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1. INTRODUCTION

Let G be a semisimple algebraic group over Q, let G(Q) and G(A)
be its rational and adelic groups, and let K C G(A) be a good max-
imal compact subgroup. Let K = K ;K. with K, C G(R) and
K C G(Ay), where G(Ay) is the finite adelic group and G(R) is the
group of real points. By our assumption on G, we know that G(R)
and K, are connected Lie groups (cf. proposition 2.1.1 below). Then
the cohomology of the congruence subgroup I' = G(Q) N K s can be
computed by

(1) 7 (I, C) = H* (G(Qi)\Q(A)/Koo, C)*r,
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where the superscript K ; stands for the subspace of K j-invariants in
the G(Af)-module

(2) H' (G(Q)\G(A)/ K, ©) : = colim H" (G(Q)\G(A)/ KK, C).

The inductive limit is over all open subgroups K/ C K 7. It is clear
from the definition (1) that the Hecke algebra $ = C2° (K \G(Af)/ K )
of compactly supported K -biinvariant functions on G(Af) acts on
H*(I',C). Let

7 = {res=orwN\GRIKY| [ slo)ds} =0

be the ideal of elements of $ which act trivially on the constant rep-
resentation. Since H*(I',C) is a finite dimensional vector space, any
element of H*(I', C) is annihilated by a finite power of an ideal of finite
codimension in §. Therefore, the subspace

H*(I',C)z ={x € H*(I',C) |Z"z = {0} for some n > 0}

is a direct summand of H*(I", C) which, among other elements, contains
the constant cohomology class in dimension zero. One of the aims of
this article is to study the space H*(I', C)z.

Our main result gives a topological model for H*(I",C)z. We first
recall the topological model for the cohomology of the constant rep-
resentation of G(R), which maps to H*(I',C)z. Let I x  be the
algebra of G(R)-invariant differential forms on the symmetric space
G(R)/K . Such forms are closed and give rise to G(A)-invariant el-
ements in H* (G(Q)\G(A)/K,,C). We get a map of graded vector
spaces
Furthermore, H*(I',C)z is a 15wy i..-module since multiplication by
G(Ay)-invariant cohomology classes, unlike the rest of the multiplica-
tive structure, commutes with the action of the Hecke algebra. Let
GE(R) C G(C) be a compact form of G(R) such that K., € G9(R).
Then the homogeneous space X (gc): = GY(R)/K is the compact
dual of G(R)/K . The complexified tangent spaces at the origins of
X (gc) and of G(R)/K , can be identified, and one gets an identification
of Igg) k., With the space of G (R)-invariant forms on X (gc). The
space of G (R)-invariant forms on X (gc) is equal to the space of har-
monic forms (with respect to a G (R)-invariant metric) on X (gc) /K o,
hence it is isomorphic to H*(X (gc), C). We get a multiplicative isomor-

phism between IS(R),KOO and H*(X(gc)7 (C)WO(KOO).
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Our topological model for H*(I", C)z consists of a canonical isomor-
phism of Igg) g = = H*(X(gc),(C)-modules from H*(I',C)z onto the

invariants of a certain group in H*(Ug,C), where Ug C X (gc) is a
certain open subset. To give the definition of Ug, we first have to in-
troduce some new notations. Let P, be a minimal Q-rational parabolic
subgroup of G. We consider standard parabolic subgroups P O P,. Let
Np C P be the radical of P and let Lp = P/Np. Let

(3) Mp: = ( m ker(X))
XEX*(Lp)

be the connected component of the intersection of the kernels of all
Q-rational characters of Lp. To make sure that our constructions do
not depend on such a choice, we will never choose a Q-rational section
Lp — P of the canonical projection P — Lp. We will however use
the fact that the projection P N O(P) — Lp, where 6 is the Cartan
involution defined by K .., is an isomorphism of algebraic groups over
R. This identifies Lp(R) and Lp(C) with subgroups of G(R) and
G(C). Using this identification, the compact form of Mp

MY (R) = Mp(C) NGO (R)
becomes a subgroup of the compact form of G, and the compact dual
X, = MPR)/(Ke N Mp(R)) € X

of the symmetric space defined by Mp becomes a subset of the compact
dual of the symmetric space defined by G. We put

. — (o (c)
(4) Ug: =X - | X5,
POP,
The group K ., NP,(R) acts on X (gc ) by left translations and leaves Ug

invariant. The action of K ., NP,(R) on the cohomology of X (gc Vis triv-
ial, the action on the cohomology of Ug factorises over the finite group
of connected components (K o NP,(R)). With these definitions, we
can formulate our main result about H*(T", C)7.

Theorem 1. There is a canonical isomorphism of 1§ g = H* (X(gc), C)-
modules

(5) H*(D,C)z = H*(Ug, C) =",

Furthermore, elements of H*(I',C)z, which by definition are annihi-
lated by some power of I C ), are already annihilated by T itself.
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The map Iy g — H*(I',C) was first studied by Borel [Bor74],
who proved that it is an isomorphism in low dimension. Since H*(T", C)z
is a direct summand of H*(I',C), the question of non-injectivity of
Borel’s map (which was studied by Speh [Spe83]), can be understood
in terms of restriction of cohomology classes from X (gc) to Ug. Our
interest in this particular summand was, however, motivated by the
fact that it is an important model case for the effects produced by the
singularities of Eisenstein series when one studies the cohomology of
congruence subgroups in terms of automorphic forms. Our method of
studying H*(I", C)z uses the results of [Fra98]. It consists of express-
ing H*(T',C)z as the (g, K)-cohomology of a direct summand of the
space of automorphic forms and of representing this space in terms
of Eisenstein series. The Eisenstein series which are of interest are
the Eisenstein series starting from the constant functions on the Levi
components of standard parabolic subgroups, evaluated at one half the
sum of the positive roots. There are many singular hyperplanes which
go through this parameter, and the iterated residue of the Eisenstein
series is the constant function on G(A). The contributions from the
Eisenstein series starting from a given parabolic subgroup is therefore
no direct summand of the space of automorphic forms, but only a quo-
tient of a suitable filtration on the space of automorphic forms. The
problem of understanding these extensions was the main motivation
for writing this paper. For GLs over algebraic number fields the sum-
mand of the cohomology considered in this paper has been computed
by Harder ([Har87, Theorem 4.2.2.]). There are probably more explicit
calculations for rank one cases and also some for rank two cases, for
instance in [Sch83]. These authors do not use topological models to
describe the Eisenstein cohomology, they arrive at explicit formulas.
We can more generally study the G(Af)-module of all elements x in
the cohomology H* (G(Q)\G(A)/K ,,C) which at all but the finitely
many ramified places are annihilated by some power of Z. Again it
turns out that the first power is sufficient. Let H*(G)z be the space of
cohomology classes = with that property. Then H*(G)z can be iden-
tified with the K., N P,(R)-invariants in the hypercohomology of a
complex of sheaves with G(A)-action on X (gc). It turns out that the
hypercohomology spectral sequence for this complex degenerates, and
that the limit filtration can be described in terms of the G(A f)-action.
However, Hilbert modular forms and SLj3 over imaginary quadratic
fields provide easy examples that the limit filtration will usually not
split in the category of G(Ay)-modules. To get a complete picture of
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H*(G)z as a G(Ay)-module, one may be forced to carry out the labo-
rious work of explicit calculations for the various families of algebraic
groups. As an example, we carry out explicit calculations for SL,, over
imaginary quadratic fields. This example shows that while explicit
calculations for the various series of classical groups should be possi-
ble, the topological model provides a much more vivid picture of the
cohomology.

By the work of Moeglin and Waldspurger [MW89], the residual spec-
trum of GL,, over a number field is now completely understood. The
structure of the residues is quite similar to the case investigated in
this paper. Therefore there is some hope that our methods can be
used to completely understand the Eisenstein cohomology of GL,, in
terms of the cuspidal cohomological representations. Compared with
this paper, one has to expect two difficulties. Firstly, there is the pos-
sibility of “overlapping Speh segments”. In this case, the structure of
the Eisenstein cohomology may depend on whether some automorphic
L-function vanishes at the center of the functional equation. This effect
was first found by Harder [Har91, §III] in the case of GL3 over imag-
inary fields. As a second complication, the Borel-Serre-Solomon-Tits
theorem 3 in this paper will not suffice. One needs a Solomon-Tits type
theorem with twisted coefficients, which investigates the cohomology
of a complex formed by normalised intertwining operators. I hope that
the methods of this paper are flexible enough to extend to this new
situation.

The author is indebted to J. Arthur, D. Blasius, M. Borovoi, G.
Harder, J. Rohlfs, J. Schwermer and C. Soulé for interesting discus-
sions on the subject and methods of this paper. In fact, it was after
a discussion with C. Soulé and G. Harder that he realised the need
for passing to the space of invariants in (5). He also wants to use
this occasion to thank the mathematics department of the Katholische
Universitat Eichstdtt and the Max-Planck-Institut fiir Mathematik in
Bonn (where this paper was written) and the Institute for Advanced
Study, the Sonderforschungsbereich “Diskrete Strukturen in der Math-
ematik”, and the mathematics department of the Eidgenotssische Tech-
nische Hochschule Ziirich (where [Fra98] was written) for their hospi-
tality and support.

2. NOTATIONS

We will study connected reductive linear algebraic groups G over
Q. Let K = K;K ., be a good maximal compact subgroup of G(A),
decomposed into its finite adelic factor K ; and its real factor K.,. Let
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6 be the Cartan involution with respect to K, and let K7  be the
connected component of K.,. We denote by P, a fixed minimal Q-
rational parabolic subgroup of G. Unless otherwise specified, parabolic
subgroups P will be supposed to be defined over Q and to be standard
with respect to P,. Let Np be the radical of P, and let Lp = P/Np
be the Levi component. Unless P = G, we will not think of Lp as a
subgroup of P. We will, however, identify £ Xgpec @ SpecR with the
R-rational algebraic subgroup P N O(P) of Lp. Let Ap be a maximal
Q-split torus in the center of Lp, and let Mp be defined by (1.3), such
that Lp = ApMp is an isogeny. In the case P = P,, we will write
M,, A,, N, instead of Mp,, Ap,, and Np,. In the case P = G, Ag
is a maximal Q-split torus in the center of G, and Mg is generated by
the derived group of G and the Q-anisotropic part of the center of G.

Let G(A) be the adelic group of G. If S is a subset of the set of
valuations of Q, let G(Ag) be the restricted product over all places
v € S of the groups G(Q,). In the special case where S is the set of finite
primes, this is the finite adelic group G(Af). Let Kg = K N G(Ag).
For a parabolic subgroup P, let Ap(R)* be the connected component
of the group of real points Ap(R). In the special case P = G, this is the
connected component of the group of real points of a maximal Q-split
torus in the center of G.

Let g be the Lie algebra of G(R), i(g) its universal enveloping alge-
bra, and 3(g) the center of £(g). Similar notations will be used for the
Lie algebras of other groups.

Let ap be the Lie algebra of Ap(R). We will write a, for ap,. If P C
Q, then it is possible to choose a section ig: Lo — Q of the projection
Q — Lg. Then z'Q(prQ_%Q(P)) C P. We define an embedding ag —
ap as the restriction to ag of the differential of the map

prP—%piQ'

This embedding is independent of the choice of ig. The dual space ap
of ap can be identified with the real vector space X*(P)®zR generated
by the group of Q-rational characters of P. The same identification can
be made for Q. Then restriction of characters from Q to P defines an
embedding ag — ap. The embeddings ag — ap and dg — dp define
canonical direct sum decompositions ap = ag @ a% and ap = ag P d%.

Let A, C a9 be the set of simple positive (with respect to P,) roots
of A,. The subset A? of simple positive roots which occur in the Lie
algebra of Mp is contained in a”. Of course, both definitions require
the choice of sections £, — Lp — P, but the result does not depend
on such a choice. Let Ap be the projection of A, — A” to ap, and let
A% for P C Q be the projection of A2 — A” to El%. Let p, € a, be
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one half the sum of the positive roots of A,, and let pp and p% be the
projections of p, to ap and to a%.

Our notion of a (g, K')-module is the same as in [Vog81, §6.1]. A
G(Ay)-module is a vector space on which G(Af) acts with open sta-
bilisers. If K is a field, let C*(G(Af),K) be the G(Af)-module of
compactly supported locally constant K-valued functions on G(Ay). If
no field is given, it is assumed that K = C. A similar notation is used
for quotients of the adelic group. For quotients of the full adelic group
like C°(P(A)\G(A)) or similar quotients of partial adelic groups which
contain G(R), we adopt the condition that C'*°-functions have to be lo-
cally constant with respect to the finite adelic part and K ,.-finite and
infinitely often differentiable with respect to G(R).

2.1. Connected components of real groups. Let us recall the fol-
lowing fact:

Proposition 1. Let G be a reductive connected algebraic group over R
and let K o, be a mazimal compact subgroup of G(R).

(1) Then mo(Ko) = mo(G(R)).

(2) If R C Q are parabolic subgroups defined over R, then the map

To(R(R) N Ko) — mo(Q(R) N K )

18 surjective.
(3) If G is R-anisotropic or if it is semisimple and simply connected,
then G(R) is connected.

Proof. The first two assertions are consequences of the Iwasawa de-
composition G(R) = P(R)° x K, where P is a minimal R-parabolic
subgroup, cf. [Spr79, Proposition 5.15]. The third fact is [BT72, Corol-
laire 4.7.] for semisimple simply connected groups and [BT65, Corol-

laire 14.5] for anisotropic groups. O

3. FORMULATION OF THE MAIN RESULTS
Let H*(G) be the inductive limit

(1) HY(9): = colim H* (G(Q)A(R)\G(4)/ K K2, C)

over all sufficiently small compact open subgroups K/ c G (Ay). This
is a G(Ay)-module. Let H}(G,C) be the same inductive limit over the
cohomology with compact support. For any set of finite primes S, the
Hecke algebra $s = C°(K s\G(Ag)/K ) of K g-biinvariant compactly
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supported functions on G(Ag) acts on H*(G,C) and H}(G,C). Let Zg

be the ideal
ISZZ{fGYJS / f(g)dgzo},
G(As)

and let

H*(G,C)z: ={x € H*G,C) |

for any set S of finite primes, Zg'z = {0} for m > 0}
H(G,C)r: ={z e HG,C) |

for any set S of finite primes, Zg'z = {0} for m > 0}.

