The Saito-Kurokawa space of PGSpy
and its transfer to inner forms
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In this paper, we discuss some results on the Saito-Kurokawa space of PG Sps and its inner
forms, interpreting them in the framework of Arthur’s conjecture on square-integrable automorphic
forms. Most results discussed here are known to the experts: Arthur, Waldspurger, Piatetski-
Shapiro, Rallis, Kudla, Moeglin, Soudry.....though they may not have been explicitly stated in the
literature or written up with the same point of view. The only new material concerns the transfer
of the Saito-Kurokawa space to the inner forms and a characterization of the image by means of
the standard L-function.

The Saito-Kurokawa cusp forms for PGSps = SOj5 are the first examples of the so-called CAP
representations or shadows of Eisenstein series. They can be constructed (and exhausted) by using
theta lifting from S’EQ to SOs. In the following, we shall first review relevant results for cusp forms
on SLo, and some general results from theta correspondence. We then give a brief description of
Arthur’s conjecture for PGSp4: this is the natural framework in which the Saito-Kurokawa space
can be understood. After describing Piatetski-Shapiro’s construction and characterization of the
Saito-Kurokawa space for PG Spy4, we describe the lifting of the Saito-Kurokawa space to any inner
form G’ of PGSp,. This is motivated by the recent paper of E. Sayag [S]. We end by giving a proof
of the characterization of the Saito-Kurokawa space which is valid for all forms of PG.Spy.

Throughout these notes, F' will denote a number field and F;, the local field corresponding to a
place v of F'. The adele ring of F' is denoted by A.

§1. Waldspurger’s Results for gig

In this section, we review the results of Waldspurger in [W1] and [W2]. His local results gives a
partition of the irreducible admissible representations of SLs(F,) into packets. His global results
give a complete description of the (genuine) discrete spectrum L2 (SLa(F)\SL2(A)).

(1.1) The Weil representations of S‘EQ(FU). We first describe some very special representations
of the metaplectic group SLy(Fy).

Fix a non-trivial unitary character 1, of F;,. Then associated to a quadratic character x, of
F}* (possibly trivial) is a Weil representation w,, of SLao(F,). The representation can be realized

on the space S(F,) of Schwarz functions on F,. As a representation of SLy(F,), wy, is reducible.
In fact, it is the direct sum of two irreducible representations:

— ot -
Wy, = Wy, ) Wyys



where w ~(resp. wy ) consists of the even (resp. odd) functions in S(F,). If v is a finite place,

then w)’ is supercuspidal and w; is not.

(1.2) Waldspurger’s packets for §2(Fv). In [W1] and [W2], Waldspurger defined a surjective
map Wdy, from the set of irreducible genuine (unitary) representations of SLs (Fy,) which are not
equal to wy for any x, to the set of infinite dimensional (unitary) representations of PG Ly(F).
We will not go into the definition of Wd,, here. Suffices to say that it involves the study of the

local theta correspondence between g\l/lg(Fv) and SO3(Fy,) = PGLy(F,) (cf. next section).
In any case, the map Wdy, leads to the following theorem:

(1.3) Theorem There is a partition of the set of irreducible (unitary) representations of SLa(F,)
which are not equal to w;'v for any x., indezed by the infinite dimensional irreducible (unitary)
representations of PGLa(F,). Namely, if 7, is such a representation of PGLo(F,), we set

A;, = inverse image of 7, under Wdy, .

In fact,

~ 2 if 7, 1s discrete series;
#AT'U = { f ! '

1 if 7, is not.
Moreover, if T, is unitary, so are the elements of A, .

In the first case, the set /LU has a distinguished element J;z , which is characterized by the fact
that ot ®7, is a quotient of the Weil representation of SLy(F,) x SO(2,1)(F,). The other element
of A, will be denoted by o : it is characterized by the fact that o, ® 7, is a quotient of the Weil

representation of SLy(F,) x S O(3)(Fy) (anisotropic SO(3) here). In the second case, we shall let
o} be the unique element in A, and set o = 0.

Note that this parametrization of the packets on .SA’f/g in terms of representations of PGLo
depends on the choice of the character ,. Also, it is quite explicit. For example, in the case
F, = R and 9, (x) = exp(2mizx), if 7, is the discrete series representation of extremal weights +2k
(with k an integer), then o (resp. o ) is the holomorphic (resp. antyi-holomorphic) discrete
series representation with lowest (resp. highest) weight k + %

We also remark that the above discussion in not entirely accurate when F, = C, for in this case
the map Wd, may send some unitary representations of SLy(C) = SLo(C) x {1} to non-unitary

representations of PGLy(C). However, these representations of SL(C) do not intervene in the
space of cusp forms and so can be safely ignored for global purposes.

(1.4) Cusp forms of SLy(A). Let SLy(A) be the two-fold cover of SLa(A), and fix a non-
trivial unitary character ¢ =[], %, of F\A. Let Ay denote the space of square-integrable genuine

automorphic forms on SLg(A). Then there is an orthogonal decomposition

T (@z> |



Here, x runs over all quadratic characters (possibly trivial) of F*\A*.

Now the space @X .ZX is what people called the space of “elementary theta functions”. It is

a space which is very well-understood. Indeed, let us describe the space -Zx more concretely. If
Wy = @yWwy, is the global Weil representation attached to x, then the formation of theta series gives
a map

Oy s wy — Ag,

whose image is the space JZX. To describe the decomposition of .ZX, for a finite set S of places of
F', let us set
Wy, = (®UESW;U) ® (®U¢Sw;—v)

so that
Wy = @w%g.
S

Then we have

1

"ZX @ Wy,S-

#5S even

Moreover, wy s is cuspidal if and only if S is non-empty.

(1.5) Multiplicity one result. Thus, the main problem in the study of cusp forms on SLo (A)
is the description of Agg. In [W1], Waldspurger showed:

(1.6) Theorem Agy (and also As) satisfies multiplicity one.

This theorem is proved by studying the global theta correspondence for 5’12 and SO3 = PGL,,
and then appealing to the multiplicity one theorem for PG Ls.

(1.7) Near equivalence classes. Note that 5@2 does not satisfy strong multiplicity one: there
are non-isomorphic cuspidal representations m; and my whose local components 7y, and ms, are
isomorphic for almost all places v. We say that such m; and my are nearly equivalent; this is
an equivalence relation on abstract representations. In the paper [W2], Waldspurger described the
near equivalence classes of representations in Ago. Let us describe his results.

Given a cuspidal automorphic representation 7 = ®,7, of PG Ly, we define a set of irreducible
unitary representations of SLy(A) as follows. Recall that for each place v, we have a local “packet”

(ot -
ATv - {O-TU’O-T»U}
where o = 0 if 7, is not discrete series. Now set

A ={o= ®y05Y 1 €, = & and €, = + for almost all v}.



This is the global “packet” of 5’12 (A) associated to the cuspidal representation 7 of PG Ls.
For

0= R0 € As,

let us set

eg:”ev.

(2

Then we have [W2, Pg. 286, Cor. 1 and 2]

(1.8) Theorem

Ao = @ A(r)

cuspidal T

where each AV(T) s a near equivalence class of cuspidal representations and is given by:

A7) = @ o.

0€Aep=e(T,1/2)

(1.9) Remarks: Note that in the above theorem, there are some 7 which has A = 0. Indeed, this
happens precisely when 7, is principal series for all v (so that the global packet A; is a singleton
set) and €(7,1/2) = —1. Such 7 can also be characterized by the fact that (cf. [W2, Lemma 41,
Pg. 282))

e(r®x,1/2) =-1 for any quadratic character y of F*\A*.

§2. Theta Correspondence

In this section, we give a brief discussion of the basic setup and results in classical theta correspon-
dence. For the general idea, the articles in Corvallis suffice. For a more detailed treatment of the
local theory, one can consult the notes of Kudla [K1] or the article of Li [L1].

(2.1) Dual pairs. Suppose that Sp(W) is a symplectic group. We are interested in reductive
subgroups G; and Gg of Sp(W) such that each is the centralizer of the other. Such a pair of
subgroups is called a dual pair. The possible dual pairs in Sp(W) has been classified by Howe. The
standard example is obtained as follows. If (V,q) is a quadratic space and W a symplectic space,
then W :=V ® W becomes a symplectic space naturally, and we have natural inclusions

O(V,q) — Sp(W) and Sp(W) — Sp(W).

The groups O(V, q) and Sp(W) form a dual pair.



