on GH.

“Essentially square integrable” in the above corollary means square-integrable
modulo the adeles of the center, up to twist by a character.

The global automorphic representation Θχ,triv,ψ(β) is isomorphic to the re-
stricted tensor product over v of the local representations Θχv,triv,ψv (βv). As a
space of automorphic forms it is defined as in [H4, §I.4]. The elements of this space
are defined below. We are primarily interested in the case of trivial β. Then

(2.3.4)
Θχ,triv,ψ(triv) = Rn(V ±, χ)

def
= ⊗vRn(V ±, χv)
∼−→ Ind

GH(A)
GH+(A) ⊗v Rn(Vv, χv),

where V is any one-dimensional hermitian space over K and Vv is its localization at
v. The space Rn(V ±, χ) may be viewed alternatively, as in as the unique non-trivial
irreducible GH(A)-quotient of the adelic induced representation I(n − 1

2 , χ) or as
the unique non-trivial irreducible GH(A)-submodule of I( 1

2 , χ).
The dimension of V is now arbitrary. Let R(Af ) =

∏′
v Rv, where Rv ⊂

GH(Ev)×GU(Vv) is the group defined in (2.2). Let Φ ∈ S(V n) and define

(2.3.5) θχ,triv,ψ(Φ)(g, h) =
∑

x∈V n(K)

ωχ,triv,ψ(g, h)(Φ)(x).

For h ∈ GH+(A), defined as in the notation section, and for g0 ∈ GU(V )(A) such
that ν(g0) = ν(h), let

(2.3.6) Iχ,triv,ψ(Φ)(h) =
∫
U(V )(E)\U(V )(A)

θχ,triv,ψ(Φ)(g0g, h)dg

The measure dg is Tamagawa measure. This integral does not depend on the
choice of g0 and defines an automorphic form on GH+(A)∩GH(Q)\GH+(A) that
extends uniquely to a function on GH(Q)\GH(Q) ·GH+(A) = GH(Q)\GH(A)+,
also denoted Iχ,triv,ψ(Φ).

In §3 we will realize this function in a certain space of Eisenstein series, and as
such it can be extended to an automorphic form on all GH(A). We now assume
dimV = 1. As abstract representation, the restriction of Θχ,triv,ψ(triv) to H(A)
is calculated by the final assertion of Proposition 2.2.2:

(2.3.7) Θχ,triv,ψ(triv) |H(A)=
⊕
S

⊗v/∈SR(V +
v , χv, ψv)

⊗
⊗v∈SR(V −v , χv, ψv),
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where S runs over all finite sets of places of E. Let ΘS denote the summand on
the right hand side of (2.3.7) indexed by S. We say ΘS is coherent if there is a
global V such that Vv = V −v if and only if v ∈ S, incoherent otherwise. By the
global reciprocity law for the Hasse invariant of hermitian spaces, S is coherent if
and only if |S| is even.

Lemma 2.3.8. Let F be any extension of Iχ,triv,ψ(Φ) to an automorphic form on
GH(A). Then F (h) = 0 for h ∈ GH(A)−GH(A)+.

Proof. An extension of Iχ,triv,ψ to GH(A) corresponds to a homomorphism λ from

Θχ,triv,ψ(triv) = Ind
GH(A)
GH+(A) ⊗v Rn(Vv, χv)

to the space of automorphic forms on GH(A). Let ΘS denote the summand on the
right hand side of (2.3.7) indexed by S. It follows from (2.3.2)(f) that λ(ΘS) = 0
for any incoherent S. The Lemma now follows easily from Lemma 2.1.2(c).

(2.4) Automorphic forms on the Shimura variety.
Let A(n, n) denote the space of automorphic forms on GH; i.e., of functions on

GH(E)\GH(AE) satisfying the axioms of automorphic forms. Let GH0(AE) =
GH+

∞×GH(Af ), where GH∞ = GH(E⊗QR) and GH+
∞ is the identity component,

which can also be characterized as the subgroup with positive similitude factor at
each real place. By “real approximation”, GH(E) · GH0(AE) = GH(A), so an
automorphic form is determined by its restriction to GH(E)0\GH0(AE), where
GH(E)0 = GH(E) ∩GH0(A)E .

The pair (GH,Xd
n,n) defines a Shimura variety Sh(n, n), or Sh(n, n)K/E , with

canonical model over its reflex field, which is easily checked to be Q (see §(2.6),
below). This Shimura variety does not satisfy a hypothesis frequently imposed: the
maximal R-split subgroup of the center of G is not split over Q. Let ZE ⊂ ZGH be
the maximal Q-anisotropic subtorus of the maximal R-split torus; concretely, ZE
is the kernel of the norm from RE/Q(Gm)E to Gm. Automorphic vector bundles
over Sh(n, n) are indexed by irreducible representations of GK(n, n) on which ZE
acts trivially.

We only need automorphic line bundles, indexed by the characters Λ(µ, κ) of
GK(n, n) whose inverses were defined in (1.3.3); note that ZE acts trivially because
the characters µ and κ are constant as functions of real places. Let Eµ,κ be the
corresponding line bundle, defined as in [H3, (3.3)]. It is elementary (cf. [H3,
(3.3.4)]) that

(2.4.1) Hom(Lie(GH),GK(n,n))(D̃(µ, κ),A(n, n)) ∼−→ H0(Sh(n, n), Eµ,κ).

(In [loc. cit.] the right-hand side is replaced by the space of sections of the canonical

extension of Eµ,κ) over some toroidal compactification ˜Sh(n, n) of Sh(n, n). Since
n > 1, Koecher’s principle guarantees these spaces are canonically isomorphic.)

Theorem 2.4.2. In fact, every homomorphism on the left-hand side of (2.4.1)
factors through D(µ, κ).

Proof. This theorem is essentially due to Resnikoff [R]; the current formulation is
from [HJ].

Corollary 2.3.3 and Lemma 2.1.5 then imply:



A SIMPLE PROOF OF RATIONALITY OF SIEGEL-WEIL EISENSTEIN SERIES 15

Corollary 2.4.3. (a) The space H0(Sh(n, n), Eµ,κ) is generated by the images with
respect to (2.4.1) of forms in

Θhol
χ,triv,ψ(β)⊗ |ν|

nκ
2∞

where β runs through characters of GU(V )(A)/GU(V )(E) with β∞ = 1, and where
χv(z) = zκ/|z|κ for all real v.

(b) The representation of GH(Af ) on H0(Sh(n, n), Eµ,κ) is completely reducible
and multiplicity free.

Proof. The condition β∞ = 1 implies, in view of Lemma 2.2.4, that the archimedean
components of Θhol

χ,triv,ψ(β)|ν|
nκ
2∞ are all isomorphic to D(µ, κ). This is not possible

for β∞ 6= 1 by Howe duality, thus only β with trivial archimedean component
contribute to the left-hand side of (2.4.1). Thus (a) follows from Corollary 2.3.3
(a) and (b) and Lemma 2.1.5. Assertion (b) is a consequence of (2.3.3) (e) and (c):
the L2 pairing defines a hermitian (Petersson) pairing on H0(Sh(n, n), Eµ,κ) with
respect to which the action of GH(Af ) is self-adjoint.