These are direct summands of H*(G,C) and H}(G,C). Our main result
describes them as the space of K? N P,(R)-invariants in the hyperco-
homology of a complex of sheaves of G(Af)-modules on the compact
dual.

The construction of these complexes of sheaves follows a general
pattern, which associates a chain complex to a functor with values in
an abelian category on the poset ¢ of standard parabolic subgroups.
Note that G is a maximal element of PBg. Let < be a total order on
A,. We order successors Q of P in Pg by the order < of the unique
element of A2 — A? and denote the i-th successor (0 < i < dimaf,) of
P by P;. Let F” be a contravariant functor on Pg. For P C Q, let

FP<¢. F° - F”
be the transition map. We define the chain complex C*(F'*) by
Ck(Fo) _ @ FP

PeEP

dim af,=k

with the differential
k
2 d ((fp)digig:k) - (Z(_l)ipgcgi(fgi)>

i=0 oEP
dim afy=k+1

Similarly, let F'p be covariant, with transition maps
FngZ Fp — FQ.

We order predecessors Q of P in P according to the order by < of
the unique element of A” — A2, denote the i-th predecessor (0 < i <
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dim a”’) by ;P and form the chain complex

CHF,) = @ Fp
Pep
dim a¥ =k

with differential

3 d ((fp) ey ) = (Z(—l)iFchQ(ﬁ-QO

dim a¥ =k =0 e
dim a€=k+1
We apply similar conventions to functors of several variables. For in-

stance, if F% is covariant with respect to P and contravariant with
respect to Q, then we have the following chain complexes:

e For fixed P, the chain complex C*(F%) obtained by applying
construction (2) to the contravariant variable.

e For fixed Q, the chain complex C*(F) obtained by applying
construction (3) to the covariant variable.

e The chain complex C*(F';) which is the total complex of the
double complex obtained by applying (2) to the contravariant
variable and (3) to the covariant variable.

Of course, all these complexes depend on the choice of <. However,
they do so only up to unique isomorphism. For instance, let C*(F")
be formed with respect to < and let C*(F”)= be formed with respect
to <. Then we have the isomorphism of complexes

C*(F*) < — CYF7)z
(fp) »ex  — (epfp) »ex
dim af,=k dim af,=k

where ep is the signature of the permutation of A,—A? which identifies
the total orders < and < of A, — A?. We will therefore suppress
the <-dependence of C*(F*®) in our notations. The same applies to
C*(F,) and the constructions for bifunctors. We will also apply these
constructions if F' takes values in the category of chain complexes. In
this case, C*(F'*) has the total differential formed by the differential of
F* and (2).

Recall the definition of the compact dual X S\ng and of the embed-

dings X S\ij — X 539 from the introduction. For a topological space X,
a closed subset Y and a vector space V', let V3 be the constant sheaf
with stalk V on Y and let (iycx).Vy be its direct image on X. If K
is either R or C, let A(G, K2 ,K)” be the functor which to P €
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associates the sheaf with G(Ay)-action
(it exty. ) O (PANG (). K)

For P C Q, A(G, K° ,K)P<€9 is defined by the inclusion
C(QA\G(Af),K) € C2(P (Af)\g(Af) K),

followed by restriction from X © to X Mp- The group K7, N 7P,(R)
acts on this complex by left translatlon and the resulting action on
hypercohomology factorises over the quotient 7y(K?2, N P,(R)). Re-
call the Borel map I}, g o — H*(G, C)9“s) and the isomorphism
T, ko = H” (Xsag) from the introduction.

With these notations, we can formulate our main result as follows:

Theorem 2. There is a canonical isomorphism of G(Ay)- and Iy, o (R), K2,

H*(X(c )-modules between H*(G,C)z and the hypercohomology of the

complex assoczated to the functor A(G,C)7

(4)  HAG.C)r = H' (X[, C(A(G,C)))m K=,

This isomorphism identifies the real subspace H?(G,R)z with
PHP(X),, C*(A(G, C)))mKenPe(®),

The proof of this theorem will occupy most of the remainder of this
paper. We will now give some corollaries. Since the sheaf of G(A)-
modules A(G, C)” is annihilated by Zg, we have the following result.

Corollary 1. If S is a set of finite places of Q, then H*(G,C)z and
HX(G,C)z are annihilated by Tg (and not just a power of Ig).

The assertion about H*(G, C)z follows from the result about coho-
mology with compact support by duality.

To evaluate the cohomology sheaves of the complex C*(A(G,C)*),
we have to define some Steinberg-like G(A f)-modules. Let

(5) Vo) = C=(P(A\G(Af),C) / 3 C=(Q(Ap)\G(A),C),
QDOP
and let if]i((i’; )) be the dual of Q]i((A’; For instance, Q]g( A7) and ‘Bg&f

are both isomorphic to the constant representation.Recall the definition
of the subsets “ o
U, = X351, — | XM,
QCP
If V is a sheaf on U py,,, let (Z.UMPQXSCA)Q ) V' be its continuation by zero.

~
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Corollary 2. Thei-th cohomology sheaf of the complex C*(A(G, K¢, C))
s given by

. G(Af)
(6) D <ZUM7,QX(;A)Q> '%P(Af)'

PeEP

. G_ .
dim az=i

The hypercohomology spectral sequence degenerates, and the limit fil-
tration Fil; HX(G, C)z has quotients

(7)

(Fil; /Fili 1) HYG,C)z = €D HE (U py,) =) ®m7a(Af

PeEP
G _;

dim a,=1
where the isomorphism is an isomorphism of modules over G(Ay). This
is the only ascending filtration of H}(G,C)z whose i-th quotient is of

the form
G(Ay)
@ Vp® sIJ7’(%‘)'
PeP
dim a,=i

Similarly, H*(G,C)z has a descending filtration Fil' with quotients
(8)
(Fllz /Fllz-i-l) Hk g C ~ @ Hk—l—dnn np) U P)wo(KooﬂPo ®2Ug(Af

PeEP

dim an=0

This is the only descending filtration of H*(G,C)z whose i-th quotient

s of the form
D vievry)

PeP
g _

dim a7, =i

Proof. By Poincare duality, it suffices to prove the assertions about
cohomology with compact support. The formula (6) is a consequence
of the Solomon-Tits like theorem 3 in the next section, which gener-
alises [BS76, §3]. The degeneration of the hypercohomology spectral
sequence follows from Hodge theory and the fact that the restriction
of an invariant (= harmonic) form on the compact dual of a Levi com-
ponent of G to the compact dual of a smaller Levi component is again
invariant.

The uniqueness assertion about the filtration of H}(G,C)z follows
from the next proposition. O

Proposition 1. Let S be a set which contains all non-archimedean
primes of Q with finitely many exceptions, and let P # Q be parabolic
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K
subgroups of G. Then the spaces of S-spherical vectors ’IT%(&’;)) * and

pIen) sy ite length tati th
k) ave finite length as representations of the group

11 G(Qv),

v nonarchimedean
v

and their Jordan-Hdlder series have mutually non-isomorphic quotients.
Proof. This is a consequence of [BW80, X.4.6.]. g

Unfortunately, Hilbert modular forms and SL3 over imaginary fields
provide examples where the filtration Fil; H*(G, C)7 does not split in
the category of G(Af)-modules.

Since K ; was supposed to be good, we have P(A;)K ;= G(Ay) for

all parabolic subgroups P. Therefore, Q]i((ij; )) has K ¢-spherical vectors

only if P = G, and the only quotient of Fil; H}(G, C)7 which has a K -
spherical vector is in dimension zero. We get the following corollary.

Corollary 3. The natural maps
H(G,C)9*) — H(G,0)f" — H:(9,C)7"

are isomorphisms (the first of these isomorphisms follows from the fact
that the constant G(A)-representation is annihilated by T ). Similarly,
the maps

H*(G,C);" — (H"(G,C)1)gn,) — H"(G,Cgiay)
are isomorphisms, where the subscript g,y stands for the space of
G(Ay)-coinvariants. Also, we have isomorphisms of I g0 = H*(Xgag)—
modules
H*(G,C)ga,) = H (U nmg, C)
and
H(G,C)9%) = HX(U pg, C).

In particular, this establishes theorem 1 in the introduction.

4. AN ADELIC BOREL-SERRE-SOLOMON-TITS THEOREM

In this section we study the cohomology of the chain complexes asso-
ciated to certain functors on . Let us start with the easiest example.
For parabolic subgroups Q@ C R, consider the contravariant functor

» [ C HQCPCR
B(Q.R)" = { {0} otherwise
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and the covariant functor

[ C ifQCPCR
B(Q.R)p = { {0} otherwise

such that B(Q, R)P<? and B(Q, R)pcp are the identities if @ C P C
P C R and zero otherwise.

Lemma 1. I[f Q C R, C*(B(Q,R)*) and C*(B(Q,R).) are acyclic.
If Q@ = R, then the only cohomology group of C*(B(Q,R)*) is C in
dimension dim aQ, and the only cohomology group of C*(B(Q,R)) is

C in dimension dim a¥.

This is straightforward.

For a more interesting example, one takes the set of all C-valued
functions on P(Q)\G(Q) for F”, together with the obvious inclusions
as transition maps. The associated chain complex gives the reduced
cohomology of the Tits building of G shifted by —1, hence by the
Solomon-Tits theorem it has cohomology only in degree dima¥. The
related theorem in which continuous functions on P(Q,)\G(Q,) (with
Q,-rational parabolic subgroups P which are standard with respect
to a minimal Q,-rational parabolic subgroup) are considered has been
proved by Borel and Serre [BS76, §3]. We need an adelic version of
their result.

Theorem 3. Let S be a set of places of Q, and let R be a standard
Q-parabolic subgroup. Let C(G,R,Ag)® be defined by

{ C=(P(As)\G(As)) PSR

P _
C(G,R,Ag)" = {O} otherwise

(recall our convention that C'*-functions are supposed to be K o -finite).
Let the transition functions for C be given by the obvious inclusions.
Then the complez C*(C(G,R,As)*) is acyclic in dimension < dim a¥.

Proof. The only difference to the situation considered by Borel and
Serre is that we consider quotients of an adelic group by Q-parabolic
subgroups, whereas they consider quotients of the v-adic group by Q,-
rational subgroups. Their method is flexible enough cover our situation.
To destroy any possible doubt, let us give the modified proof.
Since C(G, P, Ag)* is the inductive limit of its subfunctors C (G, P, Ar)

for finite 7', it suffices to consider the case where S is a finite set of
places of Q. We will prove the following proposition.
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Proposition 1. Let S be a finite set of places of Q, let B be a Banach
space, and let R € P. Let C(R,Ag) be given by spaces of B-valued
continuous functions on flag varieties of G

= C(P(As)\G(Ag),B) if PCR
P S S/
C(R.As, B) _{ {0} otherwise
with the obvious inclusions as transition homomorphisms. Then the
complex C*(C(R, Ag, B)®) is acyclic in dimension < dima¥.

For finite S, the theorem follows from the proposition since C(G, R, Ag)
is the inductive limit of its subfunctors C(G,R,Ag)e over idempo-
tents e of the convolution algebra C*(Kg). But C(G,R,Ag)e =
C(R,Ag,C)e is a direct summand of C(R, Ag, C). O

Proof of proposition 4.1: We proceed by induction on the car-
dinality of S, starting with the case S = (). For this case, we have

C(R,Ay,B)*: = B(P,,R)*® B and apply lemma 4.1.

Let v € S be such that the proposition has been verified for S — {v}
and arbitrary R and B. Let P, C P, be a minimal Q,-parabolic
subgroup, and let A, C P, be a maximal Q,-split torus. Let wq,...,
wy be an enumeration of the elements of the Weyl group W (A,, G(Q,))
such that ¢(w;) < ¢(w;) if ¢ < j, where ¢(w) is the length of w. Let

C(w) = Py(Qu)\Po(Qu)wPy(Qy) C Pp(Qu)\G(Qy)
be the Schubert cell associated to w, and let E; = U;:o C(wj). Let A,
and A” be defined like A, and A” but with P, replaced by P,. For
a € A, let s, be the reflection belonging to «. Let
p: Pv(@v)\g(@v> - P(@v)\g(@v>
be the projection. We have the following consequence of the Bruhat
decomposition

Lemma 2. Let 0 < i < N. If P D P, is a Q,-parabolic subgroup such
that (sqw;) > €(w;) for all « € AP | then mp induces an isomorphism
C’(wz) = WP(C(IUZ)) = 7T7)(EZ') — 7T7)(E7;_1).

Otherwise, we have mp(E;) = mp(E;_1).

This is [BS76, 2.4.]. )

Let Fil'C(R,Ag, B)F be the set of all f € C(R,Ag, B)” which
vanish on
(1) (P(As—(u})\G(As—(v})) x Tp(E}).

This is a subfunctor of C’(R, Ag, B)*. Let us consider 0 < i < N.
If there exists no Q-parabolic subgroup @ O P, such that ¢(s,w;) >
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((w;) for all @ € A2, then lemma 4.2 implies Fil' 'C (R, Ag, B)®* =
Fil'C(R,Ag, B)*. Otherwise, let Q; be the largest Q-parabolic sub-
group with this property. Let C(C(w), B) be the Banach space of con-
tinuous B-valued functions on C'(w), and let C.(C'(w), B) C C(C(w), B)
be the closure of the set of compactly supported functions. Identifying
B-valued continuous functions on (1) with C(7mp(FE;), B)-valued con-
tinuous functions on

P(As—(u})\G(As_(0})

and using the isomorphism

we get an isomorphism
(FiI'™' /Fil') C(R, As, B)Y 2 C(RN Qi, As_ vy, Ce(C(w;), B)),

and the induction argument is complete.
The proof of proposition 4.1 is complete. Q.E.D.