(2.2) Double covers. Now assume we are working over a local field F,. The symplectic group
Sp(W,) has a unique (non-linear) double cover ,%(Wv) (unless F,, = C). This double cover always
split over the subgroup O(V, q). The splitting may not be unique, but using the quadratic form ¢,
one can specify a particular splitting. The cover splits over Sp(W) if and only if dim(V') is even.
In the case of interest in these notes, dim(V) = 5 and dim(W) = 2. Thus, we are forced to work
with non-linear groups. In particular, we have:

Gy x Gy := Sp(W) x SO(V, q) — Sp(W,).

(2.3) Weil representations. Fix a non-trivial additive character ¢ of F,. Then Sp(W,) has a
representation wy, called the Weil representation associated to v,. Like the case of §/L2(Fv) dis-
cussed earlier, it is the sum of two irreducible representations. We may pullback this representation
to the group G, X G2,. The resulting representation is denoted by wy, 4 (since it depends on
the choice of splitting over SO(V,q)). The representation wy , have various concrete realizations
which are essential in applications. For the cases of interest here, one can find formulas for these

realizations of wy, 4 in [GG,§3] among other places.

(2.4) Local Howe conjecture. Now wy, 4 is of course highly reducible and we are interested in
how it breaks up into irreducibles. Since we are not working with finite groups here, we need to
formulate more precisely what we mean. Suppose that 7, is an irreducible representation of G ,.
We let wy, ¢[my] denote the maximal 7,-isotypic quotient of wy, 4. Thus

Wip, q[To] = Wy, 4/ mKer(cb)
¢

where ¢ runs over all non-zero equivariant maps ¢ : wy, 4 — Ty. As a representation of G ,, it is
an isotypic sum of m,.

Now because G1, commutes with Ga,, wy, (7] also inherits an action of Ga,, and as a
representation of G, X G2, we can write:

wwu,(I[Tr'U] = Ty ® 0(7'('1})

for some smooth (possibly zero) representation 6(m,) of G2, = SO(V,q). We further let ©(n,) be
the maximal semisimple quotient of 8(m,). Clearly, we have analogous definitions with the roles of
(1 and G5 reversed.

The following is a conjecture of Howe:

Howe’s Conjecture for the pair G x Gy: For any representation m, of Gy, either 6(m,) is zero
or else its maximal semisimple quotient O(m,) is non-zero irreducible. Moreover, the analogous
statement with the roles of G; and G5 exchanged also hold.

A trivial reformulation of this conjecture is: for each representation 7, of G ,, there exists at
most one irreducible representation 7, of G2, such that

HomGI,v XGQ,U (w'l/)v,q7 Ty ® T’U) # 07



and if such a 7, exists (call it ©(m,)), the above Hom space is 1-dimensional. Moreover, if ©(m,) =
©(m]) are non-zero, then m, = 7.

In fact, this conjecture is almost totally proved:

(2.5) Theorem (i) Howe’s conjecture is true over all archimedean local fields (proved by Howe)
and all p-adic fields with p # 2 (proved by Waldspurger [W3]).

(i) For any p, Howe’s conjecture for m, is true if m, is supercuspidal (proved by Kudla [K2]);
i.e. either ©(m,) = 0 or is irreducible.

There are of course other isolated cases (of pairs G; x G2) for which the conjecture is proven;
some instances may be found in [R1]. In the case of interest here, i.e. SLy X SO(5), the remaining
case of p = 2 can be checked directly by hand. Thus in the rest of these notes, we shall assume
that the local Howe conjecture is known. A corollary is:

(2.6) Corollary The map m, — O(m,) gives an injective map O, from a subset of the admissible
dual of Sp(W) to the admissible dual of SO(V,q) (namely, ©, is defined on those m, such that
©(my) #0). This map is called the local theta lift.

(2.7) Remarks: Note that the local theta correspondence depends on the choices of the character
1), and the quadratic form ¢ (and not just on the orthogonal group). However, wy, , = wy zq. The
main unsolved problem in local theta correspondence is the explicit description of ©(m,) given .

(2.8) Stable Range. There are certain favorable circumstances which ensure that ©(m,) is non-
zero for any m,, so that the map ©, in the above corollary is defined on the whole admissible dual.
One such example is the case of stable range.

DEFINITION: Say that (Sp(W), SO(V, q)) is in the stable range (with Sp(W') the smaller group)
if (V,q) contains an isotropic subspace whose dimension is > dim(W).

For example, if V' is split of dimension 5, then (SLy, SO(V)) is in the stable range.

(2.9) Theorem Suppose that (G1,G2) is in the stable range with Gy the smaller group. Then for
any representation m, of Gi,, O(my) # 0 (cf. [K2]). Moreover, if m, is unitary, then so is O(m,)
(this was proved by Li [L3]).

(2.10) Global Theta lift. Now we come to the global setting. Fix a non-trivial additive character
1 of F\A. Then we have the global Weil representation of Sp(W)(A)
Wy = ®Uw7/)v'

By pulling back to G a x G2(A), we have the representation wy 4.

It turns out that there is a natural map

0wy — Az(Sp(W))



of wy, to the space of square-integrable automorphic forms on :S?J(W) For ¢ € wy, we may pullback

the function 6(p) to the group Sp(W)(A) x SO(V,q)(A). This function is of moderate growth
on the adelic points of the dual pair. The space of functions thus obtained is a quotient of the
representation wy, 4.

Now let m C A(G1,4) be a cuspidal representation. For f € 7 and ¢ € wy, 4, we set:

bp. )(g) = / 6(¢)(gh) - FOR) dh.

G1,F\G1,a

Then 0(¢p, f) is an automorphic form on Gy = SO(V, q). Denote the space of automorphic forms
spanned by the 0(¢p, f) for all ¢ and f by V(7); it is a G2(A)-submodule in A(G3) and is called
the global theta lift of «.

A main question in theta correspondence is to decide if V (7) is non-zero. When (G, G2) is in
stable range, then in fact one can show that V(m) is always non-zero.

(2.11) Local-global compatibility. How is the representation V(7) related to the irreducible
representation O(7) := ®,0(m,)? We have:

(2.12) Proposition Assume the local Howe conjecture holds for the pair G1 x Ga at every place
v. Suppose that V (m) is non-zero and is contained in the space of square-integrable automorphic

forms on Ga. Then V(m) = O(r).

PRrROOF. We are told that V() is semisimple. Let 7 be an irreducible summand of V(7). Then
consider the linear map

wypa®@m' @7 — C

defined by:

PR f1® foars 0(¢, f1)(9) - f2(9) dg.
G2(F)\G2(A)

This map is non-zero and G 5 x Ga(A)-equivariant. Thus it gives rise to a non-zero equivariant
map

Wy g — TR T,
and thus for all v, a non-zero G'1, X G2 -equivariant map
Wapy.qg — Ty & Ty.
In other words, we must have
Ty = O(my).

Hence, V(7) must be an isotypic sum of O(7). Moreover, the multiplicity-one statement in Howe’s
conjecture implies that

dimHomg, , xc,(a) (Wyg, m@O(m)) = 1.
Thus V (7) is in fact irreducible and isomorphic to O(7). R



(2.13) Multiplicity preservation. Note that because the local theta lifting is an injective map
on its domain, we know that if 71 and 75 are two cuspidal representations which are non-isomorphic,
then V() 2 V(m2). We come now to the question of multiplicity preservation, first observed by
Rallis in [R1]. Suppose that the multiplicity of an abstract representation 7 in the space of cusp
forms of Gy is Meysp(). Let Acysp(m) be the m-isotypic subspace. We have:

(2.14) Proposition Suppose that:

e the local Howe conjecture holds for the pair G1 x Go at every place v;

e for any irreducible summand Ty C Acysp(m), V(7o) is non-zero and is contained in the space
of square-integrable automorphc forms on Gs.

Then the multiplicity of the irreducible representation ©(m) in V(Aeusp(G1)) is equal to Meysp(T).

PROOF. The proof is similar to that of the previous proposition. For simplicity, let us denote
Vi = Homg, (7, Acusp(G1))

and

Va2 = Homg, (O(), V(Acusp(T)))-
Because of the injectivity of the map © on its domain,

Va = Homg, (O(r), V(Aeusp (G1))).
We need to show V; and V5 have the same dimension. Consider the pairing:

(=, =) : V1 x Vo — Homg, xa, (wy @ 77 @ O(7)¥,C) 2 C

given by:

(1 f2) (0 ® 01 ® v2) = / 6(p. f1(01))(9) - Fa(02)(9) d.