It follows from the theory of canonical models of automorphic vector bundles
[H85,Mi] that the automorphic line bundle Eµ,κ is defined over the field of defini-
tion E(µ, κ) of the conjugacy class under the normalizer of GK(n, n) in GH of the
character Λ(µ, κ), which is contained in the reflex field E(Σ) of the CM type Σ. If
κ 6= 0, as will always be the case in applications, then E(µ, κ) = E(Σ). Improve-
ment on this field of definition requires a more careful analysis of the interchange
of holomorphic and anti-holomorphic forms on Sh(n, n).

The isomorphism (2.4.1) implicitly depends on the choice of a basis for the fiber
of Eµ,κ at the fixed point of GK(n, n) in X+

n,n, called a canonical trivialization in
[H3]. This choice enters into explicit calculations with automorphic forms but is
irrelevant for the present purposes. All that matters is that, with respect to this
choice, which we fix once and for all, the E(µ, κ)-rational structure on the right-
hand side of (2.4.1) defines an E(µ, κ)-rational structure on the left-hand side.

The next corollary is obvious from what has been presented thus far.

Corollary 2.4.4. Let πf be an irreducible representation of GH(Af ) that occurs
in H0(Sh(n, n), Eµ,κ), and let M [πf ] ⊂ H0(Sh(n, n), Eµ,κ) denote the πf -isotypic
subspace. Then πf is defined over a finite extension E(πf ) of E(µ, κ), M [πf ] is
isomorphic as GH(Af )-module to πf , and γ(M [πf ])) = M([γ(πf )]) for any γ ∈
Gal(Q/E(µ, κ)).

As in [H3,3.3.5], we denote by Sh(n, n)GP the point boundary stratum of the
minimal (Baily-Borel-Satake) compactification of Sh(n, n). Our description of this
stratum follows the formalism of Pink [P]. Let (Gh,P , h±P ) be the Shimura datum
associated to this boundary stratum. The group Gh,P is a torus contained in GP ,
isomorphic to Gm ×Gm, as in [H3] (where there is however a misprint):

Gh,P = {g ∈ GP | A = aIn, D = dIn} ⊂ GP

and h±P is a homogeneous space for Gh,P (R) = R× × R×, consisting of two points
on which (a, d) acts trivially if and only if a > 0; this covers (in Pink’s sense) the R-
homomorphism hP : RC/R(Gm)C → Gh,P defined by [H3,(3.3.5.2)]. More precisely,
in [H3] we have E = Q; in general, hP is given by [H3,(3.3.5.2)] at each real place
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of E. The same is true for the formula defining the limit bundle Eµ,κ,GP : the
line bundle Eµ,κ extends to a line bundle on the minimal compactification, whose
restriction to Sh(n, n)GP is denoted Eµ,κ,GP , associated to a character denoted
λµ,κ,n on p. 143 of [H3]. The exact formula does not matter.

Let fP : H0(Sh(n, n), Eµ,κ) → H0(Sh(n, n)GP , Eµ,κ,GP ) denote the Siegel Φ-
operator (constant term map) for holomorphic forms. In classical language, fP
takes a holomorphic form of weight (µ, κ) to the constant term of its Fourier ex-
pansion relative to the tube domain realization of the universal cover of Sh(n, n).
It follows from the general theory [H1, §6] that fP is rational over E(µ, κ) = E(Σ)
and intertwines the H(Af ) actions. Thus:

Lemma 2.4.5. Let πf be an irreducible admissible representation of GH(Af ) oc-
curring in H0(Sh(n, n), Eµ,κ) and let fP [πf ] denote the restriction of rP to M [πf ] ⊂
H0(Sh(n, n), Eµ,κ). Then fP [πf ] is either zero or an isomorphism onto its image.
For any γ ∈ Gal(Q/E(µ, κ)), fP [γ(πf )] = γ ◦ fP [πf ].

Lemma 2.4.5 is expressed in terms of sections of automorphic vector bundles.
With respect to the isomorphism (2.4.1), rP can be identified as the constant term
in the theory of automorphic forms. More precisely, there is a commutative diagram:

(2.4.6)

Hom(Lie(GH),GK(n,n))(D̃(µ, κ),A(n, n)) −−−−→
∼

H0(Sh(n, n), Eµ,κ)yrP fP

y
HomGP (R)(λ−1

µ,κ,n, I
GH(Af )

GP (Af )A(GM(A))) −−−−→
∼

H0(Sh(n, n)GP , Eµ,κ,GP )

Here λ−1
µ,κ,n is the inverse of the character of GP (R) which defines the line bun-

dle Eµ,κ,GP , and A(GM(A)) is the space of automorphic forms on GM(A). Strong
approximation for SL(n) implies that any irreducible automorphic representation
of GM(A) whose archimedean component is a character, in this case λ−1

µ,κ,n, is

necessarily one-dimensional. The effect of IGH(Af )

GP (Af ) is to induce at finite places but
leave the archimedean place alone, cf. [HZ, Cor. 3.2.9]. The left-hand vertical
arrow rP is defined by the usual constant term map on A(n, n). The lower hori-
zontal isomorphism also depends on the choice of a basis (canonical trivialization)
of Dµ,κ,P , which is determined by the remaining three arrows. As above, the right
half of the diagram determines rational structures on the left half which makes rP
E(µ, κ)-rational.

(2.5) Twisting by characters on the Shimura variety.

The map det : GH → TK
def
= RK/Q(Gm)K defines a morphism of Shimura data

(2.5.1) (GH,Xd
n,n) → (TK, hn,n).

The homomorphism hn,n : RC/R(Gm)C → TK,R is defined by (2.5.1) and is given
explicitly by the condition that, for every embedding σ : K → C, the composition
σ ◦ hn,n(z) = (zz̄)n (cf. [H3, (2.9.1)]).

In particular, the image of hn,n is contained in the subtorus TE
def→ RE/Q(Gm)E of

TK. By the yoga of automorphic vector bundles, this means that, if ρ is an algebraic
character of TK trivial on TE , the corresponding automorphic line bundle Lρ on
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Sh(TK, hn,n) is TK(Af )-equivariantly isomorphic to the trivial line bundle. Thus,
let β be a Hecke character of K that defines a section [β] ∈ H0(Sh(TK, hn,n),Lρ);
equivalently, β∞ = ρ−1 (cf. [H3, (2.9.2)]. Then [β] is a motivic Hecke character
(character of type A0), so the field E[β] generated by the values of β on finite idèles
is a finite extension of Q.

Lemma 2.5.2. Let Eρ be the field of definition of the character ρ. The section [β]
is rational over the field E[β]; moreover, for any σ ∈ Gal(Q/Eρ), σ[β] = [σ(β)],
where σ acts on β by acting on its values on finite idèles.

Let Eρ denote the pullback of Lρ to Sh(n, n). Then twisting by [β] defines an
E[β]-rational isomorphism

iβ : H0(Sh(n, n), Eµ,κ)
∼−→ H0(Sh(n, n), Eµ,κ ⊗ Eρ).