Generalising the definition of %i((i’; )) in the third section, we define

(2)  TEE) = O (P(As)\G(As)) | D €™ (Q(As)\G(As)
QDOP

where it is understood that if S contains the archimedean place then

induction at this place is (g, K)-module induction. Let %g( Ay be the
K g-finite dual of B7,%). We put Stgu,) = Vil and Gtg (hs) =

‘i]gz’g:f ). These can be considered as Steinberg-like modules, although

they are highly non-irreducible unless S consists of a single place v at
which P, is also a minimal Q,-parabolic subgroup.
If we choose Haar measures on G(A) and P,(A), then the dual of

C=(P(A)\G(A)) = Ind3C
can be identified with Ind$Cy,,. This allows us to view
Ind%étEP(A) ® Capy

as a submodule of Ind%ngpo. It is the orthogonal complement of

> C¥(Q(A\G(A)),

QCP
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hence it decreases if P increases. This allows us to define
(3)
Ind$,Gtr,u) @ Copy it P # P,
D(G)” = S d9Gt e @ Capp P =P, ¢ C Ind$, C,,.
PeP

Theorem 4. If dimag > 0, then C*(D(G)*) is acyclic.

Proof. D(G)* C B(P,,G)* ® Indgngpo is the orthogonal complement
of
M., C B(P,,G)s ® Indj, C,

where
> CX(RANG(A)) itP£P,
M= (ém:qo ) m o (R(A)\Q(A)) otherwise c o™ (P"(A)\Q(A>)‘

By lemma 4.1, it suffices to show that C*(M,) is acyclic. Let

(M P AP,
MP_{{O} itP =P,

Since C C Mp, C HY(C*(M,)), the acyclicity of C*(M,) and the the-
orem will follow if we show that C*(M,) has only one one-dimensional
cohomology space in dimension one.

We will reduce this to theorem 3 by introducing a functor of two

variables Ni and using the spectral sequence for its double complex.
We define N3 by

NSO fQZPorifQ="P,
P C>*(Q(A\G(A)) otherwise.

It is a consequence of theorem 3 (applied to C(G, Lg, A)) that
ki npery {0} ifk# dimag — 1
HH(C(Np)) = { Mp if k=dima% — 1.
Since

NQ_{{O} it Q="7P,
* | B(Q,G)e @ C*(Q(AN\G(A)) if QD P,

lemma 4.1 implies

Ui nrony ) {0} ifl#dimad or Q#G
H(C(N'))_{(C if | =dima¥ and Q =G.
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Combining these two facts, we get

H* (C*(M.)) _ pktdimag—1 (C*(N?)) = { éO} ii Z i }

As was mentioned earlier, this implies the theorem. O

We complete this chapter with a rather elementary lemma. For a
parabolic subgroup R of G, let

(4) ER)"" = { ?SS‘@ ig % %

The transition homomorphism E(R)ﬁgfk is given by the projection

a% — ab. E(R)*" is a functor from P into the category of graded
vector spaces.

Lemma 3. The projection
E(R)Y" = A*(&5,) — det 6% [— dim &j,]
defines an isomorphism on cohomology
H* (C* (E(R)*)) = det a%[— dim a%).
By the determinant of a finite dimensional vector space, we understand
its highest exterior power.

Proof. Let Rq,..., Ry be the parabolic subgroups containing R with
the property that dim a%’ = 1. Then

C*(B(R)") =) (Coay) —C),

proving the lemma. l

5. THE SPACE OF AUTOMORPHIC FORMS

It is known that H*(G, C) can be evaluated by using the cohomology
of the de Rham complex, which is isomorphic to the standard complex
for evaluating the (mg, K7, )-cohomology H(, . g (C®(Ag(R)*G(Q)\G(A))).
Let

(1) Che(AgR)TGQN\G(A)) C C*(Ag(R)TG(Q)\G(A))

be the subspace of functions of uniformly moderate growth. Let J =
U(g)g N 3(g) be the annihilator of the constant representation in 3(g).
Let

(2) Ag: = {f € Cu(As(R)*GQ\G(A)| T"f = {0} for n>> 0} .
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Borel has verified that the inclusion (1) defines an isomorphism on co-
homology and conjectured that the inclusion Ay C Cg;, also defines
an isomorphism on cohomology with constant coefficients. After par-
tial results by Casselman, Harder, and Speh, this has been verified in
[Fra98], where we denoted Cg, by Se and Ay by FingS. since we
worked in a more general situation.

Let S be a set of finite primes which contains all but finitely many
primes. It is a consequence of well-known finiteness properties of the
space of automorphic forms (cf. [FS91, Proposition 2.3]) that the space
of K g-spherical vectors A? $ C Az has a decomposition into associated
Hecke eigenspaces

At~ 1A%,
7

where the sum is over maximal ideals Z C s and
AR = {feAj’i"f:{O} forn>>0}.

It is clear from the proven Borel conjecture that the cohomology of AK 2

is isomorphic to the space of K g-spherical vectors in H*(G, C) Wthh
are annihilated by a power of 7. Recall the maximal ideal Zg C $g,
which is the annihilator of the constant representation. We put

(3) Agr: = co}gim ALs .

The aim of this section is to study Ay 7.

There are two methods available for studying the space of automor-
phic forms. One method is to define a filtration on the space of auto-
morphic forms, and to show that its quotients are spanned by principal
values of cuspidal and residual Eisenstein series. This method was used
in [Fra98]. It is particularly useful in a general situation, where one has
only the facts proved in Langlands’ book [Lan76] available. The sec-
ond method, which was proposed by Harder in [Har91] before [Fra98]
was written, is to generate the space of automorphic forms by the co-
efficients of the Laurent expansions of cuspidal Eisenstein series at a
certain point. In [FS91], we derived from the result of [Fra98] that this
procedure really gives the space of all automorphic forms. This method
gives a complete description of the space of automorphic forms (and
not just the quotients of a filtration), but it is useful only if the precise
structure of the singularities of the cuspidal Eisenstein series near the
point where they have to be evaluated is known. For the Eisenstein
series which contribute to Ay 7z, we are in the fortunate situation to
have such information available. We will therefore generate the space
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A1 by cuspidal Eisenstein series. At the beginning, the procedure
will be quite similar to the methods used by Speh in [Spe83]. However,
Speh studied only a certain subspace of A7 7, which was sufficient for
her examples of the non-injectivity of the Borel map, and for which
only Eisenstein series depending on one parameter were needed.

Let P be a standard parabolic subgroup. Recall the standard height
function Hp: G(A) — ap, which is defined by

(4) (Hp(9),x) = > _log|x(p.)l, .

where g = pk with p € P(A) and k € K. The scalar product (.,.) on
the left side is the pairing between ap and ap, and y € X*(P) C ap. It
is clear that (4) characterises Hp(g) uniquely, and that Hp(g) does not
depend on the choice of the Iwasawa decomposition g = pk. If Q D P,
then Hg(g) is the projection of Hp(g) to ag.

We have to recall a few facts about the Eisenstein series starting from
the constant representation of a Levi component. Proofs can be found
in [FMT89, Lemma 2.7], although the results about the Eisenstein
series were almost certainly known before. If ¢ € C*(P(A)\G(A)),
the Eisenstein series starting from ¢ is defined by

(5) EZ(pN) = D d(yg)elrertirhon,
1EP@NG(Q)

It converges for sufficiently regular R\ in the positive Weyl chamber,
and has an analytic continuation to A € (@p)c. The singular hyper-
planes of this function which cross through pp are precisely the hy-
perplanes (A — pp, &) = 0, where o € Ap and & is the corresponding
coroot. The residues may be described as follows. Let for A € (ap)c

gp(\) = H (@, A = pp).

aEA%

Then the function ¢35 (\)E% (¢, A) is regular on an open dense subset of

ps + (8g)c. Its restriction to pg + (dg)c can be described as follows.
If ¢ € C(P(A)\G(A)), then

o(Hr():20P) o(.) € Ind']g)CQpp?

and let Cy,,, be the one dimensional vector space on which p € P(A)
acts by multiplication by e#7(®):277) - There exists a unique non-vanishing
homomorphism

7‘7?: Ind%(CQPP — Inde(CgpQ
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with the following property. For generic ¥ € ag we have
(6) (a2()ES()) (6,9 + p2) = EY (0ol 29 (ol2ortip() 4 ).

It is easy to verify

Q _
TQTP =X

and to see that Tg is independent of K.
Let S(a9) be the symmetric algebra of aZ. It can be identified with
the algebra of differential operators with constant coefficients on aJ.

After we choose a basis for aJ, we have elements 2~ € S(ag) for
any multi-index o = (a1, ..., Qg 4¢)- Elements of S(af) can also be

viewed as polynomials on a7g> C ap. Let H* be the polynomial in

H € ap belonging to 3. We define a G(Ay)-action on

(7) S(a3) ® C*(P(A)\G(A))
by

8a dim ap

(8) (h(WGW)) Z (H @l% )8)\5

® ((Hp(gh) ~ Hp(g))" e2lem Himah)=Hir(a) 4 g1)

for h € G(Af). In a similar way, one obtains a (g, K« )-module struc-
ture on (7) by taking the differential of the G(R)-action which would
be given by (8) if there was no condition of K -finiteness for elements
of C*(P(A)\G(A)). Let a P(A)—action on S(d%) be defined by

p: D — e HP®:) D olHr®))

At the infinite place, the P(R)-action gives rise to the structure of
a (p, Koo N P(R))-module. There is a homomorphism of (p, K N
P(R), P(Ay))-modules

S(a7) ® C*(P(AN\G(A)) — S(a3) ® Capy
D®délg) — De¢(l)
which defines an isomorphism
) S(@) @ C¥(P(ANG(A)) — L S(E%) © Cayp.

Using this isomorphism and the regularity of q%(.)Eg(qb, ) at pp, we
get a homomorphism of (g, K «,G(Ay))-modules

(10)  =5: S(a%) © C(P(ANG(A)) = dbS(&) © Capp — Agz
which maps D ® ¢ to (Dqg(.)Eg(gb, )) (pp).
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To see that the functions in the image of E% are annihilated by suf-
ficiently high powers of Zg and 7, it suffices to note that Ind%S(a%) ®
Cy,, is the union of an ascending sequence of subrepresentations with
quotients isomorphic to Ind%Cgpp, and that Zg and J trivially act on

g
We first prove the surjectivity of Ego.

Theorem 5. E%O is surjective. It is independent of the choice of K.

Proof. The fact that = is independent of K ; is established by an easy
computation, using the fact that both Ego and the identification

S(a7) ® C(Po(A)\G(A)) 22 Indg, S(a7) ® Cy,

depend on K, and these dependencies cancel out.

We will derive the surjectivity of Ego from the description of the space
of automorphic forms in[FS91, §1]. Recall from [FS91, Theorem 1.4]
that the space A as a composition

(11) As =P [ Yeirre

{P} pePc,py

where the first sum is over classes { P} of associate parabolic subgroups
and the second sum is over ®¢ (py, a set of equivalence classes of cus-
pidal automorphic representations 7 of the Levi components of the
elements of {P}. Here two cuspidal automorphic representations be-
long to the same equivalence class if they can be identified by a Weyl
group substitution. An equivalence class belongs to ®¢ (py if and only
if it is in a certain way compatible with the infinitesimal character J of
the constant representation. For a precise definition, we refer to [FS91,
§1.2.]. Note that our notations are slightly different from the notations
in [F'S91], where the space of automorphic forms was denoted 2(¢ with
an finite dimensional representation £, which in our case is C. There-
fore, A7 in our notations is 2¢ in [FS91]. The notations on the left
side of (11) are, however, the same as in [FS91].

By [FS91, Theorem 1.4], the space ¢ (p},, can be spanned by the
coefficients of the Laurent expansion of cuspidal Eisenstein series start-
ing from elements of ¢. In particular, [FS91, Theorem 1.4] says that,
for the special case {P} = {Po} and ¢ = {Cu.p, } e (a,.0(0)) Ve have

: =G _
(12) image of =7 = Ac (P} {Cumpo b e i@

Let us fix {P} and ¢ € ®cp;. Let P € {P} and let 7 be an
irreducible cuspidal automorphic representation of L£p which belongs
to pp. Let xr: Ap(A)/Ap(Q) — C* be the central character of r,



22 JENS FRANKE

and let A, € d% be the differential of the restriction of x, to Ap(R).
By applying a Weyl group substitution to P and m, we may assume

Ar € d%r. Let S be a set of non-archimedean primes of Q which has
a finite complement. We assume that 7 is unramified at the places
of S. Let v € S. By [FS91, Theorem 2.3], we have an ideal Z,, C
£, associated to ¢ such that all K -spherical vectors in ¢ (py, are
annihilated by some power of Z,,. Recall the annihilator Z, C $, of
the constant representation. If ¢ (py, N Ayz # {0}, then we must
have Z,, = Z, for all but finitely many places. We will verify that this
implies {P} = {P,} and ¢ = {w - Cap, }, iy (4,60 BY (12), this will
complete the proof of the theorem.