G2(F)\G2(A)

(Note that 7/ = 7; because 7; is unitary). The target space of this pairing is isomorphic to C
because of the local Howe conjecture, which we assume to be true. Now it is easy to see that
this pairing is perfect and thus exhibit V; and V5, as linear dual of each other. This proves the
proposition. N

(2.15) Rallis inner product formula. There is a very beautiful formula for the inner product
O, ),0(0, [))a, (assuming that it converges absolutely) which was first obtained by Rallis ([R2]
and [R3]) in certain cases. In [Li2], this was extended to more cases. For the case at hand, namely
for the dual pair SLy x SO(V, q) with dim(V) odd, the results we need can be found in [R3, Thm.
6.2, Pg. 178).



(2.16) Theorem Suppose that dim(V) =n > 3 is odd. Let o be a cuspidal representation of SLs
contained in ggo, so that o is in a global Waldspurger packet associated to a cuspidal representation
7 of PGLs. There is a finite set of places, including the archimedean ones and the places dividing
2, such that

) ) LS(T ® Xdisc(q)» nT_Q)

<9((/717 fl);e(@27f2)> = (H I’U(Sol,v ® fl,v74P2,v ® f2,v) CS(nT_Q)CS(n _ 1)

veS
Here,
Ly(p1,0 @ fro, 02,0 @ fon) = /N (wy,q(h)pr, @2) - (f2,50(R) f1) dh.
SL(F)
is a sesquilinear form on wy, 4 @ @y and the (—,—) in the integral on the right refers to inner

products on wy, 4 and o, (conjugate linear in second argument).

Note that if n > 5, the special L-values are all non-vanishing. Thus the non-vanishing of the
global theta lift depends on the non-vanishing of the finitely many local sesquilinear forms I,,. This
question was addressed in [R3, Prop. 6.1 and Cor. 6.1]:

(2.17) Theorem The form I, is non-zero if and only if ©,(0,) # 0, i.e. the local theta lift of o,
1S NON-2€r0.

Conclusion: The point of the 2 theorems above is that when dim(V') > 5, the non-vanishing of
the global theta lift depends entirely on the non-vanishing of the local theta lifts at all places (or
rather at the finitely many places where o, is not unramified). Thus it is purely a local problem.
When dim (V) = 3, notice that we will get L° (7 ® Xdise(q), 1/2) in the inner product formula; thus in
this case, there will be a global obstruction to non-vanishing of global theta lift. This was actually
first observed in Waldspurger’s work [W1].

§3. Arthur’s conjecture on the discrete spectrum of PGSp(4)

In this section, we review what Arthur’s conjecture says for the discrete spectrum insc of G =
PGSpy. Loosely speaking, Arthur’s conjecture is a classification of the near equivalence classes
of representations in L2, (G(F)\G(A)), in the spirit of the theorem of Waldspurger for SLy. We
will relate this framework of Arthur to the notion of CAP (cuspidal associated to parabolics)
representations (introduced by Piatetski-Shapiro). The references for Arthur’s conjecture are of

course [Al] and [A2].

(3.1) A basic assumption. In the formulation of Arthur’s conjecture, one needs to make a
(serious) assumption:

(ASSUMPTION): There is a topological group Lr (depending only on the number field F')
satisfying the following properties:



e the identity component L% of Lr is compact and the group of components L%\LF is isom-
rophic to the Weil group Wp;

e for each place v, there is a natural conjugacy class of embeddings Lr, — Lp, where L,
is the Weil group if F, is archimedean, and the Weil-Deligne group Wg, x SLs(C) if F, is
non-archimedean.

e there is a natural bijection between the set of isomorphism classes of irreducible representa-

tions of Lr of dimension n and the set of cuspidal representations of GL,,(A).

This assumption is basically the main conjecture in the Langlands program for GL,,.

(3.2) A-parameters. By a (discrete) A-parameter for G, we mean an equivalence class of maps
Y : Lp x SLy(C) — G = Spu(C)
which satisfy some conditions:

e the restriction of ¥ to Ly has bounded image (i.e. gives a tempered L-parameter);
e the restriction of ¢ to SL9(C) is an algebraic homomorphism;

e the centralizer of the image of ¥ in Sp4(C) is finite (so the image of ¢ is not too small). We
let Zy be this centralizer and let S, denote the quotient of Zy, by the center Z = {£1} of
Sp4(@).

(3.3) Decomposition of discrete spectrum. Now according to Arthur, the discrete spectrum
possesses a decomposition

Dl GIPNG(A) = D) 1},

where the Hilbert space direct sum runs over the A-parameters . For any 1, the space L?/J will
be a direct sum of nearly equivalent representations, and we want to describe its internal structure
next.

(3.4) Local A-packets. The global A-parameter 1 gives rise to a local A-parameter
Yy : Ly, x SLy(C) — G
for each place v of F. Denote by Zy, the centralizer of the image of v, and set Sy, = m0(Zy,/Zs) =
Zy |23, Z.
Arthur speculated that to each irreducible representation 7, of Sy, , one can attach a unitary
admissible (possibly reducible, possibly zero) representation m,, of G(F,). Thus we have a finite
set

Ay, = {m% t My € §wv}.

This is the local A-packet attached to ,. Of course, there are some conditions to satisfy:

10



e for almost all v, m,, is irreducible and unramified if 7, is the trivial character 1,. For such v,
71, is the unramified representation whose Satake parameter is:

q1/2
S, = Yy <F7'v><< ! q71/2 ))v

where F'r, is a Frobenius element at v and ¢, is the number of elements of the residue field
at v. In fact, it is required that for any v, 71, has Langlands parameter ¢y, given by:

1/2
(%Aw)zwvcux<‘wv |ww”2>>

e a number of other conditions concerning the character distributions which are too technical
to state and which will not concern us here.

for any w € Lp,.

These requirements may not characterize the set A, but they come pretty close. The main point
to notice here is that for almost all v, we know what the representation m;, is. However, as it
stands, the conjecture does not specify what the other representations in the local packets are. For
example, we are not told what are their L-parameters. However, I learn the following conjecture
from Moeglin:

Conjecture: If v is a finite place and

Yy o (Wp, X SLy(C)) x SLy(C) — G
is a local A-parameter with associated local A-packet Ay, , then any discrete series representation
in Ay, has L-parameter equal to

DA Wi x SLa(C) x SLy(C) —2 G.

v

WF X SLQ((C)

v

(3.5) Global A-packets. With the local packets Ay, at hand, we may define the global A-packet
by:
Ay = {1 = ®ym,, : ™, € Ay, Ny = 1, for almost all v} .

Observe that this is a set of nearly equivalent representations of G(A), indexed by the irreducible
representations of the compact group

S’lﬁA = H 51/1771'

Note that there is a diagonal map
A Sy — Sya.

If n = @, n is an irreducible character of Sy 4, then we may set
-
v

This is possible because for almost all v, 7, = 1, and 71, is required to be unramified.

11



(3.6) Multiplicity formula. The space Li will be the sum of the elements of A, with some
multiplicities. More precisely, Arthur attached to v a quadratic character e, of Sy; we will not
give the definition here, but will say what it is when we discuss the Saito-Kurokawa representations
later. Now if 7 is an irreducible character of Sy 4, we set

1

my = (A%(n), ey)s, = #T : Z ep(s) - n(s)
¥ S€S¢
Then Arthur conjectures that
Li = @ My Ty
n

(3.7) Inner forms. We should say that the above description of Arthur’s conjecture is only
accurate for split groups (though it can be extended to quasi-split groups naturally). For inner
forms of a split group, some modifications are necessary; we indicate these briefly.

A global A-parameter 1) for a split group G is also an A-parameter for an inner form G’ provided
that 1 is relevant, i.e. its image is not contained in the Levi of an irrelevant parabolic subgroup.
We saw above that the representations in the local packet for G(F,) are indexed by irreducible
characters n, of Zy, /Zf;}v Zg. We should think of 7, as a character of Zy, /ng which is trivial on
Zg.

Now the main modification for G’ is that the representations in the local packet of G'(F,,) should
be indexed by (some of ) the characters of Z, /Z&) which are not trivial on Z, at least when G
is an adjoint group.

The definition of the quadratic character €, does not change; thus €, is a quadratic character of
Zy, which is trivial on Z;. For a representation , in the global A-packet, where 7 is an irreducible
character of Zy 4, the multiplicity m(my) is given by (ey, A*(n))z,. Note that this is non-zero only
if A*(n) is trivial on Zz. We do not know if this condition is automatic (though for the case of
interest in these notes, it is).

(3.8) The A-parameters of PGSps. Now we want to see more concretely what Arthur’s con-
jecture says for PGSpys. We first describe the A-parameters of PGSpy.