Lemma 2.5.2 implies that σ ◦ iβ = iσ(β), where the notation has the obvious inter-
pretation.

Complex conjugation c defines an automorphism, also denoted c, of the torus
TK. Every integer k defines a character ρk of TK trivial on TE :

ρk(z) = (z/c(z))−k.

Let αk = ρk ⊗N−k
K/Q. One can also twist by sections [β] of H0(Sh(TK, hn,n),Lαk

).
The function β no longer defines a rational section, but we have:

Corollary 2.5.3. Suppose β is a Hecke character with β∞ = α−1
k , and let [β] ∈

H0(Sh(TK, hn,n),Lαk
) be the section defined by (2πi)nk · β. Then multiplication by

[β] defines an E[β]-rational isomorphism

iβ : H0(Sh(n, n), Eµ,κ)
∼−→ H0(Sh(n, n), Eµ,κ ⊗ Eαk

).

Moreover, for any σ ∈ Gal(Q/Eρ), σ ◦ iβ = iσ(β)

2.6. The subvariety Sh(n, n)+ ⊂ Sh(n, n).
Let S denote the real algebraic group RC/RGm,C. In Deligne’s formalism, the

space Xn,n is a conjugacy class of homomorphisms h : S → GHR. The group
GK(n, n), introduced in §1, is the centralizer of one such h, namely h0 = (h0,σ),
with h0,σ, the projection of h on the factor GU(n, n)σ of GH(R), given on z =
x+ iy ∈ S(R) ' C× by

(2.6.1) h0,σ(x+ iy) =
(
xIn yIn
−yIn xIn

)
in the block matrix form of (1.1). Over C there is an isomorphism

(µ, µ′) : Gm ×Gm
∼−→ S

and the Cayley transform conjugates h0,C to

r0 = (r0,σ) : Gm ×Gm →
∏
σ

GU(n, n)σ,
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where

(2.6.2) r0,σ(t, t′) =
(
tIn 0n
0n t′In

)
.

The cocharacter µh0 = h0,C ◦ µ : Gm → GHC is thus conjugate to the cocharacter
µr0 , defined by

(2.6.3) t 7→
(
tIn 0n
0n In

)
.

The reflex field E(GH,Xd
n,n) is the field of definition of the conjugacy class of µh0 ,

or equivalently of µr0 ; since µr0 is defined over Q, it follows that E(GH,Xd
n,n) = Q.

In particular, Shimura’s reciprocity law for the connected components of Sh(n, n)
shows that these are defined over Qab. We recall Shimura’s reciprocity law in
the version of Deligne [D1], §2.6, which is correct up to a sign (depending on
normalizations) that does not matter. Define a Q-subgroup of TK ×Gm by

(2.6.4) T = {(u, t) ∈ TK ×Gm | NK/E(t−nu) = 1}

The map d = det×ν : GH → TK×Gm takes values in T , and the simply-connected
semisimple group ker d = SU(n, n) is the derived subgroup GHder of GH. It follows
from strong approximation for simply-connected semisimple groups, as in [D1,§2.1],
that the set π0(Sh(n, n)) of geometrically connected components of Sh(n, n) is a
principal homogenous space under

π̄0π(G) = d(GH(Af ))/d(GH(Q)+).

Here GH(Q)+ = GH(Q) ∩GH+ and the bar over d(GH(Q)+ denotes topological
closure.

Let GH(A)+ = ker εK/E ◦ ν as in (0.4), GH(Af )+ = GH(A)+ ∩GH(Af ), and
let Sh(n, n)+ denote the image of (X+

n,n)
d×GH(Af )+ in Sh(n, n). This is a union

of connected components of Sh(n, n), defined over the subfield of Qab determined
by the reciprocity law [D1, 2.6.3]. In [D1, loc. cit], the reflex field E is just Q,
and for the map qM : π(Gm) → π(G), in Deligne’s notation, we can just take the
map µr0 of (2.6.3). The reciprocity map [D1,(2.6.2.1)] is just deduced from the
composite

(2.6.5) dr0 = d ◦ µr0 : Gm → T ; t 7→ (tn, t)

It follows from the reciprocity law that Sh(n, n)+ is defined over the field LK/E
defined by the kernel in A×/Q× · R×+

∼−→ Gal(Qab/Q) of

ε(n, n) = εK/E ◦ ν ◦ dr0 .

This is a quadratic character, so [L : Q] ≤ 2. If E = Q, it is easy to see that
LK/E = K; if K contains no quadratic extension of Q, then LK/E = Q.

The theory of automorphic vector bundles is valid over Sh(n, n)+, provided LK/E
is taken as the base field. The Siegel-Weil formula only determines Eisenstein series
over GH(A)+, hence only determines the corresponding section of automorphic
vector bundles on Sh(n, n)+. Let Sh(n, n)+GP be the point boundary stratum of
the minimal compactification of Sh(n, n)+; i.e., it is the intersection of Sh(n, n)GP
with the closure of Sh(n, n)+ in the minimal compactification. Then Sh(n, n)+GP
is also defined over LK/E , and Lemma 2.4.5 remains true with the superscript +.
We note the following:
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Lemma 2.6.6. Let E be any automorphic vector bundle over Sh(n, n), f ∈ H0(Sh(n, n), E),
and define f+ ∈ H0(Sh(n, n), E) to equal f on Sh(n, n)+ and zero on the comple-
ment. If E and f are rational over the field L, then f+ is rational over LK/E · L.

Proof. Let 1 denote the constant section of H0(Sh(n, n),OSh(n,n) identically equal
to 1. Since f+ = f · 1+, it suffices to verify the lemma for f = 1, but this follows
immediately from the reciprocity law.

3. The Siegel-Weil formula and arithmetic Eisenstein series

(3.1) The case of rank one. The constant term of the theta lift is easy to
calculate. We first consider the theta lift from U(V ) with dimV = 1, as above.
The standard calculation of the constant term (cf. [KR, (1.3)]) gives

(3.1.1) rP (Iχ,triv,ψ(Φ))(h) = τ(U(V )) · φΦ(h), h ∈ GH+(A).

The constant τ(U(V )) is Tamagawa measure, equal to 2; all that matters to us
is that it is a non-zero rational number. The map rP is equivariant with respect
to the action of GH(Af ), and we can extend the left-hand side to a function of
GH(A) so that (3.1.1) remains valid for all h ∈ GH(Af ).