Let v € S such that Z,, = Z,. We recall Satake’s description of $),,.
Let P, C P, be a minimal Q,-rational parabolic subgroup with Levi
component L£,. Let

av - X*(PU)QU Xz Ra

where X ~are the characters defined over Q,, and let a, be the dual
of a,. Let T, be the group of unramified characters of £,(Q,), i.e.,
of continuous characters y: £,(Q,) — C* which are trivial on the
projection of P,(Q,) N K, to £,(Q,). The map

(13) (a,)c — T,
A — X,\(l):e<H7’v(l)’X>

is surjective, and T, has the structure of a complex torus which is
isomorphic to (a,)c/I",, where I, is a lattice in id,. Let O(T,) be the
ring of algebraic functions on the complex torus T',. The Weyl group
W(A, : G(Q,)) of A, in G(Q,) acts on ¥,, and we have the Satake

isomorphisms

S, Hv — O(TU)W(AU:G(@U))
S["P(Qu):f.)v(ﬁp) — O(TU)W(szﬁp(Qv))

(cf. [Car79, Theorem 4.1.]) for G and for the Levi components of
standard parabolic subgroups. Here $),(Lp) is the Hecke algebra for
Lp(Q,), defined by the projection of K, N P(Q,) to Lr(Q,).

Let $,(Lp) act on the K ,-spherical vector of m by multiplication by
the character (S, q.)h)(t,) for t, € T,,. The W(A, : Lp(Q,))-orbit
of t, is uniquely determined by m. Let t, € a, be a lifting of ¢,. It
is well-known that the ideal Z, corresponds to the image of p, in T,
by (13), where p, is one half the sum of the positive roots of A,. If
T, = Z,., then the W (A, : G(Q,))-orbit of that image must contain
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t,. By changing t, in its I',-orbit, we may assume
(14) ty = wp,

for some w € W(A, : G(Q,)). Let @’ be defined in a similar way
as a’, and let t, = t7 + t,p be the decomposition of ¢, according to
a, = a’ @ ap,, where ap, 2 ap is the Q,-character group of P made
into a real vector space. By changing t, in its W (A, : Lp(Q,))-orbit,
we may assume that t7 belongs to the closure of the positive Weyl
chamber a’+.

Let A, and A? be the same as in the proof of proposition 4.1. For
a root a of A,, let n, be its multiplicity. If « is positive and reduced,
then we have the inequality

(15) (@ po) 2 Na+ 2020,

and equality occurs if and only if « is simple. This is easily verified by
comparing the expressions

Safv = Pv — O‘<Ov‘7pv> = pPv — Z nﬁﬁ-

B>0

safB<0
From (14) and (15), we get for a € A”
(@) = Kato)l
Z N + N2
= <d7pvp>'

This implies t¥ € pF + aP*+. By the boundedness of the matrix coeffi-
cients of the unitary representation 7, this may happen only if t™ = p”.
But then the local factor 7, of 7 at v is multiplication by an unramified
character of £(Q,). Since this has to be the case at all but finitely many
primes, weak approximation proves that 7 must be one-dimensional.
Since 7 is cuspidal, this implies P = P,.

To show that m = C, , it remains to verify that t,p, = p,. Fix a
Weyl group invariant scalar product on @, and consider the following
inequality

‘tUPo ‘2 = <tUPo7 tv>
< (tvp,, pu)
= (tvp,; Po)

(16) < Jtup, | ol

The equalities are easy orthogonality relations. The inequality on the
second line follows from t, = wp, € p, — Ta,, where *a, is the closed
positive cone spanned by the positive roots, plus the fact that by our
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assumption on m we have t,p, = A\, € Et§—+ for the central character
A+ of m. The inequality on the last line of (16) is the Cauchy-Schwarz
inequality. We also have the equality

2 2 o |2 2 o2
[top, |” = 8" = [t = 1pol” = [00°]" = lpo
Comparing this with (16), we see that equality must occur on the last
line of (16). By Cauchy-Schwarz, this implies t,p, = p,, and we have
finally verified that P = P, and 7 = C,,. As was mentioned earlier,
this completes the proof. O

| 2

Our next task is to determine the kernel of E%o. We start with a
few facts about the kernel of the operators 7‘7750. The operator Tgo is a

G(A)-invariant linear functional on IDd%Cgpo and induces a duality
C®(Py(ANG(A) ® nd§, Csp, — C
600 — 73, (00)
With respect to this pairing, for any standard parabolic subgroup
P with dima] = 1 the orthogonal complement of C(P(A)\G(A))
is Ind%GtLP(A). For arbitrary P # P,, the orthogonal complement

of C*(P(A)\G(A)) is the kernel of 7p. By theorem 3 applied to
C(Lp,P,/Np,A)*, we have

CE(PANGA) = [ C™(QANG(A)),
dim §§:1

and the orthogonal complement of the intersection is the sum of the or-
thogonal complements since any K-type occurs with finite multiplicity.
We get

(17) kerrf = Y Ind{&Strywm).
QCP
dim a2=1

We will now give the description of the kernel of E%O.
Theorem 6. We have
(18) ker E%O = Z Ind$Gt s, m) @ S(d%) @ Capp.

PEP

dim a? =1

Proof. 1t is clear from (6) that the left hand side of (18) is really con-

tained in the kernel of 57%0' Conversely, let f € Ind%oS (a9) ® Cyp,
belong to the kernel of =% . Define dp € S(a%) by
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where w,, is defined by

= { ) 10800

There is a unique decomposition

f=2 P
Pep
with
fp) € Ind, S(a%) @ C,.

Of course, the map f — fP) is only a map of vector spaces. From the
fact that f € ker E% we will derive

(19) Id®@ 75 )™ =0 € Ind}S(a%) ® Cypp.
By (17) this will imply

fPope Y IdgS(af) ® Strom) @ Capg
ocp
dim a€=1
and prove (18).

Let T be a bljectlve map from the set of vectors pp for P € B to the
set {0;1;.. .y odimag _ — 1} with the following property: If pg € pp —*a9,
then T’ (pp) S T(pg). Here +ag is the closed cone spanned by A,. It
easy to verify the existence of such a function 7. Let P® be the unique
parabolic subgroup with T'(pp) = i. Then PO = P,

It is a consequence of (6) that

(20) =51 = Z (A7) fPép) .

We will prove (19) for P = P@ by induction on ¢ by an investigation
of the constant term of the Eisenstein series occurring in (20). Recall
that for a continuous function 1) on G(Q)\G(A), the constant term with
respect to P is defined by

Uplg) = / (ng) dn,
(Q)\WNg(A)

where the Haar measure dn is normalised by 1p = 1. The necessary
facts about the constant term of Eisenstein series are summarised in
the following lemma, which will be proved after the proof the theorem
is complete.
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Lemma 1. There exists a finite set 20; of affine maps apuy — 6, such
that

(1) (Efo (@A), (9) = D (Niw, N)g) (g) e Hrmtiralol),
we;

where N;(w, \) is a meromorphic function from ap to the space of K-
invariant homomorphisms from C*(P(A)\G(A)) to C=(P,(A)\G(A)).
If w; is defined by

w;: Ape  — G,

Wik A— P

then w; € W, and N;(w;, \)p = ¢. Furthermore, if w € 20; and if
WPpG) = PpG) — Pf() then j <.

Let us assume that (19) has been proved for P = PU) with j < 4. If
1 = 0, this assumption is void. In any case, the induction assumption
implies that the only summands in (20) which are possibly different
from zero belong to the parabolic subgroups PY) with j > i. As a
consequence of (21), the constant term of =% _J may be written as

(“P Z Filg e(Mpo,Hr, (g ))7

AEA
where A is a finite subset of a, and where f) is a continuous function
on G(A) with the property that for any g € G(A), the function f\(pg)
of p € P,(A) is a polynomial in Hp,(p). Since f is in the kernel of E7g%’
we have f, = 0 for any A. Let N = dimap(), let aq,...,ay be the
elements of Apq), and let w; = w,,. We have a unique representation

M) fP = > (]9 @ faan

with fo,, an € Indp(l)

definition of HP and lemma 5.1, we have

Lo elg)= Y (H(ai+1><wi,ﬂpo<g>>ai> Far o (9)-

p. p(i) Po
k=1

Cap,,- By the induction assumption, (20), the

at,...,an=0
This function vanishs identically if and only if f,, ., = 0 for all

choices of the a;. This establishes (19) and completes the proof of the
theorem. 0

Proof of lemma 5.1: The formula (21) is a general fact from the
theory of Eisenstein systems (cf. [Lan76, §7] or the modern exposition
[IMW95, §IV]). In general, the theory of Eisenstein systems provides
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for the possibility of additional polynomial factors of higher degree in
the expression for the constant term. Since this may happen only in
the case of singular infinitesimal character, in our case the expression
for the constant term simplifies to (21).

To get the assertion about N;(w;, A), we consider the partial Eisen-
stein series EX (¢, \), which is defined as in (5), but with the summation
restricted to P(Q)\R(Q). As a general fact about Eisenstein systems,
the constant term of EX (¢, \) is given as in (21), but with the sum-
mation restricted to those w € 2J; whose linear part is the identity on
dr. In the special case R = P, where

ER (¢, \) = el emHrCl) g,

this expression for the constant term boils down to the assertion about

Finally, the fact that the only Eisenstein series Eg(gb, pp) which have
an exponential term of the form e/?»®-f»®) in their constant term are
the Eisenstein series starting from P = P with j < i is a consequence
of our condition on 7" and the proof of the main theorem in [Fra98, §6].

The proof of lemma 5.1 is complete. Q.E.D.

The description of the kernel of E%O is a little too complicated to use
it directly. Therefore we will use it to get a resolution of the space of
automorphic forms by induced representations whose cohomology can
be described easily. This is achieved in two steps. In the first step, we
consider the functor

PP { nd%S(a%) @ Stepm) @ Cop, if P #P,

C IndY S(ad
Ind, S(ag) ® Cap, ifP =P, } C Ind3,S(a;)®Cy,,

The map F(G)”27 is given by the inclusion S (Et%) C S(ap), followed
by the inclusion

6t£ﬁ(A) - Indgétgpm) ® Cng

which holds because of the description of étg(A) as the orthogonal
complement of

Y Cx(P(ANG(4)).

PP,

Proposition 1. The map E%o defines an isomorphism

HY™ (O (F(G)") = Ay
This is the only non-vanishing cohomology group of C* (F(G)*®).
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Proof. Let the functor F* be defined by P = F(G)" if P > P, and
~ Po 3 .~
F*= )" Idi6Sirm @ S(a) @ Cop.

PEP

dim a7’ =1

This is our expression for the kernel of E%O. It is therefore sufficient to

prove the acyclicity of the chain complex of F°.
We have a filtration of functors

D> Ind$S(ag) © Strpmy ® Copp PO P,

Q2P

dim ag:k

> Ind§S(ad) ® Gtrpm) ® Coyy P =P,

QeP

: g _
L dim ag_k

Fil, F =

with quotients

(Fily /Fily ) F = Y~ M(R)",
REP
dim af,=k

where

0 ifQZ R

P _
M(R)” = { 5(a%) ® Ind%, D(Lr)P/N= if Q CR.

The acyclicity of the functors D(Ly)® is the assertion of theorem 4.
This implies the acyclicity of the quotients of the filtration of F., and
hence of F" itself. 0

If P > P,, then the cohomology of the representation F(G)7” is still
rather mysterious. We construct a second resolution for Ay 7 by the
bifunctor

p_ [ Ind§S(af) ® Cyp, it QCP
The map G(G)5_ is given by 72, and the map G(G)5" is given by

the inclusion S(ﬁ%) C S(a%).
Proposition 2. The map

ndy, S(a%, ) © Cap, = G(G)f0 € Z9m% (G2(G))
induces a surjection

md$, 5(a%,) @ Csp, — HI™ (C* (G(G)3))
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whose kernel is equal to the kernel of E%o. This gives us an isomorphism

H™E (C(G(G)2) = Ag 1.
The other cohomology groups of C* (G(G)2) vanish.

Proof. Tt suffices to construct an isomorphism
F(G) ifl=0
l * PyVY
) i (e @0 - { 6 120
which is functorial in P. Let us fix P. Then
G(G)F =nd%S(a%) @ M. ® Cs,,.,

where
Ind2C ifQCP
M Q%2p7 =
e { {0} if Qg P.
If @ C P, then Mg is in duality with C (Lp, (P,/Np),A). An iso-
morphism (22) is therefore given by theorem 3. It is easy to see that
this isomorphism is functorial in P. O

6. CONSTRUCTION OF THE ISOMORPHISM (3.4)

Our final goal is to compute the (g, K')-hypercohomology of the chain
complex C*(G(G)2) and to relate it to the topological model explained
in section 2. We first compute Hf, o ) (C* (G(G)y)) for a given
parabolic subgroup O.

We have the projection

Clmg e2) (C"(G(9)2)) = Clung.xe) (G(9)D)
(1) = Clng.ie) (Ind3Coy) -
By Frobenius reciprocity we have
(2) Clmg.rcz,) (Indécng> =
(1 dg Cng> (hom gy o) (A"(qNmg/qNe),C)),

where the Q(Af)—actlon on the second factor is trivial. The second
factor carries the differential of the standard complex for computing
(g Nmg, K2 N Q(R))-cohomology. The embedding

det(ag, B ng) ® A*(mg/mg N E) C A*(qNmg/qNE)[dim af + dimng)
defines a projection

po: hOke nor) (A" (aNmg/qNt),C) —
— hongoﬂQ(]R) (A* (mg/mg N E) ® det(qu D ﬂQ), (C) [ dim CLQ dim UQ]
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This is a homomorphism of chain complexes, and the differential of its
target vanishes. Let H(G)g" be the graded vector space

G(A
H(9)g1)= (g Cape ) ©
® hongoﬂQ(R) (A* (mg/mg N E) ® det(a% ) I‘lg), (C) [— dim agQ — dim nQ],
which can also be viewed as a chain complex with zero differential. The
composition of (1), (2), and (3) defines a projection

() Clmg. 2, (C7 (G(9)3)) — H(G)o"

Proposition 1. The projection (5) defines an isomorphism on coho-
mology.