We can first partition the set of A-parameters ) of PGSp, according to the restriction of ¥ to
SLy(C). Recall that the Jacobson-Morozov theorem states that there is a bijection between the set
of conjugacy classes of homomorphisms SLy(C) — G and the set of unipotent conjugacy classes
in G. The bijection is given by attaching to a morphism ¢ : SLy — G the conjugacy class of the

unipotent element
11
N 1)

Now G = Sp4(C) has 4 unipotent conjugacy classes, and thus there are 4 families of A-parameters.
There is a partial order on the set of unipotent classes:

01 < Oy if and only if O C O,.

12



We arrange the 4 unipotent classes in increasing sizes:
OD = {1} < Olong < Osho’r‘t < Oreg‘

Here Qg is the trivial class, Ojong is the class of a non-trivial element in a long-root-subgroup,
Oshort is the class of a non-trivial element in a short-root-subgroup and O,.4 is the principal (or
regular) unipotent conjugacy class.

One can describe the morphism ¢, attached to the conjugacy class O, more concretely. Obvi-
ously, ¢¢ is the trivial map. Now there is a natural embedding

j1SLy(C) x SLy(C) = Sps(C)

and we have:

Lshort(g) = j(ga g)'

{Llong(g) =3j(g,1);

Finally, ¢,¢4 gives the action of SLs on its irreducible 4-dimensional representation.

This partition of the set of A-parameters leads to a decomposition of the discrete spectrum into
4 pieces:

L?lisc =Ao @ -Along @ Ashort @ Areg-
We consider these 4 pieces separately:

e if 9 corresponds to the orbit O, then the local and global A-packets are singletons, con-
sisting of 1-dimensional representations (quadratic characters). Thus A, is the direct sum
of quadartic Grossencharacters.

o Ajong is the so-called Saito-Kurokawa space (as explained below). This space was constructed
by Piatetski-Shapiro [PS] and we will review his results below. We shall call the A-parameters
in this class the Saito-Kurokawa parameters.

o Aot was constructed by Howe-Piatetski-Shapiro [HPS] and Soudry [So].

e Ay is conjecturally the tempered part of L?h-sc. Thus it is the most nondegenerate part of
th .- Note that Ay decomposes naturaly into two parts, depending on whether the tempered
parameter 1 factors through the subgroup SLy(C) x SLo(C). If it does, we say that 1 is
tempered endoscopic. If it doesn’t, we say that 1) is stable. Thus we have Ay = Ag ena @ Ao,st-
The space Ag ¢nqg was first studied by Yoshida [Y] (for classical Siegel modular forms) and the

general construction has been carried out by Roberts [R].

(3.9) CAP representations. Most of the constructions mentioned in the previous subsection
were couched in the language of CAP representations, rather than in the framework of Arthur’s
conjectures.
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DEFINITION: A cuspidal representation m of a quasi-split group G is said to be CAP with
respect to a parabolic subgroup P of G if it is nearly equivalent to the irreducible constituents of an
induced representation [ ndgT, with 7 a cuspidal representation of the Levi factor of P.

In particular, a CAP representation is nearly equivalent to an Eisenstein series. This explains
why CAP representations are sometimes called shadows of Eisenstein series.

(3.10) Inner forms. The above definition is not the right notion for non-quasi-split groups. Here
is the right definition. If G’ is an inner form of a quasi-split G, then G/ and G, are isomorphic for
almost all v. Thus it makes sense to say that a representation 7’ of G'(A) is nearly equivalent to a
representation 7 of G(A). Thus we say that a cuspidal 7’ of G’ is CAP wrt a parabolic P of G if
7' is nearly equivalent to the constituents of I ndgT with 7 cuspidal. That this modification of the
notion of CAP is necessary (and reasonable) is suggested by the paper of Sayag [S].

‘We make another definition:

DEFINITION: The Saito-Kurokawa space of PGSp4 (or its inner forms) is the subspace Agx C

L?li <o consisting of all representations which are CAP with respect to the Siegel parabolic P.

We note that Arthur’s conjecture predicts that the cuspidal part of A, is precisely the
subspace of representations which are CAP with respect to the Siegel parabolic subgroup P, whereas
the cuspidal part of Agpem consists precisely of representations which are CAP with respect to the
Klingen parabolic @ and the Borel subgroup B. This prediction is easy to see, because given an
A-parameter 1, Arthur’s conjecture specifies the near equivalence class of the representations in
the global A-packet A,. Thus, we expect that Asx = Ajong,cusp (and [PS] showed that it is indeed
the case).

§4. Saito-Kurokawa A-packets

In this section, we examine the fine structure of the Saito-Kurokawa A-packets in greater detail.
This will suggest a way of constructing these packets.

(4.1) Saito-Kurokawa A-parameters. Recall that we have the subgroup
SLQ X SLy C Sp4.

Further, the centralizer of one of these SLs’s is the other SLo. For a Saito-Kurokawa A-parameter
v, since [gr,(c) is an isomorphism onto one of these SLa, say the second one, [z, must send
Lp into SLy X pg, where po is the center of the second SLs. Thus to give ¥ means to give a
(irreducible) map Ly — SLo(C) and a quadratic character L — Wp — pua. According to our
basic assumption, this means that:

Saito-Kurokawa A-parameters are (conjecturally) parametrized by pairs (1,x) where T is a cuspidal
representations of PG Ly and x is a quadratic Grossencharacter.

In other words, a typical Saito-Kurokawa parameter looks like:

Wt L x SLa(CY2X%G 1 (©) x SLy(C)

Sp4(@).
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Observe that for x fixed, such parameters are indexed by cuspidal representations of PG Lz, just
as the near equivalence classes in the space Agg for SLs.

Given a parameter as above, it is easy to check that the centralizer (modulo center) Sy, of
¥r \ is isomorphic to Z/27Z. Moreover, the local component groups Sy, , ., are given by

g 1, if pry is reducible
Yot T ZJ2Z, if pry is irreducible.

The condition p;, is irreducible is equivalent to 7, being a discrete series representation of PG Lo (F,).

(4.2) Local Arthur packets. Now Arthur’s conjecture predicts that for each place v, the local
A-packets A; . , has the form:

+ . . . .
A= T b if 7, is not discrete series
o {7 o T} if 7y is discrete series.
+ . . . .
Here, 77, is indexed by the trivial character of Sy, . ..

Of course, we know what 7 has to be for almost all v: it is irreducible unramified with
Satake parameter s, . This unramifed representation 7 can be alternatively expressed as
Jp(Tv, Xv, 1/2), i.e. the unique irreducible quotient of the generalized principal series unitarily

1
induced from the representation 7, ® x,| — |¢ of the Levi PGLy x GLy of P. From this, we
see that the representations in the global A-packet are nearly equivalent to the constitutents of
IndgT ® x| — ]1/2. Thus representations in A;yy,, are indeed CAP wrt P.

In fact, one knows what 7T7J.fu . 18 In general, for Arthur’s conjecture specifies the L-parameter of

T . In the case at hand, the L-packet for this L-parameter is a singleton. Thus we must have:

7TT’U sXv

2 Jp(Ty, Xu, 1/2)  for all v.

Tv,Xv

When we construct the local packets later using theta correspondence, we should check that this
is indeed the case for our construction.

The main observation to make here is that (for fixed x,) the structure of the local SK A-packet
attached to 7, is identical to the Waldspurger packet of SLo associated to 7.

(4.3) Global A-packets. Let S; be the set of places v where 7, is discrete series, so that the
global A-packet has 2#9 elements. This global packet will contribute to a subspace of Lﬁisc; we
denote the corresponding subspace y A(T, x).

To describe the multiplicity of m, € A, in A(7, x), we need to know the quadratic character
€y, Of Sy, . It turns out that ey . is the non-trivial character of Sy = Z/27Z if and only if
e(r®x,1/2) =—1.

€y

Now if m = @77

€ A;y, then the multiplicity associated to 7 by Arthur’s conjecture is:

() 1, if e =], €0 = (7 ® x,1/2);
m(m) =
0, if ez = —€(T®x,1/2).
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Thus, we should have:

AT, x) = EB .

TEAL y:ex=€(T®X,1/2)

Again, observe that the automorphy of the representations in the global SK A-packet are con-
trolled by the same condition on e-factors as the automorphy of the representations in the global
Waldspurger packet associated to 7.

Conclusion: The above discussion shows that the structure of the space .Zoo on ﬁg and the
space Ajong on PGSpy are identical. This should suggest that one can construct the space Ajong

by “lifting” from SLs.