Write GH∞ = GH(E ×Q R), and define GU(V )∞, U(V )∞, and H∞ likewise.
Howe duality for the pair (H,U(V )) implies that S(V n)∞ = S(V n)(E×QR) decom-
poses, as representation of (U(Lie(H∞)),K(n, n)))×U(Lie(U(V )∞), as an infinite
direct sum of irreducible representations, indexed by a certain subset of the set of
characters of the torus U(V )∞. Assuming Vv = V + and ψv(x) = eavx with av > 0
for all real places v of E, each summand is a holomorphic representation of H∞.
The summand corresponding to the trivial character of U(V )∞ is just the tensor
product of d copies of D(µ, κ), indexed by real places of E. Let Φ0

∞ ∈ S(V n)∞
be a non-zero U(V )∞-invariant function in the (one-dimensional) holomorphic
subspace of D(µ, κ)⊗

d

. With this choice of Φ0
∞, unique up to scalar multiples,

Iχ,triv,ψ(Φ) ⊗ |ν nκ
2 | defines an element of Hom(Lie(GH),GK(n,n))(D̃(µ, κ),A(n, n)),

and thus of H0(Sh(n, n), Eµ,κ). The function Φ0
∞ can be written explicitly as a

Gaussian, but any choice will do.
Recall that (2.4.6) has been normalized so that the map (3.1.1) is rational over

E(κ, µ). One can characterize the rational structure on the functions on the right-
hand side of (3.1.1) explicitly, and some choices of Φ0

∞ are more natural than others
for this purpose, but this is unnecessary. The following proposition is an immediate
consequence of Lemma 2.4.5.

Proposition 3.1.2. Let L be an extension of E(κ, µ). Let Φ = Φ0
∞ ⊗ Φf ∈

S(V (A)n) be any function such that

(3.1.3) φΦ ⊗ |ν
nκ
2 | ∈ H0(Sh(n, n)GP , Eµ,κ,GP )(L)

(i.e., is rational over L) in terms of the bottom isomorphism in (2.4.6). Then
Iχ,triv,ψ(Φ)⊗ |ν nκ

2 | defines an L-rational element of H0(Sh(n, n), Eµ,κ) in terms of
the top isomorphism in (2.4.6).

More generally, let γ ∈ Gal(Q/E(κ, µ)) and suppose

Φ1 = Φ0
∞ ⊗ Φ1,f ,Φ2 = Φ0

∞ ⊗ Φ2,f ∈ S(V (A)n)
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have the property that φΦi
is an L-rational element of H0(Sh(n, n)GP , Eµ,κ,GP ),

i = 1, 2, for some L ⊂ Q containing E(κ, µ), and such that γ(φΦ1) = φΦ2 . Then

γ(Iχ,triv,ψ(Φ1)) = Iχ,triv,ψ(Φ2).

This can be improved by taking Φi,f to be Q-valued functions. The twist by
a power of |ν| implicitly introduces a power of (2πi) in the normalization, as in
Corollary 2.5.3. This can be absorbed into Φ0

∞ and is invisible in the above state-
ment, because it is present in the boundary value as well as in the theta integral.
However, the Galois group acts on the additive character ψ as well as on the values
of Φi,f , so the result is not completely straightforward. Note that the statement of
Proposition 3.1.2 depends only on the image of Φf in Rn(V, χ)f .

(3.2) Siegel-Weil theta series in general.
Now let V be of arbitrary dimension m, but always assume V to be positive-

definite at all real places of E. Let AV be the matrix of the hermitian form of V , in
some basis. Recall that H was defined to be U(2W ). For the theta correspondence
it is best to view 2W as the skew-hermitian space K2n, with skew-hermitian ma-

trix
(

0 In
−In 0

)
. Define W = W ⊗ V . This is naturally a skew-hermitian space,

with matrix
(

0 In ⊗AV
−In ⊗AV 0

)
. However, all even maximally isotropic ske-

whermitian spaces are isomorphic, so W is equivalent to the space with matrix(
0 Inm

−Inm 0

)
.

The subgroups H and U(V ) of U(W) form a dual reductive pair. In particular,
any automorphic form on U(W) restricts to an automorphic form on H × U(V )
whose integral over U(V )(E)\U(V )(AE) defines an automorphic form on H. More
generally, the integral over U(V )(E)\U(V )(AE) of an automorphic form on GU(W)
defines an automorphic form on GH.

Let V1 be the one-dimensional hermitian space K with the norm form. We
fix µ = 1−κ

2 , as is appropriate for the theta lift from U(V1) to U(W). Attached
to GU(W) we have the Shimura variety Sh(nm, nm). We let (GU(V ), {point})
be the trivial Shimura datum attached to GU(V ): {point} is the conjugacy class
of the trivial homomorphism C× → GU(V )(E ×Q R) over R. Let Sh(V ) be the
corresponding (zero-dimensional) Shimura variety. Tensor product defines a natu-
ral homomorphism GU(n, n)×GU(V ) → GU(W) which induces a natural map of
Shimura data:

(GU(n, n)×GU(V ), Xn,n × {point}) → (GU(W), Xnm,nm)

and hence a morphism of Shimura varieties

(3.2.1) Sh(n, n)× Sh(V ) → Sh(nm, nm)

defined over the reflex field, which is Q. The pullback of Eµ,κ from Sh(nm, nm) to
Sh(n, n)×Sh(V ) is just the pullback from Sh(n, n) of Emµ,mκ. This is because the
restriction to K(n, n) = U(n)× U(n) of the determinant character

K(nm, nm) = U(nm)× U(nm) → U(1)× U(1),

defined by (two copies of) the diagonal homomorphism

U(n) → U(nm) = U(V n),

is the m-power of the determinant character on K(n, n).
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Lemma 3.2.2. Let τ = τ(U(V )) = 2. There is a commutative diagram

Hom(GU(W),GK(nm,nm))(D̃(µ, κ),A(nm, nm)) −−−−→
∼

H0(Sh(nm, nm), Eµ,κ)yτ(U(V ))−1 R
U(V )(E)\U(V )(AE) IV

y
Hom(Lie(GH),GK(n,n))(D̃(mµ,mκ),A(n, n)) −−−−→

∼
H0(Sh(n, n), Emµ,mκ)

where the right vertical arrow is E(µ, κ) = E(mµ,mκ)-rational.

Proof. The fibers of Eµ,κ on Sh(nm, nm) and of Emµ,mκ on a point in the image of
Sh(n, n) in Sh(nm, nm) are identical, so the trivialization (horizontal) maps can
be made compatible. The right hand arrow IV is then just given by projection on
U(V )(Af )-invariants – which form a direct summand, since U(V ) is anisotropic –
followed by restriction to Sh(n, n). The action of GU(W)(Af ) is E(µ, κ)-rational,
so every step in the above description of the right hand arrow is E(µ, κ)-rational.

We let Pnm and Pn denote the Siegel parabolic subgroups of U(W) and H,
respectively, and define GPnm and GPn likewise.

Lemma 3.2.3. There is a commutative diagram

H0(Sh(nm, nm), Eµ,κ)
fPnm−−−−→ H0(Sh(nm, nm)GPnm

, Eµ,κ,GPnm
)yIV

y
H0(Sh(n, n), Emµ,mκ)

fPn−−−−→ H0(Sh(n, n)GPn
, Emµ,mκ,GPn

).

The right-hand vertical arrow is given by restriction of functions from GU(W)(Af )
to GH(Af ).

Proof.

The two dual reductive pairs (U(2W ), U(V )) and (U(W), U(V1)) form a seesaw:

U(W) U(V )

| |

U(2W ) U(V1).