Proof. By Frobenius reciprocity and by Kostant’s theorem on n-homology
([Wal88, Theorem 9.6.2] or [Vog81, Theorem 3.2.3]), there is an isomor-
phism

Hioo ko) (Ind$S(a%) ® Csp ) [dimng]

~ G(A - * - -
= 10dZ07) ({ Himg. im0 (©) @ Hig (S(8) @ detng' } @ Cayo )

)
G(A . .l _
(63 IndQ((AJ;)) ({ Himo ke n0(®) (C) @ A*(65) @ detng' } © Coyg)
)

~ Gg(A * * _
= IndQ((AJ;) ({ Himo k2.0 (C) @ E(Q)F" @ detng'} © Cayy)

where the factors in curved braces have trivial Q(As)-action. We have
used the following isomorphism, which is easily constructed:

Hy (S(a5)) = A"(a5) = B(Q"",

where E(Q)” = A*(ah) was considered at the end of section 3. This
isomorphism, and hence also (6), is functorial with respect to P (recall

that E(Q)ﬁgfk is defined by the projection ag — ﬁ%).
If P = G, then the composition of the isomorphism (6) with the

projection

(7) E(Q)Y = A*(a%) — det(ad) [~ dim af)]

is precisely the map defined by (2) and (3) on cohomology. By lemma 4.3,
the projection (7) defines an isomorphism

H (C* (Indé(&i’> ({ Hing xz.00m)(C) @ E(Q)™ @ detng'} @ Cng))> =
> Indg,) ({Hing k.0 (€) © B(Q)" @ det(ad @ no) ™'} @ Cy,)
[— dim ad)],

which proves our claim. O
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We now have to determine the structure of a covariant functor on
H(G)g" such that (5) becomes functorial in Q. We have to introduce
some new notations. For any Q, let the Haar measure on K., N Q(R)
be normalised by [ K..nO(R) dk = 1. Then there is a unique homomor-
phism

Q(Ay) . G(Ay) G(Ayr)
such that we have, for the standard model of the induced representation

in the space of functions on the adelic group,

(8) (Tgf)(gfgoo) _ 7_7?((‘?;‘)) e<HQ(Qoo)72PQ> / f(gfkkfoo) dk;’
KNQ(R)

where g € G(Ay) and goo = Pockw € G(R) with ps, € P(R) and
ks € K2 . Is easy to see that the right hand side of (8) is independent
of the choice of the Iwasawa decomposition g, = Pockiso-

It is clear that (1) is functorial with respect to Q. Let 9O D Q. Since
qgNmg/qNt=qgnmg/qN ¢ the formula

(9) (iQQQ(ﬁ) ()\) = / i (b(k)x) dk
KooNO(R)
for A € A*(@Nmg/qN¢) and
¢ € homgo ~om)(q N mg/qN € C) =homge nom)(qNmg/qNE C)

defines a map

i+ homps no) (4 Nmg/qN ¥, C) — homp, (5m) (GNmg/qNE C).
It follows from (8) that the isomorphism (2) is functorial in Q if the
transition homomorphism for its target is defined by TQQ((I'S; )) ®ig5g- It
is clear that

i550 homis nor) (Ma/q NE® det(ag ©ng), C) C
C hom o g (Ma/qNE® det(agg ®ng),C).

Therefore, we may define H(G)gs-o by TQQ&A;)) ® i55g- To verify that
(3) is functorial in Q, we have to verify that psig~o vanishes on the

kernel of pg. This follows from the following lemma:

Lemma 1. Let H be a semisimple algebraic group over R, K C H(R)
a mazimal compact subgroup, and let P = MAN be a R-parabolic
subgroup of H. Let b, p, m, a, n be the Lie algebras of H(R), P(R),
MR), AR), N(R). If » € Nla®@detn @ A*(m/enm) C A*(h/hNE)

for 1 < dima, then
/ kAXdk =0
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in A*(h/bNe).

Since (1), (2) and (3) are natural in Q, the same is true for their com-
position (5). Therefore, proposition 6.1 together with proposition 5.2
and the proven Borel conjecture imply the following theorem.

Theorem 7. Let H(G)g" be defined by (4), and let H(G)g5o =

TQQ((ﬁ;)) ® iQQQ. Then there we have an isomorphism of Q(Af)-moduleg

HY(G.C)y = B (C* (H(G).7))
which respects the canonical real structures on its source and its target.

It remains to prove lemma 6.1.

Proof of lemma 6.1: By Poincare duality, it suffices to verify that
(10) ¢ (M (a) ® A*(m/mnNE)) =0
for 7 > 0 and any ¢ € hompgo (A*(h/€),C). Recall the definition of

the compact homogeneous space X g? and of the compact duals H(®,
M@ A© from the introduction. Then (10) admits a topological re-
formulation

(1) i (B (X5.€) = B (X[ x A9(R).C)) € H(X[,C)

in terms of the pull-back of cohomology classes from X %) to X 53 X
A©(R). Let J be an integer, and let

fri AOR) x X§ — X3

fila,z) = a’x

be defined by the action of A (R) on X %) and the embedding X 52 C
X g?. To verify (11), it suffices to take some J # 0 and to verify

(12) im(f}) = im(fg)
for the pull-back on cohomology with complex coefficients. For the
right hand side of (12) is always contained in the right hand side of
(11), and for J # 0 the left hand sides of (11) and (12) agree.

As H was supposed to be semisimple, the fundamental group of
H(R) is finite. Since A)(R) is a product of circles, if J is divisible
by a certain positive integer the map

AQR) — HOR)

CL—>CLJ

will be homotopic to the identity. But then fy and f; are homotopic,
and this implies (12).
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The proof of lemma 6.1 is complete. Q.E.D.

For those who are only interested in an algebraic formula for H*(G, C)z,
theorem 7 would be the final result of this paper. It remains to derive
the isomorphism (3.4) from this theorem.

Let

H(G)?" = C™(Q(A)\G(A)) ® hompes o) (A" (mg/mg NE), C),
where the transition maps H(G)<> Q" are given by the embedding
C=(Q(A\G(Af)) € C=(Q(A\G(A)))
and the restriction to mg
hongoﬂQ(R) (A*(mg/mg N E), C) — hongoﬂQ(R) (A*(mé/k N mQ), (C)
If P is a standard parabolic subgroup, then K? N P,(R) meets ev-

ery connected component of K, N P(R) by proposition 2.1.1. Conse-
quently, there is a canonical isomorphism between

7 (C* (E[(g>.*>)wo(Kooﬂ7’o(R))

and the invariants in the hypercohomology of the complex associated
to the functor A(G,C)”

(¢ (H9))) = H(9,C)z = (X, C*(A(G.0))).
This isomorphism identifies the canonical real subspace of its source
with

PHY(X) ,C*(A(G,0))).
To construct (3.4), we construct a duality between H(G)® and

H(G).". Let o be an orientation of the real vector space mg/¢. Mul-
tiplication by a square root ¢ of —1 defines an isomorphism between

mg /€ and the tangent space of X 539 at the origin. Therefore, o and 7

define a orientation o; of the differentiable manifold X S\ng. There exists
5, € 19mM3/Y det(mg /€) such that

/Oi (50 _ idim(mg/é)
x5,
if 9, is viewed as a real dim(mg/€)-form on X gag. We have
0_; = (_1)dim(mg/?)0i’
hence 0, is independent of the choice of i. Then ¢, defines a duality
hongoﬂQ(R) (A* (mg/mg N E) X det(ag ©® I‘lg), C) X hongoﬂQ(R) (A* (mg/mg N E), C)
— C[—dim(mg/¥)],
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and 7,fQ9*s) defines a duality between Indgg(&’; ))C and Indg&; ))CtrQ.
We get a duality

(13) H(G)" ® H(G)." — C[~dim(mg/¥)]

which defines an isomorphism (3.4) which is independent of o since
(13) changes its sign if o is changed. Furthermore, (13) maps the real
subspaces of H and H to i9™M3/OR  whence the assertion about real
subspaces in theorem 2.

7. SOME EXAMPLES

7.1. Ghost classes in the image of the Borel map. It is rather
easy to use the topological model to explicitly compute the kernel of
the Borel map
IS(R),Kgo — H*(G,C).

This allows us to give new examples of ghost classes. Recall that a
cohomology class of G is called a ghost class if it trivially restricts
to each boundary component of the Borel-Serre compactification and
if its restriction to the full Borel-Serre boundary is not zero. This
notion was coined by Borel. The first example of a ghost class was
constructed by Harder in the cohomology of GG L3 over totally imaginary
fields, using Fisenstein series starting from an algebraic Hecke character
whose L-function vanishes at the center of the functional equation. Our
computation of the kernel of the Borel map will make it clear that ghost
classes abund in the image of the Borel map, at least for most groups
of sufficiently high rank.

Recall that H}(G,C)z can be computed as the cohomology of the
complex of graded vector spaces C*(H .*). The map

%/ T7%* ~_G* %
C'(H )= H — g ko
defines a homomorphism
(1) H3(G,C)r — IE(R),KgO

which is easily identified with the Poincare dual of the Borel map.
It can also be viewed as the restriction to the subspaces which are
annihilated by the Hecke ideal Z of the map from cohomology with
compact support to Lo-cohomology. By the definition of the differential
of the complex C*(H""), the image of (1) is the space

(2) (IS(R),KZO)Image = ker (IS(R),K;;O - @ ILP(R),KgOmP(R))-

PeEP

: g _
dim anp=1
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In other words, a cohomology class of the constant representation of G
is in the image of the cohomology with compact support if and only
if its restriction to the cohomology of the constant representation of
any maximal Levi component vanishes. By Poincare duality, the kernel
(1 S(R), Ko, )Kernel Of the Borel map is equal to the orthogonal complement
of (I, G(R).K?. )image- Let (1 G(R). K2, )Ghost be the space of all invariant forms
1€ IE(R% Ko, such that, for any parabolic subgroup P with dim a7g> =1,
the image of j in
I @), k2, nP(®)

belongs to

([.K/IP(R),K‘;OOP(R))KCrnol-
Then the space of ghost classes in the image of the Borel map is iso-
morphic t0 (IGhost/limage + IKCmCl)E(R), Ko - This follows from the fact
([Sch83, 1.10]) that after identifying (g, K)- and de Rham-cohomol-
ogy, the homomorphism defined on (g, K)-cohomology by taking the
constant term along P corresponds to restriction to the Borel-Serre
boundary component belonging to P, and from 7.1.2 below.

Let us explain this a little more in the case of groups over totally
imaginary fields. That is, let G be obtained by Weil restriction from a
totally imaginary field. Then X (gc) has a group structure. Therefore, its
cohomology 1, G(R), Ko, 1S @ Hopf algebra. By the Hopf structure theorem,
it is an exterior algebra over a graded space E*(G) of primitive elements,
which are of odd order. The same is true for all Levi components of
parabolic subgroups of G. Let

Biy(©) = lex (£°(9) — O B(Mo))

dim apzl
and
B @) =ler (E'Q) = @ E'(Mo) ).
PrPeP
dim a7g,:2
Then

(Ig(R)vKgo)Image = E;E‘Op(g) A A* (E*(g))
(IE(R)vKgo)Kernel = det (E’}Op(g>) A A* (E*(g))

(Lem ke ) = At (Einos(9)/Epop(G)) AN (E*(G)/ B, (G)).

For instance, for SL,, over a totally imaginary field K, we have prim-
itive generators )\gv),. ., MY for each v in the set U of archimedean
primes of K, with the relation Zmﬂ? )\gv) = 0. The degree of )\5-1)) is
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2j — 1. The following fact is an obvious consequence of what has been
said above.

Theorem 8. Then a invariant form is in the image of cohomology with
compact support if and only if it is a sum of monomials which contain
one of the classes Y. It is in the kernel of the Borel map if and only
if it 1s divisible by /\mﬁ? PV defines a ghost class if and only if it is

a sum of monomials which contain all of the classes )\S)_)l but none of
the classes A

The space E*(G) is known for groups over totally imaginary fields
by the known calculation of the cohomology of compact Lie groups,
cf. [Borb5, §11] for a statement of the result and for references, and
[GHVT76, §VL.7] for the case of the classical groups. Therefore, the
spaces (IE(R),K&, )Image, Kernel, Ghost € at least in principle known for
groups over totally imaginary fields.

Let us also formulate the result about the kernel of the Borel map
and about ghost classes for SL, over a field K which has real places.
We first have to formulate the necessary facts about the cohomol-
ogy of SU(n,R)/SO(n,R). They can be obtained from the consid-
eration of the Leray spectral sequence for the projection SU(n,R) —
SU(n, R)/SO(n,R), either by hand or by the general theory (cf. [GHV76,
XI.4.4.]).

Proposition 1. If n is odd, then the cohomology with complex coeffi-
cients of SU(n, R)/SO(n,R) is an exterior algebra with generators A3,
)\5, o )\n, where deg)\ = 2i — 1. Furthermore, \i can be obtained
from the primitive element X\; in the cohomology of SU(n,R) by pull
back via the map

(3) SU(n,R)/SO(n,R) — SU(n,R)
g — g-9"

If n is even, then the cohomology of SU(n,R)/SO(n,R) is an exterior
algebra generated by elements X3,y A1 obtained in the same way
as above, and by a class € in degree n, which is the Fuler class of the
canonical n-dimensional orientable real bundle on SU(n,R)/SO(n,R).

If ZZ 1 n; < n, then the restriction of N to

k
(4) [IsU(n: R)/SO(n;,R) C SU(n,R)/SO(n,R)

i=1
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>

1<i<k
n; <l

where 5\1(2) is the copy of N for the i-th factor in (4). If n is even, then
the restriction of the Euler class € to (4) can be described as follows.
If n = Zle n; and if all the n; are even, then the restriction of € is
given by

18

eMA L. .5(1“),
where €° is the copy of € for the i-th factor in (4). Ifn < Zle n; or if
some of the n; are odd, then the restriction of the Fuler class is zero.