How does one carry out this “lifting”? This can be done using theta correspondence.

§5. Construction of Saito-Kurokawa space

Now we are ready to state the results of Piatetski-Shapiro on the space Aggk. Consider the dual
pair SLy x SO(5), with SO(5) split. Now to define theta correspondence, it is necessary to specify
the quadratic space (V, ¢) giving rise to SO(5). How many choices are there?

(5.1) Odd quadratic spaces and orthogonal groups. Fix a quadratic space V over F. Then
the quadratic spaces over F of same dimension as V are classified by H!(F,O(V)). When dim(V)
is odd, the different forms of SO(V) are classified by H(F, SO(V)) and we have:

HY(F,0(V)) = HY(F,SO(V)) x H'(F,uz) = H'(F,SO(V)) x F*/F*2.

The projection onto F*/F*? simply gives the discriminant of a quadratic space, whereas the
projection onto H'(F,SO(V)) gives the isomorphism class of the associated special orthogonal
group. From this, we see that the set of isomorphism classes of quadratic spaces which give rise
to a particular special orthogonal group is a principal homogeneous space for F*/F*? and these
quadratic spaces are distinguished by their discriminants.

Given a form G of SOg,+1, there is thus a unique quadratic space of discriminant one whose
special orthogonal group is G.

(5.2) Twisted theta lifts. In the following, whenever we talk about theta correspondence for
SLs x G, it will be defined using this distinguished quadratic space of discriminant one. For
convenience, we define the twisted theta lift:

DEFINITION: For a quadratic character y, the x-twisted theta lift of a representation o of 5’12
(both locally and globally) is:
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(5.3) Construction of Agg. By our discussion of the previous section, it is reasonable to expect
that Aj,,g can be constructed by theta lifting from ,SA’EQ. More precisely, if we fix a cuspidal
representation 7 of PGLs and a quadratic Grossencharacter x (which corresponds to an element
Ay of F*/F*2) then we shall construct the subspace A(7, x) of the discrete spectrum by:

A(T,X) = O, (A(Tr ® X))

The question is: is this a reasonable definition?

(5.4) Local results. We begin first with local considerations. The local representation 7, ® xu
determines a local Waldspurger packet {o,f,0,} (o, = 0 if 7, is principal series). Consider the
local theta lifts of the elements of this packet:

T = Oy (0k).

Tv,Xv

These representations are irreducible and unitary. Moreover, all such representations are distinct
as T, ranges over all unitary representations of PG Lo (F,) (with x, fixed).

Now let A;, ,, be the local A-packet of PGSp4(F),) attached to the Saito-Kurokawa parameter
determined by (7, x»). Then we define:

AT’U7X’U = {F:;,Xv ’ TrTU’XU }.

This is a reasonable definition, because we have the following proposition (which verifies directly
that Howe’s conjecture holds)

(5.5) Proposition (i) ©,, (o)) = Jp(v, Xv, 1/2); it has L-parameter pr, & py, -

(i) When v is archimedean, O, (o, ) can be completely determined (it is a discrete series or
limit of discrete series; we omit the description here but see the example at the end of the section).
When v is finite,

supercuspidal, if T, @ X, 15 not Steinberg;

Oy, (0,) = {

tempered, if T, ® Xy is Steinberg.

In fact, when 1, ® x, is Steinberg, Oy, (o, ) is the unique non-generic summand in Ig(St,,).
(111) Moreover, Oy, (01) = Oy, (02) implies that o1 = o3.

The proof of the proposition is an easy exercise, but does require one to know the formulas
for the action of the Weil representation wy, 4. From (i), we see that the representation m} ~ has
the expected Langlands parameters required by Arthur’s conjecture. The only thing which is not
explicit in the proposition is that it does not give some alternative description of 7~ | : for example,
it does not give its Langlands parameter. The main result of Schmidt’s paper [S] is the resolution

of this local issue:

(5.6) Proposition The Langlands parameter of Oy, (o, ) factors through the subgroup SLy x SLo
and as a map into this subgroup, is given by pr, © pse,, - Here, we are using the definition of local
L-packets given by Roberts [R]. In particular, this is in agreement with the conjecture of Moeglin
mentioned in (3.4).
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(5.7) Global results. Now suppose that

0 =®,0° CA(T®y) with Hev =e(T®x,1/2).
(2

Its x-twisted global theta lift V, (o) is non-zero (stable range) and one can check that V) (o) is
contained in the space of sugare-integrable automorphic forms (i.e. Vi (o) C L3, ). Thus, we have:

Vi(0) 2 0,(0) := ®@y0y, (00).

By the injectivity of local theta correspondence, we know that if o1 2 o9, then V, (01) 2 V) (02).
Thus, we have:

(5.8) Proposition Let A;, be the global A-packet obtained from the local A-packets A, ., defined
above. The x-twisted global theta lift of A(T ® X) is a subspace A(T,x) of L2, with

disc
Al x) = %) ”'
TEA; yier=€e(TQX,1/2)

Here m = @752, and € = [, &,. Moreover, m = Vy (o) is contained in the space of cusp forms,
unless L(T ® x,1/2) #0 and 0 = o© := ®,0,7. Moreover, A(T® x,1) ® x = A(1, X).

The proposition says that our definition of the local and global packets leads to a subspace of
the discrete spectrum in perfect agreement with Arthur’s conjecture. Moreover, the cuspidal 7 are
contained in Agg, since they are CAP with respect to P. In particular, if 7 C A(7, x), then its
partial standard L-functions has the form:

L5(m,s) = L5(7,s) - L (x, s + 1/2) - L%(x, s — 1/2).

Thus L(r®X, s) has a pole at s = 3/2. This also shows that the spaces A(7, x) have non-isomorphic
irreducible constituents (and thus are mutually disjoint), since the standard L-functions are different
for different x. Thus if Proje.s, denotes orthogonal projection onto the cuspidal spectrum, then
we have:

Projcusp @ A(T, X) - -ASK-

(7:x)

The following theorem is the main result of [PS]:

(5.9) Theorem

Projcusp @ A(Ta X) = -ASK-

(7:x)

In fact, the representations in Ask can be characterized as those cuspidal representations m such
that the standard L-function of some quadratic twists of ™ has a pole somewhere (in which case, a
pole must occur at s = 3/2).
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The proof of this uses the theory of standard L-functions for GSp(4). It is quite intricate and is
beyond the scope of these notes. In the last section, we present a proof of a slightly weaker result
based on the Rallis inner product formula, the regularized Siegel-Weil formula and the doubling
method of Piatetski-Shapiro and Rallis.

A corollary of the theorem is:

(5.10) Corollary The space Ask has multiplicity one.

PRrROOF. This follows from the theorem, the multiplicity-one result for 1100, the multiplicity preser-
vation of theta correspondence and the fact that the x-twists of the space constructed from the
theta lifts have non-isomorphic irreducible summands for different x. W

(5.11) Examples. We conclude this section with an example. Suppose that f is a classical
holomorphic newform of level N and weight 2k. For no other reason but for simplicity, we assume
that N is square-free with .S distinct prime factors. Then f corresponds to a cuspidal representation
77 of PG Ly such that

unramified representation, if v does not divide IV;
Tfwv = 4 the Steinberg representation, if v divides IV;

holomorphic discrete series of lowest weight 2k, if v is infinite.

Moreover, €(7f,1/2) = (—1)% - (=1)F = (=1)5FF.

The local Saito-Kurokawa packet associated to 7; and the trivial (quadratic) character thus
has two elements 7 and 7, if v is infinite or divides N. For a finite v, we have described
these representations above. At the real place, these 2 representations can be described as the
cohomologically induced modules Ag+ () where g (resp. q7) is the #-stable Siegel parabolic
subalgebra whose Levi subalgebra is the complexification of U(1,1) (resp. U(2)) and \j, = detF~2.
This shows that 7, is a holomorphic discrete series when & > 2 and is a limit of holomorphic
discrete series when k = 1.

The global Saito-Kurokawa packet associated to 7, has 251 elements but by the multiplicity
formula, only half of them occur in the discrete spectrum. More precisely, m = ®,7;” occurs in the
discrete specturm iff [, €, = (—1)**. All these 2° representations are thus Saito-Kurokawa lifts

of f.