Here U(V1) is just the center of U(V ). The splittings of the metaplectic cover for
the two pairs are compatible if one takes the character χ for the pair (U(W), U(V1)),
with χ |A×

E
= ε, and χdimV = χm for the pair (U(2W ), U(V )) (cf. [H1, §3] for the

rules governing compatible splittings.

Corollary 3.2.4. Let χ be a Hecke character of K× satisfying χ |A×
E
= ε. Let L be

an extension of E(κ, µ). Let Φ = Φ0
∞ ⊗ Φf ∈ S(V (A)n) be any function such that

φΦ⊗|ν
nmκ

2 | is an L-rational element of H0(Sh(n, n)GP , Emµ,mκ,GP ) in terms of the
bottom isomorphism in (2.4.6). Then Iχm,triv,ψ(Φ)⊗ |ν nmκ

2 | defines an L-rational
element of H0(Sh(n, n), Emµ,mκ) in terms of the top isomorphism in (2.4.6).

More generally, let γ ∈ Gal(Q/E(κ, µ)) and suppose

Φ1 = Φ0
∞ ⊗ Φ1,f ,Φ2 = Φ0

∞ ⊗ Φ2,f ∈ S(V (A)n)
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have the property that φΦi
is an L-rational element of H0(Sh(n, n)GP , Emµ,mκ,GP ),

i = 1, 2, for some L ⊂ Q containing E(mκ,mµ), and such that γ(φΦ1) = φΦ2 .
Then

γ(Iχm,triv,ψ(Φ1)) = Iχm,triv,ψ(Φ2).

Proof. We consider the first claim, the proof of the second claim being similar.
When n is replaced by nm, V by V1, and (mµ,mκ) by (µ, κ), this is just Proposition
3.1.2. Now by construction W⊗V1 = 2W⊗V so V1(A)nm is canonically isomorphic
to V (A)n. We apply Proposition 3.1.2 to the top line in the commutative diagram
in Lemma 3.3.3 and obtain the conclusion under the stronger hypothesis that φΦ

is an L-rational element of H0(Sh(nm, nm)GP , Eµ,κ,GP ).
Now consider the commutative diagram

(3.2.5)

S(V1(Af )nm)
φ•,nm−−−−→ H0(Sh(nm, nm)GPnm , Eµ,κ,GPnm)y=

y
S(V (Af )n)

φ•,nm−−−−→ H0(Sh(n, n)GPn
, Emµ,mκ,GPn

)

Here φ•,nm, resp. φ•,n, is the map Φ 7→ φΦ for the pair (U(W), U(1)), resp.
(U(2n), U(V )). By (3.1.1), we have

φ•,nm = 2 · rP · Iχ,triv,ψ; φ•,n = 2 · rP · Iχm,triv,ψ.

Let Bnm = Im(φ•,nm), Bn = Im(φ•,n). It follows from Corollary 2.4.3 that
Bnm is an E(µ, κ)-rational subspace of H0(Sh(nm, nm)GPnm , Eµ,κ,GPnm). But the
equality on the left of (3.2.5) implies that Bn is the image of Bnm under the right-
hand vertical map. Thus Bn is also E(µ, κ)-rational. It thus follows that, with
Iχm,triv,ψ(Φ) as in the statement of the lemma, we can assume φΦ,nm as well as
φΦ,n is L-rational. The Corollary then follows from Proposition 3.1.2 and Lemma
3.2.2.

Corollary 3.2.4 is stated in terms of the character χ, but could just as well be
stated in terms of the character χm; the condition is that the splitting character
used to define the theta lift has to be an m-th power, where m = dimV . However,
this is unnecessary:

Corollary 3.2.5. The assertions of Corollary 3.2.4 remain valid when Iχm,triv,ψ(Φ)
is replaced by Iξ,triv,ψ(Φ) where ξ is any Hecke character of K× satisfying ξ |A×

E
=

εm.

Proof. Indeed, by Theorem 2.1.4(c),

Iξ,triv,ψ(Φ) = Iχm,triv,ψ(Φ)⊗ (ξ/χm) ◦ det .

Let β = ξ/χm. This is a character trivial on the idèles of E, hence of the type con-
sidered in §2.5. Bearing in mind the various implicit normalizations and character
twists, Corollary 3.2.5 follows from 2.5.3 and the previous corollary.

(3.3) Applications of the Siegel-Weil formula.
We now assume V is a positive-definite hermitian space over K of dimension

m ≥ n. Let s0 = m−n
2 . The Eisenstein series is normalized as in §1. Let Φ ∈

S(V n)(A), and let χ satisfy (1.2.4). Ichino has proved the following analogue of
results of Kudla and Rallis:
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Theorem 3.3.1 [I2]. The extended Siegel-Weil formula is valid for Φ: the Eisen-
stein series E(h, s, φΦ, χ) has no pole at s = s0, and

Iχ,triv,ψ(Φ)(h) = c · E(h, s0, φΦ, χ)

for h ∈ H(A), where c = 1 if m = n and c = 1
2 otherwise.

For applications to special values, we need the analogue of Ichino’s theorem for
h ∈ GH(A)+.

Corollary 3.3.2. The extended Siegel-Weil formula is valid on GH(A)+:

Iχ,triv,ψ(Φ)(h) = c · E(h, s0, φΦ, χ)

for h ∈ GH(A)+, where c = 1 if m = n and c = 1
2 otherwise.

Proof. Since both sides are left-invariant under GH(Q), it suffices to establish the
identity for h ∈ GH+(A). The extension from H(A) to GH+(A) is carried out as
in §4 of [HK].

Corollary 3.2.5 then immediately has the following consequence:

Corollary 3.3.3. Let χ be a Hecke character of K× satisfying χ |A×
E
= ε. Let L

be an algebraic extension of LK/E ·E(κ, µ). Let Φ = Φ0
∞ ⊗Φf ∈ S(V (A)n) be any

function such that f = φΦ is an L-rational element of H0(Sh(n, n)+GP , Emµ,κ,GP )
in terms of the bottom isomorphism in (2.4.6). Then E(h, s0, f, χ) defines an
L-rational element of H0(Sh(n, n)+, Emµ,mκ) in terms of the top isomorphism in
(2.4.6).

More generally, if f ∈ H0(Sh(n, n)+GP , Emµ,κ,GP ) is an L-rational Siegel-Weil
section for the pair (U(2W ), U(V )) then for all γ ∈ Gal(Q/LK/E · E(µ, κ))

γ(E(h, s0, f, χ)) = E(h, s0, γ(f), γ(χ))

where γ acts on the finite part of χ.

Earlier work of Ichino [I1] considered the case of m < n. The results of [I1] are
valid whether or not V is a definite hermitian space, and identify certain residues of
Eisenstein series with explicit theta functions. In this way one can apply Corollary
3.2.5 to residues in certain cases. Since this is unnecessary for applications to special
values of L-functions, we omit the details.

4 Special values of L-functions

We provide the expected application to special values of L-functions, extending
Theorem 3.5.13 of [H3] to the middle of the critical strip for characters α satisfying
(1.2.6). As explained in the introduction, this is a somewhat restrictive hypothesis,
about which more will be said later. For the sake of simplicity, we assume E = Q,
so that K is imaginary quadratic, and the field LK/E = K. The techniques can be
applied without much difficulty to general CM fields.