Now let K be a field which has at least one real place. Let G be SL,,
over K. If n is odd, then the space of invariant forms is an exterior

algebra with generators 5\5,"), 5\2“),. ., A" for the real places u and
)\év),. .. ’)\g}) for the complex places v (if there are any complex places).

A monomial in these generators belongs to (IS(R% Ko )image if and only

if it contains one of the generators A for a real place u or one of the

generators A for a complex place v. It belongs to the kernel of the
Borel map if and only if it is divisible by

A AA A AR

u real v imaginary
If n is even, then [g(R), Ko, IS an exterior algebra with generators

5\:(,)"), 5\;“),..., 5\,(1"_)1 and €™ for each real place u and )\g’),..., AW
for the complex places v. A monomial in these generators belongs to
(I&R% Ko )image if and only if it contains one of the following factors:

e \ for a imaginary place v.
o cWA )\,(fi)l for real places u and w.
o c(W A )\s)_)l for a real place u and an imaginary place v.

A monomial belongs to the kernel of the Borel map if and only if it
contains at least one of the following two factors:

A MDA N O AN

u real v imaginary
An A
u real v imaginary

where a product over the set of imaginary places is supposed to be
one if the field is totally real. In particular, if n > 2 is even and if
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K is totally real, then ([S(R), Ko, )Image does not contain (IE(R% Ko )Kernel
completely.

We can use this to describe all ghost classes in the image of the Borel
map. If n is odd, then a monomial in the generators of I gy Ko 15

ghost class if and only if it contains all the generators 5\2“_)2 for all the
real places u and all the generators A", and A", for all the imaginary
places v, but none of the generators AW or MY If = 3, this means
that there are no ghost classes in the image of the Borel map (recall
our assumption that K is not purely imaginary).
If n is even, then a monomial y in the generators of [, O(R), K2 defines
a ghost class if and only if at least one of the following four conditions
is satisfied:
e K is not totally real, and p contains all the generators )\S’_)l for

v complex and A", for u imaginary, but none of the classes A\
nor any Euler class ™,

e K is not totally real, and j contains all the generators ™ for u
real and /\S)_)2 for v imaginary, but none of the generators AW

e n > 6 and K is not totally real, and p contains at least one
of the generators £ and all of the generators A, A", and
AY but none of A, A, or AW,

e n > 6 and K # Q is totally real, and p contains at least one
but not all of the generators £ and all of the generators 5\2“_)3,
but none of A™ .

If n = 4 and K is totally real or if n > 4 is even and K = Q, this means

that there are no ghost classes in the image of the Borel map.
In our description of ghost classes, we have used fact:*

Proposition 2. Let P be a standard parabolic subgroup. Then the
image of the restriction map

;g,Koo (C) — :17>+n,KooﬂP(R) (C)

s contained in H;P-FHP,KOOQP(R) (C) c H:lp+n,KooﬂP(R) (C).

Proof. By an easy induction argument, it suffices to prove this assertion
for maximal proper Q-parabolic subgroups. In this case, it follows from
the lemma below that

% ~Y E3 *—dim
mp+n,KooﬂP(R)(C) = mp+n,KooﬂP(R)(C) @ Hmp-g-n,;(PoomP(R)(det n‘B)a

T am indebted to A. Kewenig and T. Rieband for pointing out that this is not
self-evident
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and it follows from 6.1 that the restriction of an element of Hy_ x (C)
never has a non-vanishing projection to the second summand. U

Lemma 1. Let P be a mazimal proper Q-parabolic subgroup of G. Then
(5) H*(np, C)MP =C ®det ’(173[— dim np].

Proof. Let h be a Cartan subalgebra of g which contains a, and is
contained in a, ® mp. Let B C P, be a Borel subgroup defined over
C with h € b, and let A, be the set of simple positive roots of h
determined by B. This set decomposes according to the restrictions to

a,:
Ap= | Aga
acA,N{0}
By a theorem of Kostant ([Wal88, Theorem 9.6.2] or [Vog81, Theo-
rem 3.2.3])

(6) Hp, Q)% Y Fuppop [~
we(h,g)
w’lA;‘P>O

In fact, it follows from the proof given in the above references that
(6) even holds in the derived category of (mp, K. N P(R))-modules.
This implies the splitting of the Leray spectral sequence, which will be
used below. Since both summands on the right hand side of (5) are
accounted for by this formula, it suffices to show that there are at most
two w for which the corresponding summand in (6) contributes to (5).

Indeed, if the summand belonging to w in (6) contributes to (5),
then

for all a € AE”’ and
(8) (@, wpy) = (3, wpy)

for a, 8 € Ay, where A, = A” U {y}. The first of these conditions
implies that w™'a is not only positive but also a simple positive root.
It follows from the second condition (8) that either w™'Ay. > 0 or
w‘lAM < 0. In the first case, w~! maps every positive root to a
positive root, and w is the identity. In the second case, Let v be a root of
h in np. Then v = ' +~"”, where +/ is a linear combination of elements
of Ay, with non-negative coefficients, and 4" is a linear combination of
elements of Af. By our assumption, w1’ is a linear combination of
simple roots with non-positive coefficients. Since 7" does not vanish on
ap, it is not a linear combination of elements of Af. Therefore, there is
an element o € Ay — w_lAf which occurs with negative coefficient in
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the representation of w™'4" as a linear combination of elements of Ay,
Since w™19” is a linear combination of the elements of w‘lAf C Ay,
this means that a occurs with negative coefficient in the representation
of w™ly as a linear combination of positive roots. But this means
that w™' maps all positive roots of h which do not occur in [p to
negative roots. Therefore, the length of w is the largest possible, and
the contribution of w to (6) is in the highest possible degree, which is

one-dimensional and coincides with the second summand in (5) g

7.2. SL, over imaginary quadratic fields. Let K be an imaginary
quadratic field, and let G = resQSL We want to explcitly compute
H(G,C)z. We will directly use the complex C* (H(G)**). Let us first
describe this complex explicitly.

Recall that the cohomology of the constant representation of SL,
over an imaginary quadratic field is the exterior algebra with generators
A2,. .., An. The degree of )\, is 2n—1, and, using the coalgebra structure
of the cohomology of X (gc) = SU(n, C) coming from the group law, \,
is characterised up to multiplication by a non-vanishing number as the
primitive element in degree 2n — 1. We will assume that for k£ <1 < n,
the restriction of \; on SL,, is A, on SL;.

Let the minimal parabolic subgroup be the stabiliser of the full flag
VicVy,C...CV, =K" Then any standard parabolic subgroup
P is the stabiliser of a flag V;, C V;, C ... C V;, for some sequence
0<iy1<ig<...<ixg =mn. Then

K
M’p = H RGSgSLil_ilil, ’iol =0

=1

hence the cohomology of X (C)P is an exterior algebra with generators

DA A

11 ) 12—11" —iKg-1’

AL AW

where the supercript © stands for the [-th simple factor of the Levi

component. If 4, — ¢,_; = 1, there is primitive element of H*(My)

belonging to the [-th factor. Furthermore, the restriction from X (gc ) to

X 537) of the primitve generator )\ is given by
(1) res (i) =y A
Zl Zl 1>k
Finally,
Koo N P(R) = S(U(ll) X U(ZQ — Zl) X ... X U(ZK — iK—l))
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is connected, hence its group of connected components does not inter-
fere with the computation of the functor H(G)**. Therefore, we get
an explicit desription of the functor H(G)** which we now want to
describe.

Let £,(K) be the set of functions

(:{2,...,n} —-{0,1,...}
such that

(2) Zmax{k:“(k:) >} <n.

If the parabolic subgroup P corresponds to 0 < iy < ... < ixg =n, let
2 » be the set of functions

0 (D)2 <k<n1<I<Ik)} —{L....k}
with the property that

(3) Ty(k,l) — In(k)—1 = K
and
(4) 0<ylk,1)<nk2) <...<y(k (k).

Note that ) » is not functorial with respect to P. Let PDOP, nE€Dip,
H €. Let P belong to the sequence 0 < iy < ... <ix =nandlet P

correspond to 0 < iy < ... <igz =mn. Then {iy,... iz} C {ir,... ix}.
We will write n > 1 if
(5) Uity 1 < nrel) < ol

It is clear that for given P, P, and n there is at most one § with
§>1p. Let I” be the vector space with base Dp. Then IT is a
contravariant functor from ‘B to the category of vector spaces if we put

for § €95 C (Ip),
(6) G = 3

By (1), the map

IT[—degl] — H(G)™
n [(k)

)
k,l
p — AAN,

k=21=1
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where

n

(7) deg (=Y (2k — 1)I(k),

k=2
is a functormorphism. We get a direct sum decomposition

(8) HG)™ = B IT[-degl] @ C*(P(A;)\G(Ay)).

€L, (K)

If K;is a good maximal compact subgroup of G(Ay), we also get a
direct sum decomposition for spherical vectors

(9) (H(G)")r = P IT[-degll.
€L, (K)

Let us first formulate our result for spherical vectors in the cohomol-
ogy.

Theorem 9. Forl € £,(K), e € {0,1}, and N <0, let Xy .1 be the
set of ordered N + 1-tuples ¢ = (Xo,..., Xn) of subsets of {2,...,n}
with the following properties:

e Fach number k with 2 < k < n belongs to precisely (k) of the
sets X;.
e We have

N
Zmax #{X;}=n—e
i=0

If1=0, we put Xy = 0. Then for eacht € Xy, H*(C*(I})) has a
generator {¢} in degree N + ¢, and we have

(10) H'(C*(I})) @ P c-{x

e=0 reX;_ eye,l

Consequently,
He0= @ O @ o
[Eﬂn e=0 XE.%J e—degl

Moreover, let the ordering < on the roots which was used to define the
complex C*(F'*) be

X1 — X9 <Tg— T3 <...<XTp_1— Tn.
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Then for y = (Xo,...,Xn) € XN, a representative of the cohomology
class {¢} is given by the element

N #(Xi)
) AR
=0 Jj=2

JEX;

in the cohomology of X(C)P, where P € B is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < #(Xo) < #(Xo) + #(X1) < <Z# Z_:#(X)z

Ifr = (Xo,..., Xn) € Xnagand if 0 < k < N+1, then a representative
of the cohomology class {x} is given by the element

E—1#(Xy) N #(Xi)

(12) DEAA ATAN AN AT
=0 J=2 i=k Jj=2
JjeX; JjeX;

in the cohomology of X(C)P, where P € B is the stabiliser of the stan-
dard flag of vector spaces with dimensions

k—1
0 < #(Xo) < #(Xo) +#(X1) <... <) _#(X) <
=0
k—1
<1+ #(X, 1+Z# <1+Z#
=0

For instance, if n = 2, then the only spherical vector in H}(G,C)z
is the volume form in degree 2. This is in good keeping with the
results of Harder for SLy and also with the computation of R. Staffeldt
[Sta79, Theorem IV.1.3.] which implies that H*(SLy(Z[i]), C) vanishes
in positive dimension. In particular, there are no harmonic cusp forms
for SLy(Z[i]). If n = 3, then H*(G,C)z contains the following three
spherical vectors:

e In degree 4, the cohomology class belonging to

[(k):{1 if k=2

0 otherwise

and r= {{2}} S %0,17[.
e In degree 5, the cohomology class belonging to

[(k):{ 1 ifk=3

0 otherwise
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and r = {{3}} € X0, This class maps to Az in IS(R),KOO'
e In degree 8, the volume form belonging to

1 fk=2o0rk=3
0 otherwise

(k) =

and r = {{2, 3}} S %070,[.
In the case K = Q(7), this can be compared with the computation
by R. Staffeldt ([Sta79, Theorem IV.1.4.] combined with the Borel-
Serre duality theorem [BS73, Theorem 11.4.1.]). It turns out that in
this case all cohomology classes of SL3(Z][i]) can be generated by Eisen-
stein series starting from the constant representation or by the constant

representation itself. In particular, there are no harmonic cusp forms
modulo SL3(Z).

7.3. Homotopy type of a poset of partitions. As the main combi-
natorial tool in our computation of H}(G, C)z for GL,, over imaginary
quadratic fields we use the description of the homotopy type of a par-
tially ordered set of partitions.

In the following, we shall write ‘poset’ for ‘partially ordered set’. Let
BX be the classifying space of the poset X. Notions from homotopy
theory applied to posets or morphisms of posets will have the mean-
ing of these notions, applied to the classifying space of the poset or
morphism of posets. We will freely use the basic techniques for investi-
gating the homotopy of the classifying space of a category, cf. [Qui73]
or the textbook [Sri9l1].

By an ordered partition of an integer n, we mean a tuple (M, o, ..., xp),
where M is the number of intervals in the partition and 0 = zg < 1 <
... < xp = n are the vertices of these intervals. We will say that a
partition (M, g, ..., xy) is finer than or equal to (N, yo,...,yn), and
write

(MVIOa .. .,ZE'M) ﬁ (N7y0a .. '>yN)>
if {yo,...,un} C{zo,...,x0}

Consider a finite set & and a function F': & — {1,2,...}. Let
P, s.r be the set of pairs (f, (M, z1,...,xy)), where (M, xg, ..., xp) is
a partition of n and f: & — {1,..., M} such that x s —z -1 > F(s)
for s € &. In other words, elements of P, g r are ordered partitions
of n in which for each element s € & an interval of length > F'(s) is
marked. The intervals for associated to different elements of & are not
supposed to be different.

There is a partial order < on P, g ¢ for which

(f,(M,zq,...,20)) < (9, (N, y1,- -, yn))
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if and only if (M, xo,...,2xm) I(N, Yo, - - -, yn) and ypsy—1 < Tps—1 <
Ty < Yps) for s € 6. In other words, the partition (M, xo, ..., xn)
has to be finer than (V,yq,...,yn) and the interval in (M, zo, ..., xp)
associated to s by f must be contained in the interval in (N, yo, ..., yn)
associated to s by g.