To be more classical, suppose we are just interested in Saito-Kurokawa lifts of f which corre-
sponds to Siegel modular forms. Then we should look only at those 7 = @, 7" with e5c = —. If one
has a theory of canonical vectors in representations of PGSpy (i.e. a theory of newforms), then one
may pick a distinguished vector in the representation 7&*. This leads to 2°~! Siegel modular forms
which may be considered the Saito-Kurokawa lifts of f, at least when S > 1. When S =0, i.e.
when f is a level one form, then such a Siegel modular form exists iff &k is odd (this is the classical
condition for existence of the Saito-Kurokawa lifts of level 1 forms).
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§6. Transfer of Saito-Kurokawa representations between inner forms

In this section, we consider the transfer of the Saito-Kurokawa space to the other forms of PG Spy;
these are of the form SO(V, q) with dim(V') = 5. Given such a form G’, it is natural to construct
the transfer of Agx from PGSpy to G’ via the theta correspondence from S”Eg. Thus, given (7, x),
we want to examine the structure of the x-twisted theta lift of A(7) to G’

If o is an irreducible constituent of A(7), the global theta lift 0/ (o) may now be zero (since
we are no longer in the stable range). However, the Rallis inner product formula tells us that it
is non-zero if and only if for each v, the local theta lift of o, to G/ is non-zero. Thus, we shall
first consider the question of local theta lifts. After that, we can ask: if ©] (o) is non-zero, which
representation of PGSpy is it lifted from (say, in the sense of Langlands parameter)?

(6.1) Local theta lifts. Fix a place v. If v is not complex, there is a unique special orthogonal
group G} whose F,-rank is 1. Consider the local theta correspondence for SLy(F,) x G). The
following can be found in [R3]:

(6.2) Proposition Let o be an irreducible representation of ﬁQ(Fv). Then ©), (o) # 0 if and
only if Homy g,y (0, Cy,) # 0 for some a ¢ F*2_ In fact, the only o’s whose local theta lift is 0 are
given by:

(i) if v is finite, then o, = wij ;

(i) if v is real, then o is holomorphic discrete series or o = wflfv.

For a finite place, the group G’ is the only non-trivial form of PGSp4. On the other hand, when
v is real, there is an additional form G, which is compact which is defined by a definite quadratic
space. For this we have:

(6.3) Proposition If G’ is anisotropic, then ©'(c) # 0 iff o is holomorphic discrete series of
lowest weight > 5/2.

(6.4) Local packets. We can now define the local packets for the group G’. Suppose we are given
a local A-parameter of Saito-Kurokawa type associated to the pair (Tus Xv). We have the local
Waldspurger packet A, gy, = {03, 0, } associated to 7, ® x, and we consider the set of y,-twisted
local theta lifts

{04 (0), 0}, ()}

We want to define this as the local packet on G, attached to the A-parameter ¢ = v, ,,. Recall
that the representations in the local packet should be indexed by the irreducible characters of
Zy /Zg which are non-trivial when restricted to Zé,. How are these two representations indexed?

When 7, is discrete series, Z, /ng = 7/27 x /27 in which Zg, sits diagonally. There are
thus 2 characters which are non-trivial when restricted to Z,, namely ny_ and n_, (where 7, _
is trivial on the first copy of Z/27Z and non-trivial on the second copy). We set:

e = O (0F) and 7ot =6 (o).
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When 7, is principal series, Z,, /Zg}v = 7/2Z, and Z;, maps isomorphically onto this. Thus the
local packet just consists of the single representation @;@ (o;7) which is indexed by the non-trivial
character character of Zy, /ng. Now the center of SLy x SLs lies in Zy, and when restricted to

this, the map Zy, — Zy, /ZS)U is simply the second projection Z/27Z x Z/27 — Z/27Z. Thus the
non-trivial character of Zy, /ng is the character n;_ of Z/27 x Z/27. Thus we set

" = Ol (00

Observe that this labelling is consistent with the discrete series case.

This completes our definition of the local packets for the group G’. For a representation 7, in
our packets, we shall set:

The following proposition describes the representations of the packets more explicitly:

(6.5) Proposition Assume that v is p-adic so that G' has F,-rank 1.

(i) If 7 is the principal series w(py, py ), then 71~ = Ipi(xv, po); its L-parameter is
Pr, © PSty, = o ® [y B psty, -

(ii) Suppose that T, is discrete series. Then
Troie = I/ (JL(T0), X0, 1/2).

Here JL(7y) is the Jacquet-Langlands lift of T, to the inner form of PG Ly. The Langlands parameter
i8S Pr, ® Py, , i-€. the same as the L-parameter of the representation 7T7JFU’XU of PGSp4(Fy,). Moreover,

supercuspidal, if 7, is supercuspidal;

+_ =

oo discrete series, if T, ® Xy s twisted Steinberg;

0, if T, ® xu s Steinbery.
More precisely, when 7, ® X, 15 a twisted Steinbery, th;xv 1s the irreducible submodule of the induced
representation Ip/(JL(Ty), Xv, 1/2).

(6.6) Remarks: In view of Moeglin’s conjecture in (3.4), we expect that the L-parameter of 7/~
should be equal to pr, @ pst,, , i.e. the same as that of m | ~for PGSps. As the above proposition

shows, this is the case when 7, is principal series and when 7, ® ¥, is twisted Steinberg.

When F, = R, the correspondence can also be (and has been) explicitly determined; we omit
the description here, but see [Sc|.
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(6.7) Remarks: There are 2 further observations to make here:

(a) As a consequence of (ii), we see that in one particular case, namely when 7, ® x, is Steinberg,
a representation in the local packet is zero even though it is allowed to be non-zero by Arthur’s
conjecture. Thus the packet has only one element. This is not so surprising. Indeed, we expect the
L-parameter of 7rSt . o beequal to psi,ey, ® pst,ay,, but this L-parameter is irrelevant since
it factors through the Levi of the Siegel parabolic of Sp4(C).

When 7, ® x, is not Steinberg, this obstruction is not present; thus the local packet has 2 or 1
element depending on whether 7, is discrete series or not (just as the split case).

Similarly, suppose that F' = R and 7, is discrete series. If G/, has rank 1, we have 77~ = 0.
On the other hand, when G/, is compact, then 7= = 0, and if further 7, has lowest weight 2, then
7T~ = 0 also.

(b) The Langlands parameter for G’ in (i) is not equal to any L-parameter associated to local
components of Saito-Kurokawa representations of the split PGSps. As we shall see later, this
implies that there are cuspidal representations in the Saito-Kurokawa space of G’ whose Langlands
lift to PGSpy is not contained in the Saito-Kurokawa space of PG Sp,4 (indeed not contained in the
discrete spectrum).

(6.8) Global lifting. As in the split case, the subspace of the discrete spectrum corresponding to
the A-parameter v, can be constructed as:

Acr(1,%) = Var (Al © X))

We leave it to the reader to verify that with our definition of local packets, the structure of this
representation is in agreement with the multiplicity formula in Arthur’s conjecture. In particular,
a representation 7’ with parameter ¢, occurs in the Ags (7, x) iff [], e(7),) = (T ® x,1/2).

As before, it is clear that

Projcusp <@ -AG’ (7_7 X)) C AG’,SK-

T’X

It is natural to ask if equality holds. The following is the main result of [S]:

(6.9) Theorem Assume that G' has F-rank 1. Then

Projcusp <@ AG/ (7_7 X)) = AG’,SK-

T?X

The proof of this is similar to that of Piatetski-Shapiro for the split case. It relies on a particular
Rankin-Selberg representation of the standard L-function for G’. This Rankin-Selberg integral
requires the existence (and uniqueness) of a Bessel functional (i.e. a Fourier coefficient along the
unipotent radical of Siegel parabolic). One does not have this if G’ is anisotropic, and thus the
proof does not work in this case.

However, there is another Rankin-Selberg integral for the standard L-function of G’, the so-
called doubling method of Piatetski-Shapiro and Rallis [PSR], which works for all forms G’. Might
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one be able to to show the above theorem for all G’ using this? In the next section, we shall attempt
to do so, proving a slightly weaker result than the above theorem.

(6.10) Some Peculiar Representations of Inner Forms. We describe some peculiar cuspidal
representations alluded to in the remark above. The existence of these representations were first
noticed by Sayag [S] and this motivated the definition of CAP representations for non-quasi-split
groups.

Let us take G' = SO(V',¢) to be an inner form of PGSps. Then there are an even number
of places v where G is not split. Call this set of places S. Let T be a cuspidal representation of
PGLy and suppose that for some place vy € S, 7, is a principal series representation 7(,, M;OI)-

Let 7’ be a representation in the global A-packet of G’ associated to 7 (and the trivial quadratic
character) and suppose that [[, e(7]) = €(7,1/2), so that 7" occurs in Agr gk

(6.11) Proposition The Langlands lift of the representation 7' C A sk described above is not
contained in the Saito-Kurokawa space Asi of PGSpy. Moreover, if G has F-rank 1 (so that the
Siegel parabolic P’ exists), there are no cuspidal representations ' for which 7' is nearly equivalent
to the constituents of IndgiT’.