Recall that in [H3], whose notation we use without further explanation, we have
chosen a cuspidal automorphic representation π of G = GU(W ) with dimW = n,
G(R) ∼−→ GU(r, s), and two algebraic Hecke characters χ and α of fixed weights.
It is assumed that π, or rather its finite part πf , occurs non-trivially in the middle-
dimensional cohomology H̄rs(W∇

µ ) of the Shimura variety naturally associated to G
wit coefficients in the local system denotedW∇

µ (H̄ denotes the image of cohomology
with compact support in cohomology). In [H3] the following condition, which should
hold automatically, was inadvertently omitted:
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Condition (4.1). The representation π contributes to the antiholomorphic com-
ponent of H̄rs(W∇

µ ).

The antiholomorphy of π on G is equivalent to the holomorphy of π viewed as an
automorphic representation of the isomorphic group GU(−W ), where −W is the
space W with its hermitian form multiplied by −1; this amounts in the notation of
[H3] to replacing the Shimura datum (G,Xr,s) by the (complex conjugate) Shimura
datum (G,Xs,r). In fact this holomorphy (or antiholomorphy) is the only property
used in the proof of Theorem 3.5.13, and was assumed explicitly on p. 151 of
[H3] but omitted in the statement of the theorem. The hypothesis of belonging to
middle-dimensional cohomology is only made in keeping with the overall motivic
theme of [H3] and is in fact irrelevant to the proof, which works just as well for
holomorphic forms contributing to cohomology in other degrees. Let G(W,−W ) ⊂
G × G = GU(W ) × GU(−W ) be the subgroup of pairs (g, g′), g, g′ ∈ G, with
equal similitude factors. We let Sh(W ) = Sh(G,Xr,s), Sh(−W ) = Sh(G,Xs,r),
Sh(W,−W ) the Shimura variety corresponding to (G(W,−W ), Xr,s ×Xs,r).

Let µ be the highest weight of a finite-dimensional representation of G (i.e., of
G(C)). Then µ can be represented, as in [H3,2.1], by an n+ 1-tuple

(a1, . . . , ar; ar+1, . . . , an; c)

of integers with c ≡
∑
i aj (mod 2) and a1 ≥ a2 · · · ≥ an. To µ we can also associate

an automorphic vector bundle Eµ on Sh(W ). If K∞ ⊂ G(R) is the stabilizer of a
base point in Xr,s – then K∞ is a maximal connected subgroup of G(R), compact
modulo the center – then µ is also the highest weight of an irreducible representation
of K∞ and Eµ is obtained from the corresponding hermitian equivariant vector
bundle on Xr,s, cf. [H3,2.2]. If k ∈ Z we let ηk(z) = z−k for z ∈ C× and say the
algebraic Hecke character χ of K× is of type ηk if χ∞ = ηk.

Let S be a finite set of finite places of Q. We define the motivically normalized
standard L-function, with factors at S (and archimedean factors) removed, to be

(4.2) Lmot,S(s, π ⊗ χ, St, α) = LS(s− n− 1
2

, π, St, α)

The motivically normalized standard zeta integrals are defined by the corresponding
shift in the integrals [H3,(3.2.5)]. With these conventions, Theorem 3.5.13 of [H3]
is the special case of the following theorem in which m > n − κ

2 . Unexplained
notation is as in [H3]:

Theorem 4.3. Let G = GU(W ), a unitary group with signature (r, s) at infinity,
and let π be a cuspidal automorphic representation of G. We assume π ⊗ χ occurs
in anti-holomorphic cohomology H̄rs(Sh(W ), Eµ) where µ is the highest weight of
a finite-dimensional representation of G. Let χ, α be algebraic Hecke characters of
K× of type ηk and η−1

κ , respectively. Let s0 be an integer which is critical for the
L-function Lmot,S(s, π⊗χ, St, α); i.e. s0 satisfies the inequalities (3.3.8.1) of [H3]:

(4.3.1)
n− κ

2
≤ s0 ≤ min(qs+1(µ) + k − κ−Q(µ), ps(µ− k − P(µ)),

where notation is as in [loc. cit]. Define m = 2s0 − κ. Let α∗ denote the unitary
character α/|α| and assume

(4.3.2) α∗ |A×
Q
= εmK .
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Suppose there is a positive-definite hermitian space V of dimension m, a factorizable
section φf (h, s, α∗) ∈ In(s, α∗)f , and factorizable vectors ϕ ∈ π ⊗ χ, ϕ′ ∈ α∗ · (π ⊗
χ)∨, such that

(a) For every finite v, φv ∈ Rn(Vv, α∗);
(b) For every finite v, the normalized local zeta integrals Z̃motv (s, ϕv, ϕ′v, φv, α

∗
v)

do not vanish at s = s0.
Then

(i) One can find φf , ϕ, ϕ′ satisfying (a) and (b) such that φf takes values in
(2πi)(s0+κ)nL · Qab, and such that ϕ, ϕ′ are arithmetic over the field of definition
E(π) of πf .

(ii) Suppose ϕ is as in (i). Then

Lmot,S(s0, π ⊗ χ, St, α) ∼E(π,χ(2)·α);K P (s0, k, κ, π, ϕ, χ, α)

where P (s0, k, κ, π, ϕ, χ, α) is the period

(2πi)s0n−
nw
2 +k(r−s)+κsg(ε[

n
2 ]

K · πcP (s)(π, ∗, ϕ)g(α0)sp((χ(2) · α)∨, 1)r−s

appearing in Theorem 3.5.13 of [H3].

(4.4) Remarks. (i) Condition (b) can be reinterpreted as the condition that the
theta lift from πv ⊗ χv to U(V )(Ev) be non-trivial, cf. [HKS,top of p. 975]. This
will be discussed in more detail in [H5]. There it will be shown that, as long as
π is locally tempered at all v, as will generally be the case for the π of arithmetic
interest, and as long as m−n ≥ 2, one can always find V and functions φv satisfying
(a) and (b). When m = n this is still possible unless the L-function vanishes at s0,
in which case the conclusion is vacuously true. When m = n+ 1 the conditions are
necessary.

(ii) In Theorem 3.15.3 of [H3] πf was assumed tempered. The hypothesis is used
at no point in the proof and was only included because of the motivic context.
However, the hypothesis does allow certain simplifications, as already indicated in
the previous remark. If one assumes π admits a (weak) base change to a cuspidal
automorphic representation of GL(n,K) as in [HL, 3.1.3], then the local Euler
factors at bad primes are the standard (Godement-Jacquet) local Euler factors of
the base change; moreover, πv is locally tempered everywhere [HL, 3.1.5], hence
these Euler factors have no poles to the right of the center of symmetry. In this
case, or more generally if πv is assumed tempered everywhere, one can replace
”normalized zeta integrals” by ”zeta integrals” in condition (b).