Ifn < max F(s), the poset P, e is empty. Otherwise, it is con-

tractible since it has a final object (1, (1,0, 7)), where 1 is the constant
function s — 1 on &. Let

pn,G,F = Dn,&6,F — {(1,(1,0,n))}.

We will investigate the homotopy type of ]5,176, r. It will turn out that it
is a wedge of spheres. Before formulating our result, we have to define
the index sets over which the wedge is taken. For 1 < k < #(&) and
e € {0,1}, let M,, g rex be the set of ordered k-tuples (Sy,...,Sy) of
non-empty mutually disjoint subsets of G such that & = Ule Sy and
n=e+3r, I%%XF(S).

S 1

Proposition 1. Ifn = max F(s), P,er is empty. Letn > max F(s).
se se

Fix the basepoint Y4 = <1, (2,0, max F(s), n)) of the poset pmg’p. We
sE

have a homotopy equivalence of pointed spaces
1 #6

(1) Pn.eF: (Bpn,G,F> = \/ \/ \/ Shte?,

¢=0k=1Mpn &, F.,k

where S' is the pointed l-sphere (a set of two points if | = 0). It is
assumed that the wedge over an empty index set s a contractible space.

Moreover, if s = (&y,...,6y) € M, s rok, then the reduced coho-
mology class of its factor in (1) is given by the unrefinable chain of
length k — 1

1’1(5) < $2(5) <...4 l‘k_l(ﬁ),
where
I+1

! k
i(s) = (ff, (B=1> #6,,> #6;,....> #6;= n))
Jj=1 j=1 j=1

and z
fis) = { ]1{; s €Uin &
+1 ifse Sy with k> 0.
Similarly, if (S1,...,6k) € M, s r1k, then any of the following unre-
finable chains of length k is a representative for the reduced cohomol-
ogy class defined by the corresponding factor in the wedge (1). Take
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1<m< k+1, define
1 z'fl<mands€Ui.:16,~
f(m)(s) _ )2 if l>m and s € Uizl S;
! k+1 ifs€ Gpy withk >0and k+1<m
k+2 ifs€ Gy withk >0andk+1>m
for 1 <1 <k and consider the chain

x§m><x2<...<1x,§m>

with

l
2™ (ﬁmxk+2—a§:#ewn
=1

m—1 m—1 m
§2#6“1+§:#6“1+§:#6““w@)
=1 =1 =1

if l <m and
m—1 m
(i ot S o)
i=1 i=1
otherwise.

Proof. Tt is clear that P, e p is empty if n = max F(s). If n =1+
se

ma@x F(s), it is easy to see that f’n,& r consists of two points without
seE

relation, and the theorem follows. Let n > 1+ max F(s).
se

Let A be the poset of all elements (f,(M,z1,...,2n)) € Prer
which satisfy one of the following two conditions:

o f71(1) is empty.
e r; > max F(s).

sef~1(1)
Sincen > 1+ ma@x F(s), P,_1,6r is contractible. We have an embed-
seE
ding

W Pisr— A
defined by
Z.1 ((97 (Nayla"'>yN))) -
:(g+1,(N+1,O,1:y1+1,y2+1,,n:yN—i—l)),

where g+1 is the function s — g(s)+1 on &. We also have a retraction
for iy
r:A—Piasr
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which is defined by

1 ((f?(Maxlw"axM)))
J(f-1,(M—-1,0=21— 1,29 —1,....n—1=apy —1)) ifx; =1
o (f,(M, 0,21 —1,...,2py — 1 =n—1)) if z; > 1.
Since i1 (f, (M, x1, ..., x0)) S(f, (M, 21,...,20)), Poo1,6r 1s a de-
formation retract of A, hence A is contractible.

Let B C f’mgyF be the poset of all (f, (M, z1,...,x))) which satisfy
at least one of the following two conditions:

o (f,(M,zy,...,27)) € A
o M > 2.

We have the obvious inclusion i5: A — B and a retraction ro: B —
A which is defined as follows. If (f,(M,z1,...,2p)) € A, we put
ro((f, (M, z1,...,20))) = (f, (M, x1,...,x5)). TE(f, (M, 21,...,20)) €
B — A, we define a function

h:6—1,....M—1

by

1 if f(s) =1
(2) M@:{ﬂ@—lﬁﬁg>1

and put

(3) Tg((f, (M,$1, e ,I’M))) = (h, (M — 1, Lo, T2y ... ,l’n)) .

It is easy to see that 79 is a morphism of posets, that ryi, = Id, and
that iore (f, (M, x1,...,20)) > (f, (M, x1,...,20)). Therefore, A is a
deformation retract of B, and B is contractible.

Forz € P, s p—B, let B_(z) be the poset of all y € B with y<iz. The
set of all x for which B_(x) is empty can be identified with M,, & 2.
Since no element of P, s can be coarser than z, the fact that B is
contractible gives us a homotopy equivalence

(4) BPer= \/ S(BB.(x)v \/ 5
zEI_DnyevaB Mn,G,F,O,Z
B_(x)#0

where ¥ is the suspension functor.

Let us first assume that & consists of a single element s. The as-
sumption made at the beginning of the proof means that n > F(s)+1.
Then all sets M, g r.r are empty, and we have to show that f’mgyF
is contractible. The only factor in (4) is B_(*X), which has an initial
object

(1,(n— F(s),0,F(s),F(s)+1,...,n)).



48 JENS FRANKE

This completes the proof of the proposition if & has only one element.

Now we assume by induction that the proposition has been verified
for all subsets of &. As above, B_(*X) has an initial object and is
contractible. The other elements of P, ¢ — B for which B_(z) is not
empty are of the form

93:(( lonT )’(27O,maXF(S),n)>,
2on 6 —-T seT

where 7" is a non-empty subset of G such that max F(s)—l—mga;c F(s) <mn,
se S

and for such x we have

B_(x) = pn—rsnea%( F(s),6—T,F-

Then a combination of (4) with the induction assumption gives us

~ -~ ~ 0
BPTL,&F = \/ Z(Bpn—r{rlea%cF(s),G—T,F) \% \/ S
%;% Mn,s,F0,2
max F(s)+max F(s)<n
seT s¢T

Il

S A A

rce Mnfmax F(s),6—T,F,e,k
seT

T
v o\ s

max F'(s)+max F(s)<n
seT s¢T
My s, F0,2

Since the maps
Mn—ma%(F(s),e—T,F,e,k - Mn,G,F,e,k—i—l
sE

(617"'76k—1) - (T7617"'76k—1)

define an isomorphism

U Mn—ma%(F(s),G—ﬂF,e,k = Mn,@,F,e,k—l—lv
TCS s€
TH#0D

max F(s)+max F(s)<n

seT s¢T

this completes the induction argument. The explicit formula for the
reduced cohomology classes defined by the individual factors in the
wedge (1) can easily be verified by induction. O

We now want to explain how one can translate homology computa-
tions for certain posets into assertions about the homology of functors



TOPOLOGICAL MODEL FOR EISENSTEIN COHOMOLOGY 49

from ‘B to abelian groups. Let

p: (X, <) — (B, Q)
be a morphism of posets such that p~1(G) is empty and such that
a.: for G O P 2 Qand z € p~'(Q) there is a unique y € p~!(P)

with y > x.
We define a functor J% , by
wen-1p Cz P CG

(5) Ty = { gf% %

and

C
ISP@) = Yy
y€p (Q)
yx

for z € p~!(P) with P C G and
J)Q(%gl = Z Y.

yep~1(Q)

Proposition 2. Assume condition a. above and assume moreover the
condition

b.: If x1,...,2x € X such that p(x;) is a maximal parabolic sub-
group for 1 < i <k, then there is at most one y € p~(p(x1) N
N p(xg)) with y <x; for all 1 <i < k.

Under these circumstances, we have a canonical i.somorphism
(6) H*(C*(J%,))[1] = H*(BX).

Moreover, let us assume that the differential on C*(J% ) was defined
using the order < on A,. Let £ = (r1 <xo < ...x%) be an unrefinable
chain in X, defining a reduced cohomology class [€] in degree k — 1 on
BX. Then x; cannot be refined, hence it defines a cohomology class in
degree k for Jx,. Let a; be the unique element of AP AP@) Gy
i < k and the unique element of Ay— AL ifi = k, and lete € {1;-1}
be the orientation with respect to < of ay,...,ar. Then (6) maps €]
to exy,.

Proof. Let us define a simplicial complex (Y, X)) as follows. The set of
vertices Y is the set of x € X sucht that p(x) is a standard maximal
parabolic subalgebra. A k-tuple (x1,...,xz) of vertices belongs to the
set X of simplices if there exists an x € X with z < x; for all k. By
conditions a. and b. above, the reduced chain complex for computing
the cohomology of (Y,X) is C*(J%,,)[1]. The proposition now follows
from the well known fact that the barycentric subdivision of a simplicial
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complex is the nerve of its poset of simplices, which in the case of (Y, X)
is X. [

7.4. Proof of theorem 9. We now prove the explicit formulas for the
Eisenstein cohomology which we announced earlier. We are considering
the group G = resggﬁn for an imaginary quadratic field K.

To prove theorem 9, consider [ € £,(K). If [(n) = 1, then 9p
is empty unless P = G, in which case it has precisely one element. It
follows that C*(J37) has a one-dimensional cohomology group in dimen-
sion zero, and no other cohomology. Also, Xy is empty unless N =1
and ¢ = 0, in which case it consists of a single element. This proves
the theorem for those [ with [(n) = 1. The case [(n) > 1 is excluded
by the condition (7.2.2). Therefore we suppose for the remaining part
of this proof that [(n) = 0.

We define the set &, by

Si={(kD)2<k<n1<I<Ik)}

and define the function F': &y — {1,2,...} by F'((k,l)) = k. Since
[(n) = 0, the poset P, &, r defined in the last subsection is not empty.
We have the map

bt pn,G;,F — P
from P, r to the poset P of standard parabolic subgroups which
associates to the tuple (f, (M, iy,...,iy)) the parabolic subgroup of
type 0 < iy < ... < 1y = n, i.e., the stabiliser of the standard flag of
subspaces of succesive dimension i,. The formula (7.3.5) now defines us

a functor Jp . from P to vector spaces whose homology is known
S, Fs

by proposition 7.3.1 and proposition 7.3.2. We will express I ZD as an

“antisymmetrisation” of J g .
n,& JF»DP1

The product of the symmetric groups [ [;_, Sik) acts on the set &, by
permutation of the second entry of the pairs (k,!) which form &,. This
permutation leaves F' invariant, therefore it extends to a action of the
group HZ:2 Sy on the poset P, s, r. This action leaves p; invariant,

therefore it extends to an action of HZ:2 Sir) on the functor J S

We want to consider the antisymmetrisation of Jp _  with respect
n,&,

to this action.
For each parabolic subgroup P, we have an injective map of sets

i: Yip —p; (P)
which maps the element y € 2 p to the element

(Ua(K7i17"'aiK)) € 6[-
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By condition (7.2.3), this element really belongs to &;. Consider an
element (f, (K,i1,...,ix)) of p~'(P). If there exist a k and 1 < [; <
la < I(k), then exchanging (k,l;) and (k,l3) is an odd element of
[T5_s Siw) which leaves (f, (K, i1,...,ix)) fixed. Therefore, the image

of (f,(K,i1,...,ix)) in the anisymmetrisation of J5 _  vanishes.
n, S, F>

Otherwise, the [[,_, Six)-orbit of (f, (K,41,...,ix)) contains an ele-
ment in the image of i, which is unique by (7.2.4). This identifies I}

with the antisymmetrisation of Jp _ .
n, S, F

By proposition 7.3.1 and proposition 7.3.2, the cohomology of J 5 o r b
is a graded vector space with a basis given by the sets M, & per A

permutation p in [[;_, Six) acts on these sets by
m: (61,...,6k) — (7(6y),...,7(S)),

and this action commutes with the action on the cohomology of J 5 oD

We have the map
it XNer — My, FreNt1

which maps the collection Xy, ..., Xy of subsets of {2,...,n} to the
disjoint partition &; = Ujvztl S;, where

S, = {(k, ) e &, ‘ k € X;.1, and there
are precisely [ — 1 elements ¢ with 0 <7 < j and k € X,-+1}.

If (S1,...,9v+1) € My e, rent+1 and if there exist 2 < k < n and
1 <l <y <I(k), then exchanging (k, ;) and (k,l5) is an odd element
of [Ti_y Sixy which leaves (S, ..., Sny1) fixed. Therefore, the image
of the generator belonging to (Si, ..., Sy41) vanishes in the antisym-
metriztion of the cohomology of J 5 Otherwise, the [;_, Sik)-

Pre,rp”
orbit of (Si,...,Sy+1) contains a unique element in the image of j.

We have identified IT with the antisymmetrisation of J - and

the right hand side of (7.2.10) with the antisymmetrisation of the ho-
mology of J [ This proves (7.2.10). By the remarks made before
the formulation of theorem 9, this also completes the computation of
the spherical subspace of H}(G, C)z.

To get a result about the non-spherical vectors in the cohomology,

we have to investigate the cohomology of the functor
~ 7) 0o
Jn,G,F =Jp ®C (P(Af)\g(Af)),

Py s, F,p1

where G is a finite set and F' is a function from & to integers. Since
both the formulation and the proof of the result are straightforward but
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quite unpleasant,the result will be formulated precisely but the proof
will only be sketched. Let 9Q4(&) be the set of partitions

k
m@:U@
=1

into k disjoint pieces. For s € Q4(6), let A s be the set of pairs
(P, §) with the following properties:
e P is a standard parabolic subgroup, stabilising the standard
flag of subspaces of dimensions

_ P _ P _
0=1, <127 <.. <zdlma%—n.
e f is a monotonous map from {1,...,k} to {1,...,dima%} such

that

P
i) ~ )1 = max F(s)

o Ifje{l,... . dima%} —§({1,...,k}), then i; —i;_, = 1.
Note that the rank of P is uniquely determined, it is equal to

k
3(s) =dimaf =k +n—>_ #(&y).