PrROOF. The local component 77{,0 is the degenerate principal series Ip/(1,p,,) and its local L-
parameter pr, @ pgt,  is not equal to the L-parameters of local components of representations in
the Saito-Kurokawa space Agx of PGSpys. This shows the first assertion. For the second, if such
a 7' exists, then the Jacquet-Langlands lift of 7/ to PG Ly is nearly equivalent to 7 and thus must
be equal to 7. But since 7,, is a principal series, 7, is not equal to a Jacquet-Langlands lift. With
this contradiction, the second assertion is proved. §

(6.12) Remarks: When G’ has F-rank 1 and 7 is everywhere unramified with L(7,1/2) = 0,
then the unique 7’ in the global A-packet is cuspidal and everywhere unramified. In his Ph.D.
thesis [P], A. Pitale gave a construction of 7’ (or rather the unique spherical vector in 7’) using a
converse theorem of Maass. The fact that the representation constructed by Pitale is the same as
that constructed here by theta lifting is a consequence of Theorem 6.9 or the weaker Theorem 7.1.
The method of construction of 7’ given in [P] is interesting, as it also gives explicit formulas for
the Fourier coefficients of the spherical vector in 7/. However, it is not clear how this construction
can be extended to the case of general 7 and it seems difficult to use this approach to obtain a
classification result as refined as the one obtained here.

There is nothing wrong with the fact that the Langlands lift of 7’ is not contained in Agg.
It is not a contradiction to the functoriality conjecture, because the conjecture only requires the
Langlands lift to be automorphic; there is no reason why it should be in the discrete spectrum!

A similar phenomenon can already be found in the Jacquet-Langlands correspondence: the
Langlands lift of the trivial representation of PD* (D a quaternion division algebra) is the anoma-
lous representation of PG Ly which is Steinberg at the places of ramification of D and trivial
everywhere else, and this representation is automorphic but is not contained in the discrete spec-
trum. However, in the comparison of trace formulas, the constant functions of PD* and PGL4 are
matched up, so that there is some reason for considering the trivial representation of PG Ly as the
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lift of the trivial representation of PD*, even though they have different L-parameters. In fact,
the right way to view the Jacquet-Langlands transfer of discrete spectrums is that it is functorial
with respect to A-parameters.

Thus, the Saito-Kurokawa space and its transfer to various inner forms are best understood in
terms of A-parameters rather than L-parameters.

§7. Characterization of Saito-Kurokawa Space

In this section, we shall try to show that

Projeusp <@ Aci (T, X)) = Aq sk

T?X

for any inner form G’ of PGSps. However, we shall only be able to prove a weaker result. More
precisely, we let

Ber sk C Agr sk

be the submodule consisitng of representations which are nearly equivalent to the representations
in the Saito-Kurukawa A-packets Um A; . Clearly, we have:

PTOjcusp (@ AG’ (7-7 X)) - BG’,SK-

T’X

The main result of this section is:

(7.1) Theorem Let G’ be any inner form of PGSpy (possibly split). Then

Projcusp <@ AG’(Ta X)) = BG’,SK-

T?X

Of course when G’ is isotropic, this theorem is a consequence of the stronger result of Piatetski-
Shapiro [PS] and Sayag [S]. In any case, this result shows that our definition of local A-packets is
correct.

PROOF. The proof that we present below is based on the regularized Rallis inner product formula
(which in turn relies on the regularized Siegel-Weil formula).

Let m be an irreducible summand of B g Then for some quadratic character x, 7®y is nearly
equivalent to an induced representation Ip(1,1/2) of PGSp4, with 7 a cuspidal representation of
PGL,. Consider the global theta lift V(7r®x) of T®@Y to SLy; thus V(7r®x) is a subrepresentation
of the space of automorphic forms on SL2 It is not difficult to check that V(7r ® x) is contained in
the cuspidal spectrum (we omit the standard computation here). To prove the theorem, we need
to show that V(7 @ x) is non-zero.

In the following, we may assume, without loss of generality, that y is trivial.
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(7.2) Inner product. For ¢; € wy and f; € 7, we consider the inner product

(0(e1, f1),0(p2, f2))sL,

where

ot = [ 0e(ah) Flo)ds.

We want to show that this inner product is non-zero for some choice of p; and 9 (we fix f; and f,
without loss of generality). Formally exchanging orders of integration, this inner product is equal
to

f1(g1) f2(g2) - 0(¢1)(g1h)0(w2)(g2h) dh dgy dgo.

/<G;xG%>\<ngGg> /SL2<F>\SL2<A>

However, the inner integral I(¢1, ¢2) is not convergent (for general ¢ and 3), so that this exchange
is not justified. Fortunately, there is an easy way to regularize this inner integral, as shown by Kudla
and Rallis [KR]; we explain this regularization next.

(7.3) Doubling. Let V be the ten-dimensional quadratic space (V',¢") ® (V',—¢’). Then V
is totally split and G = SO(V) contains G’ x G’ as a natural subgroup. Let Wy, be the Weil
representation of §i2(Fv) x Gy; it may be realized on the space S(V,) of Schwarz functions on
V, (the Schrodinger model). Then as a representation of SLa(F,) x (G x G'), we have a natural
isomrphism:

W"L’v = Wiy q ® Wipy,—q>

with the tensor on the right being an inner tensor for the §i2 action and an outer tensor for the
action of G, x G!. This isomorphism is induced by the natural isomorphism of vector spaces:

S(Vy)@S(Vy) = S(Vo).
Note in particular that the representation W, factors to the linear group SLs.
Similarly, on the global level, the natural isomorphism

L S(VH®S(VL) =2 S(Va)

gives an isomorphism wy, ; ® wy, —q = Wy, as representations of SLy(A) x (G, x G'). Moreover, we
have:

O(t(p1 ® p2)((91, 92)h) = 0(¢1)(g1h) - 0(p2)(g2h).

Thus, the integral that we need to regularize is equal to

1(®)(g1,92) = / O(®)((g1, g2)h)dh
SLa(F)\SL2(A)

for ® € S(V,). This is simply the theta lift of the constant function of SLs to G, (restricted to
G’y x GY) if it were convergent.
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(7.4) Regularization. It turns out that I(®) converges absolutely iff Wy,(h)®(0) is zero for all
h € SLy(A). The map which associates to ® the function

h — Wy (h)®(0)
is an SLy(A)-intertwining map
T : Wy, — a principal series of SLa(A)
(this map is also Ga-invariant). Thus, I(®) is absolutely convergent iff ® lies in the kernel of 7'
Now, at any archimedean place vg, this principal series is easily seen to have different infinitesi-

mal character from the trivial representation of SLs. Thus one can find an element Z in the center
of the universal enveloping algebra of sla(F,,) with the property that

B {1 on the trivial representation;
0 on the above principal series.
Then for any ® € S(Vy), Wy (2)® lies in ker(T) and the regularization of I(®) is defined to be:
1"9(®) = I(Wy(2)(P))-
The integral I"9(®) is the regularized theta lift of the constant function of SLs to G. Indeed,
because the action of Z commutes with both SLs and G, the map ® +— I"9(®P) is both SLa(A)-

invariant and Ga-intertwining, just as the map ® +— I(®) would be if it were convergent. Moreover,
if ® € ker(T) to begin with, then

I79(D) = I(D).

Though this regularization may seem somewhat ad-hoc, as it involves the choice of Z, it is in fact
canonical, for one can show that there is at most one extension of I from ker(T) to W, which is
both S Ls-invariant and G-intertwining.

(7.5) Regularized inner product. How is this regularized integral relevant to our problem? Let
us consider the absolutely convergent integral

J1(g1) f2(g2) -

O (Wy(2)(t(p1 ® ¢2))) (91, g2)h) dh dgr dgs.