(iii) Garrett’s calculation of the archimedean local factor, cited without proof in
[H3] as Lemma 3.5.3, has now appeared as Theorem [2.1] of [G]. Garrett’s formula-
tion is slightly different from that assumed in [H3]; whereas the latter asserted that
the archimedean local factor is an element of K×, Garrett’s integral is a K-multiple
of πrs. The following remark explains why one can conclude that Garrett’s integral
does not vanish. The power of π in Garrett’s integral is compensated by our choice
of measure (see the formula on p. 83 of [H3]).

There is a more subtle difference. Garrett calculates an integral over G as a an
operator on the representation π, whereas the archimedean zeta integral in [H3]
is an integral over G and gives a number as a result. One obtains a number by
taking g = 1 in Garrett’s Theorem [2.1]. However, this process implicitly depends
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on the choice of base point (choice of maximal compact subgroup) and one needs
to compare Garrett’s implicit normalizations with those considered in [H3]. This
will be addressed in [H5].

(iv) The meaning of the inequalities (4.3.1), is that the anti-holomorphic repre-
sentation [π⊗χ]⊗ [π∨⊗(χ ·α)−1] pairs non-trivially with the holomorphic subspace
In(s0, α∗)hol of the degenerate principal series representation In(s0, α∗); this is the
content of Lemma 3.3.7 and Corollary 3.3.8 of [H3]. It is well-known, and follows
from the results of [LZ], particularly Proposition 5.8, that

(4.4.1) In(s0, α∗)hol = Rn(V (m, 0), α∗)

where V (m, 0) is the positive definite hermitian space over C of dimension m.
As in [HKS], Proposition 3.1, the hypothesis that s0 satisfies (4.3.1) then implies
that (the contragredient of) [π ⊗ χ] ⊗ [π∨ ⊗ (χ · α)−1] has a non-trivial theta lift
locally to U(V (m, 0))×U(V (m, 0)). By Lemma 2.3.13 of [H5], it then follows that
the (analytic continuation of the) archimedean local zeta integral calculated up
to rational factors by Garrett does not vanish at s = s0. Thus the archimedean
counterpart of condition (b) is an automatic consequence of (4.3.1).

There is a global proof of the non-vanishing of the archimedean zeta integral
that is simpler but requires more notation from [H3], as well as some notation for
totally real fields I prefer to leave to the reader’s imagination. The holomorphic
Eisenstein series denoted E(g, α, s, φ) in Corollary 3.3.10 of [H3] is non-zero at s = 0
(because its constant term is non-zero). Thus ∆(m,κ,Λ)E(g, α, 0, φ) 6= 0 (because
the archimedean component (4.4.1) is irreducible). Now if we replace the base field
Q by a real quadratic extension L, with real places and K by the CM field K · L
then the analogous fact remains true. Let σ1, σ2 be the real places of L and suppose
W is a hermitian space over KL̇ with signatures (r, s) at σ1 and (n, 0) at σ2, and
let ∆σ1(m,κ,Λ) be the differential operator defined locally as in [H3] at the place
σ1. (Note that in [H3] the hermitian space is denoted V rather than W .) Then
the holomorphic automorphic form ∆σ1(m,κ,Λ)E(g, α, 0, φ) on Sh(W,−W ) is still
non-trivial. But U(W ) is now anisotropic, so ∆σ1(m,κ,Λ)E(g, α, 0, φ) is cuspidal.
It follows that the analogue for Sh(W ) of the cup product map in Corollary 3.3.10
is non-trivial. In other words, the integral of ∆σ1(m,κ,Λ)E(g, α, 0, φ) against some
factorizable anti-holomorphic cusp form on Sh(W,−W ) of the right infinity type
is non-zero. Thus all the local zeta integrals in the factorization [H3, (3.2.4)] are
non-vanishing at s = s0. But the local integral at σ1 is the one of interest to us.

(4.5) GH(A) vs. GH(A)+. The proof of Theorem 4.3 presented below follows
the treatment of the absolutely convergent case in [H3], with the difference that we
have only proved arithmeticity of the Siegel-Weil Eisenstein series on the variety
Sh(n, n)+. This makes no difference to the final result, where the special value is
only specified up to the equivalence relation ∼E(π,χ(2)·α);K, but we need to modify
the argument in two points. The notation of [H3] is used without comment.

(4.5.1). The basic identity of Piatetski-Shapiro and Rallis is stated in [H3],
(3.2.4) for unitary similitude groups. Let G = G(U(V ) × U(−V )) ⊂ GH, as in
[loc. cit.], and let G(A)+ = G(A) ∩GH(A)+. Define the modified zeta integral

Z+(s, f, f ′, α, φ) =
∫
Z(A)·G(Q)\G(A)+

E(iV (g, g′), α, s, φ)f(g)f ′(g′)dgdg′
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where notation is as in [H3,(3.2.3)]. Then [H3, (3.2.4)] is replaced by

(4.5.2) dSn(α, s)Z+(s, f, f ′, α, φ) = (f+, f ′)V,αZSLmot,S(s+
1
2
n, π, St, α),

where ZS is the product of the local zeta integrals at places in S, and the auto-
morphic form f+ is defined as in Lemma 2.6 to equal f on G(A)+ and zero on the
complement. The point is that the Euler factors only see the unitary group, and
the similitudes are incorporated into the automorphic period factor (f+, f ′)V,α.

(4.5.3). The motivic period factor P (s)(π, ∗, ϕ), also written P (s)(π, V, ϕ), is
related to the automorphic period (f, f ′)V,α by formulas (3.5.10), (3.5.8.2), and
(3.5.12.1) of [H3]:

(4.5.4) (2π)c(f, f ′)V,α ∼E(π,χ(2)·α);K P
(s)(π, V, β)−1 ·X(k, r, s, χ, α),

where X(k, r, s, χ, α) is an explicit abelian period and f = β ⊗ χ, f ′ = β′ ⊗ (χα)−1

in the notation of [H3, §3.5]. Given (4.5.2), it now suffices to show that

(4.5.5) (f, f ′)V,α ∼E(π,χ(2)·α);K (f+, f ′)V,α

when f = β ⊗ χ and f ′ are chosen to correspond to arithmetic antiholomorphic
forms. But this is an easy consequence of Lemma 2.6.6 (and Serre duality, which
translates Lemma 2.6.6 into a dual assertion concerning antiholomorphic forms.

Proof of Theorem 4.3. We first observe that the subspaces Rn(Vv, α∗v) ⊂ In(s0, α∗v),
for v finite, are rational over the field of definition of the finite part αf of α.
Indeed, the induced representation In(s0, αv) has a natural model as a space of
functions transforming with respect to a certain character of the maximal parabolic
P . This model is visibly defined over the field of definition of αv. Indeed, the
modulus character (1.1.1) is in general only defined over Q(

√
pv), where pv is the

residue characteristic of v, but one verifies that the half-integral shift in the motivic
normalization ensures that no odd powers of the square root of the norm occur for
critical values of s.2 It is obvious (by considering restriction to GU(2W,Ov), for
instance) that σ(Rn(Vv, αv)) = Rn(Vv, σ(αv)) for any σ ∈ Gal(Q/K). Finally, the
pairing (2.1.7.1) – with π replaced by π⊗χ – is defined over the field E(π, χ, α)·Qab.
This completes the verification of (i).