/(G/F NEANERTEN! /SLQ(F)\SLQ(A)

Now we can write
I8

Wy(2)((o1 @ p2)) = Y (1 ® 2)-
k=1

Thus, on exchanging orders of integration, we see that the above integral is equal to

r

Z(g(gpl,ka fla 5(@2,]% f2)>SL2 .

k=1
In other words, to prove the theorem, it remains to show that

/ f1(g1) - fa(g2) - I"%9(®)(g1, g2) dg1 dg2
(G xGR\(GLxGY)

is non-zero for some choice of ®.
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(7.6) Regularized Siegel-Weil formula. The regularized integral I"*(®) turns out to be equal
to the residue of an Eisenstein series on Gy; this is a special case of the regularized Siegel-Weil
formula. More precisely, there is a natural SLs(A)-invariant and Ga-equivariant map

R:Wy —1 ndS 5;/ ! (unnormalized induction)

where PP is a maximal parabolic subgroup of G stabilizing a maximal isotropic subspace X of V. The
definition of this map R is analogous to that of the map T above, but involves a mixed model for
Wy, rather than the Schrodinger model used in the definition of 7. Indeed, the Weil representation
Wy, can also be realized on S(W ® X*) (W is standard 2-dimensional symplectic space), and the
isomorphism

S(V) — S(W e X™)
is given by a partial Fourier transform: ® — ®. For & € S(W ® X*),

R(®)(g) = (Wy(9)®)(0).

Moreover, we have:

(7.7) Proposition The degenerate principal series ITLCZ%’(S%/4 has a unique irreducible submodule.
This irreducible submodule 11 is spherical and is the so-called minimal representation of Ga. The
map R gives an Gy -equivariant isomorphism

(W) spa(a) =1 C Indgoy'".

Now each Kg-finite f € I nd%é%,/ 4 determines a standard section fs of the family of degenerate

principal series [ ndﬁgélﬁ), and we may form the Eisenstein series E(f,s,g). It turns out that at
s=1/4, E(f,s,g) is holomorphic, and the map

f=E(f,s,9),

initially defined for Kg-finite f, extends to give a Gp-equivariant map from II to the space of
square-integrable automorphic forms on G,. The regularized Siegel-Weil formula states:

(7.8) Proposition There is a non-zero constant ¢ such that

I"(®)(g) = c- B(R(®),1/4,9).

There is no doubt that the constant ¢ can be precisely determined, but we will not need its
precise value here.
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(7.9) Intertwining operator. It turns out to be more convenient to work with the degenerate
principal series at s = 3/4 rather than at s = 1/4. There is a standard intertwining map

M(s): Indgéﬁlpﬂ“ — Ind%’é%,ﬂ*s
and M (s) is meromorphic in s. At s = 1/4, M (s) has a pole of order 1 and so we have
M = Res,_y4M(s) : Ind$53* — ndSsy/*.

The image of this map is precisely equal to II. Moreover, by the functional equation for Eisenstein
series,

RBSS:3/4E(f, S)g) = E(M(f)7 1/47 g)
Together with the regularized Siegel-Weil formula, this gives:

(7.10) Corollary As f varies over all elements ofIndgél‘;M, the space of functions Ress—_3/4E(f, s, 9)
is the same as the space of functions I1"°9(®)(g) as ® ranges over S(Vu). In particular, to prove
the theorem, it suffices to show that

/ o) falgz) - E(f s, (g1, 92)) dan dos
(G},XG’F)\(GAXGA)

has a pole at s = 3/4 for some Kg-finite f € Indfg’é]]%M.

(7.11) Standard L-functions. Piatetski-Shapiro and Rallis showed in [PSR] that the expression
in the above corollary is a Rankin-Selberg representation for the standard L-function of 7. To state
their result, let us fix the maximal isotropic subspace X to be:

AV ={(v,v) eV:ve V']

Then the action of G’ x G’ on P\G has a unique Zariski open dense orbit, namely the orbit of AV”.
The stabilizer of AV’ is equal to AG’ and thus G’ x {1} acts simply transitively on an open dense
subset of P\G. Now we have:

(7.12) Proposition For Re(s) sufficiently large and for a sufficiently large finite set S of places
of F',

/ i) falgs) - E(F. s, (91, 92)) don dos
(G xGR)\ (G xGY)

1
¢5(8s) - ¢5(8s —2)

= H Zo(fi.0, fo0r for 8) - LS (m,4s — 3/2) -

vES
Here, forv e S,

Zv(fl,v:f?,vvaas) :/G <7Tv(g)(f1,v)af2,v> 'fv,S(gv 1) dg

where (—,—) is the Gl,-invariant inner product on m, which is linear in the second variable and
conjugate-linear in the first.
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Now the left hand side of the identity in the above proposition extends to a meromorphic
function of s if f is Kg-finite. On the other hand, for the case at hand, we know a priori that

L3(m,s) = C%(s+1/2) - (s —1/2) - L%(1, 5)

for some cuspidal representation of PG Ly and thus L®(r,1/2) has a meromorphic continuation to
C. Finally, the local zeta factors Z, (for v € S) has been studied in detail in [KR2]. It was shown
in [KR2, Thm. 3.2.2] that for any smooth f, Z,(f1 4, fou, fv, ) converges for Re(s) large and has
meromorphic continuation to all of C. Thus, the identity in the proposition holds for all s € C and
is an equality of meromorphic functions, as long as f is Kg-finite.

(7.13) End of proof. Now we are given that L(m,4s — 3/2)) has a pole at s = 3/4. Thus, by
the above proposition, the proof of the theorem is reduced to:

(7.14) Lemma For each v € S, there exists a Kg,-finite f, so that Z,(f1.v, fo, fv,s) is non-zero
at s = 3/4.

PROOF. Let ¢ be an arbitrary function in C2°(G)). Define a function
fs € IndS 5}/
by requiring that fs vanishes outside the set P, - (G}, x {1}) and

Fy(p-(9.1)) = op(p)>* - ¢(g).

This is well-defined because P, - (G} x {1}) is open dense in G, and is analytically isomorphic to
P, x G.

Let fy s be the standard section extending fys. Then it is easy to see that the integral which
defines Z(f1,v, fo,u, f4,5) for Re(s) >> 0 is in fact convergent for all s. At s = 3/4, it is equal to:

/G (10(9) (fro)s fow) - 3(9) d.

Now since (m,(g) f1,v, f2,0) is a non-zero function of g, it is clear that one can find ¢ so that this
integral is non-zero.

Now if v is finite, then fy4 is already Kg,-finite and so we are done. When v is archimedean,
f¢ may not be K¢, -finite, but [KR2] shows that Z,(f1., f2,u, fv, s) is continuous in f, for fixed s.
Thus the lemma follows by the density of K¢, -finite vectors. R

The theorem is proved. N

(7.15) Remarks: (i) What the proof shows is that if 7 is a cuspidal representation of G’ such
that for some quadratic character y;, LS(W ® X, s) has a pole at s = 3/2, then m ® x has non-zero
theta lift to SLy and thus

T C Projeusp (@ Acgr (T,X)> .

T7X
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(ii) It seems likely that the above argument can be pushed to yield the theorem with B i
replaced by Ag’ sk

Finally, we note the following corollary of the theorem:

(7.16) Corollary Let m be a representation in a Saito-Kurokawa packet for G'. Then meysp(m) <
1.
This corollary puts one in a position to apply the result of C. Sorensen [Sor| about level-raising

congruences for Saito-Kurokawa representations of G’. We finish up with an example which will be
relevant for the application of the main theorem of [Sor].

(7.17) Example: Suppose f is a holomorphic cuspidal newform of weight 4 with respect to
I'o(N) with N = pi,...p, squarefree. The corresponding cuspidal representation 7¢ of PGLy is
unramified outside Sy = {pi,...p;, 00}, Steinberg at p; and a discrete series of lowest weight 4
at the archimedean place. Suppose that r is odd, so that €(7¢,1/2) = (=1)" = —1. The Saito-
Kurokawa packet determined by ¢ (and the trivial character) has 2"*! representations of which 2"
occur in the discrete spectrum. One of these is the representation 7p = 75, ® (®,7, ), with 7, a
holomorphic discrete series and m, non-tempered for all p. This 7 occurs in the discrete spectrum
because of the odd number of minus signs.

Let G’ be the inner form of PGSps which is ramified precisely at Sy = {p1,...,pr, 00} with
G'(R) compact. Now there is only one representation 7’ in the Saito-Kurokawa packet of G’'(A)
corresponding to 7. This is the theta lift of the representation

o= a;g ® (®pesf0p_) ® (®P¢Sf0;_)

which is contained in Av()o because of the odd number of minus signs. Thus 7’ occurs in the discrete
spectrum of G’ and has the following properties:

e its archimedean component 7/ is the trivial representation of G'(R);
e it is the Langlands lift of x, i.e. for all v, 7, and m, have the same L-parameters;

e its multiplicity in L*(Gg\GY) is equal to 1.
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