With (i) in hand, (ii) is proved exactly as in the absolutely convergent case
in [H3], bearing in mind the modifications (4.5.1) and (4.5.3). First suppose
Lmot,S(s0, π⊗χ, St, α) 6= 0. As already mentioned in [H3,3.8], in order to treat the
general case of critical s0 to the right of the center of symmetry, it suffices to show
that the holomorphic Eisenstein series that enter into the proof remain arithmetic
at the point corresponding to s0, and that one can find Eisenstein series that pair
non-trivially with arithmetic vectors in π ⊗ α · π∨. Corollary 3.3.2 asserts that the
holomorphic Eisenstein series are arithmetic provided they are attached to arith-
metic sections φf that satisfy (a). Given the basic identity of Piatetski-Shapiro and
Rallis ([H3,3.2.4]) the non-triviality of the pairing is guaranteed by (b), Remark 4.4
(iv), and our hypothesis on non-vanishing of the L-value, and the proof is complete.

2in [H3] the rationality of the induced representation at critical points is implicitly derived

from the rationality of the boundary data lifted in the definition of the Eisenstein series.
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On the other hand, if Lmot,S(s0, π ⊗ χ, St, α) = 0, we need to prove that
Lmot,S(s0, πσ ⊗ χσ, St, ασ) = 0 for all σ ∈ Gal(Q/K). But this is standard (cf.
[Ro]): since we can choose arithmetic data for which for the local zeta integrals at
primes dividing S do not vanish at s0, it suffices to observe that the global pairing
between Eisenstein series and (anti-holomorphic) cusp forms is rational over the
reflex field of Sh(W,−W ), which is either Q or K.

§5. Normalizations: Comparison with [G]

Garrett’s calculation in [G] of archimedean zeta integrals, up to algebraic factors,
is based on a choice of abstract rational structure on the enveloping algebra and
its holomorphic highest weight modules. The zeta integrals considered in §4 and in
[H3, Lemma 3.5.3] involve explicit choices of data, especially an explicit choice of
automorphy factor. The purpose of the present section is to verify that these two
rational structures are compatible. In what follows E = Q and K is an imaginary
quadratic field, but it should be routine to modify these remarks to apply to the
general case.

The rationality invoked in [H3] is that inherited from [H1]. The group G, here
GU(W ), is rational over Q. The compact dual symmetric space M̂ = M̂(G,X) is
endowed with a natural structure over the reflex field E(G,X), which in our case
is contained in K. This natural K-rational structure is compatible with the action
of G, and all G-equivariant vector bundles on M̂ , along with the corresponding
automorphic vector bundles on Sh(G,X), are naturally defined over K. All these
remarks apply equally to the group H = GU(2W ). Though the corresponding
Shimura variety, which we denote Sh(H,Xn,n) (cf. [H3] for Xn,n), is naturally
defined over Q, we will only need a K-rational structure.

Let M̂H = M̂(H,Xn,n). Both M̂ and M̂H have K-rational points h and hH ,
respectively, and the stabilizers Kh and Kh,H are defined over K, as are the Harish-
Chandra decompositions, for example

(5.1) Lie(H)K = Lie(Kh,H)⊕ p+
H ⊕ p−H

(cf. [H1, 5.2] or §(1.3), above). For example, if W has a K-basis in terms of

which the hermitian form is given by the standard matrix
(
Ir 0
0 −Is

)
, then Kh

is the group K∞(r, s) defined in [H3, §2.1]. For general W , we can take Kh to
be the stabilizer of the diagonal hermitian form diag(a1, . . . , an) where ai ∈ Q,
ai > 0, 1 ≤ i ≤ r, ai < 0, r + 1 ≤ i ≤ n. The exact choice of hermitian form has
no bearing on rationality, though it may be relevant to integrality questions. With
respect to the canonical embedding of Shimura data

(G(U(W )× U(−W )), Xr,s ×Xs,r) ↪→ (H,Xn,n)

we may assume KH ⊃ (Kh × Kh) ∩ H. In other words, identifying Xr,s with
Xs,r antiholomorphically, as in [H3,(2.5.1)], we may assume that the point (h, h)
maps to hH . This antiholomorphic map is the restriction to Xr,s of a K-rational
isomorphism

φr,s : RK/Q(Xr,s)
∼−→ RK/Q(Xs,r).

Let K be either Kh or Kh,H , G correspondingly either G or H, and let (τ, Vτ ) be
a finite-dimensional representation of K, which can be taken rational over K. Since
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the decomposition (5.1) and its analogue for G are K-rational, the holomorphic
highest weight module

(5.2) Dτ = U(Lie(G))⊗U(Lie(K)⊕p−) Vτ

has a natural K-rational structure; here p− is the anti-holomorphic summand in
the Harish-Chandra decomposition for G. When G = H we only need to consider
one-dimensional τ , generated by a holomorphic automorphy factor of the form Jµ,κ
of (1.1.3). The main point of the comparison is that Jµ,κ is a rational function
on the algebraic group H, defined over K. The K-rational form of Dτ = D(µ, κ)
generated by U(p+

H)(K)⊗Jµ,κ is a K-subspace of the space of rational functions on
H.3

Since the rational structures on M̂ and M̂H and the corresponding Harish-
Chandra decompositions are compatible, we are now in the situation considered
by Garrett. Note that the representations of Kh considered in [G] arise in practice
as the irreducible U(Lie(GU(W ) × U(−W ))-summands of D(µ, κ), as in [H1, 7.4,
7.11]. It remains to show that the rational structure considered above is also the
one used to define archimedean zeta integrals in [H3]. This comes down to four
points:

(1) Rationality for holomorphic Eisenstein series on H is defined in terms of
rationality of the constant term, i.e. in terms of functions in the induced
representation, cf. (3.1.3) and Corollary 3.2.4, as well as [H3, 3.3.5.3]. By
the results of [H1,§5], the archimedean condition for rationality of the con-
stant term is compatible up to K with rationality of Jµ,κ.

(2) The K-rational differential operators of [H3,Lemma 3.3.7] are defined in
terms of the K-rational basis of p+

H . This is because the canonical triv-
ializations discussed in [H3, §2.5] are defined in terms of the K rational
structure of homogeneous vector bundles on M̂ and M̂H . Applying this
remark to the (homogeneous) normal bundle of M̂ × M̂ in M̂H (cf. [H1,
7.11.7]) we see that the dual basis to the K-rational basis of p+

H chosen above
can serve to define a canonical trivialization.

(3) Garrett’s Theorem 2.1 calculates the local zeta integral as an E-rational
multiple of πpq, multiplied by the value f(1), where f is a discrete-series
matrix coefficient. As in [H3,§3.2], the Euler product factorization of the
global zeta integral is normalized in such a way as to allow us to assume
that f(1) = 1.

(4) Finally, as already explained in (4.4)(iii), the πpq in Garrett’s final result
is compensated by our choice of measure, so that in our normalization the
zeta integral is in fact in K×.
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