=1

For (P,f) € Us.s,F, let xp5 € P, g r be the element
.G ;
(f‘, (dlm a7>> 11, 7Zdima7g,)) ’

where {# is equal to f(j) on &;. This is a minimal element of P, e r
which lies over P. We get a homomorphism

B cPuNGy) — B (T e r)

(P,5)eUs

Py — Z fpj®wpy.

(P,Hes
If Q is a parabolic subgroup of rank > 9(s), let ’BTQ,E be the set of all
pairs ((73, f), (P, f)) with the following properties:

e We have (P, ), (P,f) €A and Q D P, Q O P.
elet0=if <12 <...< iim .o = n be the dimension of the

spaces in the standard flag defining Q. For each j € {1,... k},
there exists an [ with

uZy <) S
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and

zl 1<Zf()<ll.

In other words, the intervals [ H)— 1+1,zf )] and [iP i) 1+1,zf( )]

are contained in the same interval of the partltlon i<,
e We have

Yo o#6=if iR, -1
1<]<k

-Q Q
i <ifi;) <4

An empty sum is supposed to be zero. Note that by the previous
assumption, the sum on the left hand side of the inequality is

also equal to
> #6;

1)<k
iy <l <ip
We have the homomorphism
bl @ @ — @ C™(P(Ap)\G(Ay))

Qe dima>0(s) ((P.f),(P.]))es,,,  (Phe%
which for ((P,f), (ﬁ,f)) maps f € C°(Q(Af)\G(Ay)) to f & (P,f) —
f® (P,§). Similarly, let CTQ,ﬁ be the set of all (P,f) € s such that
P C Q9 and such that there exists an [ with

if—ig, —1> > #6;
1<j<k

i, <ifl ;) <ip?
Let ¢! be the obvious map

D D AN~ D CF(PA)\I(A)).

Q€ dim ag>0(s) (P,pec, (P.p)eAs

Theorem 10. The kernel of as is equal to the image of bl & ¢, and
we have an isomorphism of G(Ay)-modules

1 m(Cen) =@ P cokerbT@cw o(s)].

k 5€£h

To prove the theorem, one filters Jn .7 by the subspaces

B CTRANIA)) @ Tp

REP
RCP
dima%gk
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defines a similar filtration on the sources of as, b and ¢!, and derives the
theorem for the grading from proposition 7.3.1 and proposition 7.3.2.

To compute H*(G,C)z, recall that I7 is the antisymmetrization of
J n.e ¢ With respect to the group [[}_, Six) and note that (1) identifies
the action of this group on the cohomology of J, &, with the action on
the right hand side of (1) derived by permutation of the elements of the
set Qx(Sy). If therefore QP"(S)) is the set of all s = (&4,...,6;) €
Q1(6)) such that if 1 <[ <ly < [(m) and (m, ;) € &;, and (m,[y) €
G, then i; < iy, then we get

Theorem 11. We have a canonical isomorphism

(2) H*(G,C)r = @ @ @ coker(b! @ c¢[)[—0(s) — deg I].

l€Ln(K) k s€Qpon (&)

7.5. The case SL,(Z). Here we consider the case G = SL,,. We want
to explicitly compute the space of spherical vectors in H*(G,C)z and

to compare the result with computations by C. Soulé and J. Schwermer
for n = 3 and by R. Lee and R. H. Szczarba for n = 4.

We start with an explicit description of the spaces H (G )P*Kf . Recall
that the minimal parabolic subgroup P, is the stabiliser of a standard
fullflagV; € Vo C ... C V,, = K”. Let P be the stabiliser of the subflag
Vi, C Vi, C ... CV,, for some sequence 0 < iy < is < ... < i = n.
Then

K
MP - H SLil—ilfr
=1

By proposition 7.1.1, the cohomology of X E\C/%p is an exterior algebra
which, for 1 <[ < K, has the following generators:

" SO0 50 g i s odd
)\gl), )\él), e )\;) LeW if i — iy is even.

The group

WQ(SO(TL,R) N ,CP(R)) = {O’l, ceey

-

acts on this cohomology algebra, and only the invariants will contribute
to H (Q)P*Kf . Using the fact that )\El) is obtained by pull-back with
respect to (7.1.3), one easily sees that the classes )\El) are mo (SO(n, R)N

Lp(R))-invariant. However, conjugation by an element of O(n,R) —
SO(n,R) changes the orientation of the canonical n-dimensional real

bundle on SU(n,R)/SO(n,R), hence (O’,) € m(SO(n,R) N Lp(R))



TOPOLOGICAL MODEL FOR EISENSTEIN COHOMOLOGY 55

maps ) to o). This means that a monomial y in the generators (1)
is 7o (SO(n, R) N Lp(R))-invariant if and only if one of the following
cases OCCUIs:

e 4 contains no Euler class .
e The numbers 7, — 4;_; are all even, and p contains all Euler
classes €.
It follows that
: K M7 n odd
2 ao"* - { 1]

(o © M} n even,
where

M’(f) = {monomials in the 5\@(1)}

and

K _Q L < if all the numbers ¢,
“M;T = [~ " - ¢ monomials in the A, 1<1< K, are even.

{0} otherwise.

The explcit formulas for the restriction of cohomology classes in propo-
sition 7.1.1 show that for n even the decomposition (2) is functorial in

P.

We first give an explicit formula for the first summand in (2). Let

o {3,....n} if n is odd
Odd<: _{ {3,...,n—1} if nis even.

Let £,(Q) be the set of functions
[: Odd<, — {0,1,...}
satisfying the condition
(3) Y max {k € Odd<, |I(k) > j} <n.
j=1

If the parabolic subgroup P corresponds to 0 < iy < ... < ix =mn, let
). p be defined in the same way as in the case of imaginary quadratic
fiels, i.e., as the set of functions

p: {(k,0) |k € O0ddey, 1 <1< U(k)} — {1,....k}

with the properties (7.2.3) and (7.2.4). For PDOP,ye D p, and
D € Y5 let the relation § >y be defined by (7.2.5). Then the vector
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space I] with base Q) p is functorial in P by formula (7.2.6), and there
is a functor isomorphism

(4) e @ —deg ]

el

which maps t to

(k)
A AN

keOdd<,, I=1
The degree deg | is defined in the same way as for imaginary quadratic
fields, by (7.2.7).
Let
S ={(k,1) |k € Odd<,,1 <I<I(k)},

and let F'(k,l) = k. Asin the case of imaginary quadratic fields, I7 can

be identified with the antisymmetrisation of Jp5 P with respect to
the product of symmetric groups erOdd<n Sik) As a result, we get a

description for the first summand in (2) which is similar to (7.2.10).
Theorem 12. Forl € £,(Q), e € {0,1}, and N <0, let Xn,, be the

set of ordered N + 1-tuples ¥ = (Xo, ..., Xn) of subsets of {Odd<,}
with the following properties:

o Each number k € Odd<,, belongs to precisely [(k) of the sets X;.
o We have

Zmax#{X} =n—e.

If1=0, we put .'{Ne[— @ Then for eacht € Xy .1, H*(C*(I})) has a
generator {¢} in degree N + ¢, and we have

o) @ e

Consequently, the cohomology of the ﬁrst summand in (2) is given by
(o)) = @ ea B o
l€Ln(K) ¢=0 reX; ;. qeg1
These cohomology classes are given by formulas similar to (7.2.11) and
(7.2.12), with )\y) replaced by )\y).

If n is odd, this is the only summand in (2), and the computation of

H*(G, (C)f "is complete in this case. For instance, if n = 3, the only
possible [ are [(3) = 1 or [(3) = 0. In the second case, the Xy are
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empty by definition. In the first case, the only element of the sets Xy
is {{2}} € X0, which gives us the volume form in degree 5. This
compares well to the result of Soulé [Sou78, theorem 4], which implies
that H*(SL3(Z), C) vanishes in positive dimension. In particular, there
are no harmonic cusp forms for SL3(Z).

If n is even, then we still have to compute the cohomology of the
second summand ¢M ’(f) in (2). Let °£,(Q) be the set of functions

[: Oddgn_l — {0, 1, .. }

satisfying the condition
(5) > <1 + max {k € Odd<,_1 |(k) > j}) < n.

j=1
If the parabolic subgroup P corresponds to 0 < iy < ... < ix =mn, let
“Yp be empty of one of the numbers 7; is odd, and be equal to the set
of functions

p: {(k, 1) |k € Oddey_1,1 <1< (k)Y — {1,... Kk}

with the properties (7.2.3) and (7.2.4) if all numbers i) are even. The
vector space °I” with base °Q)p is functorial in P by by formula (7.2.6),
where the relation > is defined by (7.2.5), and there is a functor iso-
morphism

(6) ‘MP = P IT[—n—degl]
€ g,(Q)

which maps y to

K (k)
A0 A AR,
j=1 =1

Let
‘Sr={(k,l) |k € Odd<,—1,1 <1 <IU(k)},

and let F(k,1) = k. Recall the poset P, g p consisting of partitions
of n which have for each s € S, a piece of length > F'(s) marked, and
recall the projection

pi: Poes r — B
which sends a partition of n to the corresponding parabolic subgroup
of GL,,. Let }A’n,[ C pmegh r be the subposet of all partitions of n into
even pieces, together with a map which for each s € *G; marks a piece
of length > F'(s), and let p; be the restriction of p; to ]5”7[. Then °I?
can be identified with the antisymmetrisation of J })n,[,ﬁ[ with respect
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to the product of symmetric groups erocld<n,1 Sy Proposition 7.3.2

can be applied to J% and gives us an isomorphism

€&, FPl

(C*(.r )) ~ [I*(BP,)).

n(pl

On the other side, the homotopy type of the poset

A

PTL[_P”GG 1+F

is given by proposition 7.3.1. We arrive at the following explicit de-
scription of the second summand in (2).

Theorem 13. If n =2, we have

H* <0*(e E%)) ~ C[2].

Forn>2andle€°L,(Q), e {0,1}, and N <0, let “Xn . be the set
of ordered N + 1-tuples ¢ = (Xo, ..., Xn) of subsets of {Odd<,_1} with
the following properties:

e Each number k € Odd<,_; belongs to precisely (k) of the sets

Xi-
e We have
N
> (14 max{X;}) =n — 2.
=0

Iftl =0, we put “Xy 1= 0. Then for eacht € *Xy .1, H*(C*(°I})) has
a generator {r} in degree N + ¢, and we have

(C* eIo) ee? 6699 C-{r}.

Consequently, the cohomology of the second summand in (2) is given
by

e ()~ @ @ D c
lee L, (K) e=0 re°X; ¢ _pn_degt

Moreover, let the ordering < on the roots which was used to define the
complex C*(F'*) be

X1 — X9 <Tg— T3 <...<XTp_1— Tn.
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Then forr = (Xo, ..., Xn) € XN, @ representative of the cohomology
class {¢} is given by the element

(7) ;V\ (6“ #7{ \ )

in the cohomology of X(C)P, where P € B is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < 14 #(Xo) <2+#(X0)+#(X1)
<N—1+Z# <N+Z#

Ifr = (Xo,...,Xn) € “Xpn1u cmd if 0 <k< N—|— 1, then a representa-
tive of the cohomology class {¢} is given by the element

N-1 k—1#(X;) N #(Xi)
(8) DEAON AN A/\ A AT
i=0 ZO)JE)?_ ijG)?

in the cohomology of x© »» where P € B is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 <1+ #(Xp) < 2+ #(Xo) + #(X)) < <k‘+Z#

k—1
<k+2+) #(X) < N+2+Z# <1+Z#
=0

In the case n = 4, we have the vector degree 6 in the first summand in
(2) defined by [(3) = 1and r = {{3}} € Xo,1,. In the second summand,
we have the cohomology class defined by I(3) = 1 and ¢ = {{3}} €
°X0,0,. It is the volume form in degree 9. These are all spherical
vectors in the cohomology with compact support, since H Z'(SLLL(Z), Z)
is of dimension one if i € {0; 3} and zero otherwise, by the computation
of Lee and Szczarba [LS78, Theorem 2]. Again it turns out that there
are no harmonic cusp forms modulo SL4(Z). One may ask if this is
true for all the groups SL,,(Z).

It is also possible to give a full computation of H*(G,C) for G = SL,,.
It has a decomposition similar to (2) into a summand containing no
Euler classes and, for n even, a summand containing the Euler classes.
The first of these summands is given by (7.4.2). The second summand
is similar to (7.4.2), however, the definition of the summands in (7.4.2)
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has to be modified by allowing only parabolic subgroups corresponding
to decompositions of n into even pieces. It is also possible to generalise
this to SL,, over arbitrary number fields. The only difference to the
cases treated here is that the cohomology with compact support of
the Levi components has addtional generators in dimension one, which
complicate the formulation of the result even more.

SELECTIVE INDEX OF NOTATION

This is a selective index of the mathematical notations which are most
frequently used. They are listed according to the order in which they

are introduced in the text.

Igm) Ko

section 1, p. 2

c (c)
g( )(R)7 Xg

section 1, p. 2

ga K7 Kfa Kooa Kgoa PO) »CP,
MP7 NP, 'Coa ‘Coy Noa Ag7 Mga 0

section 2, pp. 56

G(A), G(A)s, G(A)y, Kg,
Ap(R)T) Ag(R)*

section 2, p. 6

g, U(g), 3(g)

section 2, p. 6

Q = = =0
ap, Qo, p, ap, o, Gp

section 2, p. 6

Aoa Afa AP A%a Poy PP, p%

section 2, pp. 6-7

(g, K)-module, (Af)-module,
C(G(Ar,K)), C=(P(A)\G(A))

section 2, p. 7

H*(Q,C), H:(ga(c)a 5357 ISa
H*(G,C), H:(G,C)r

section 3, (1), pp. 7-8

mgv FPQQ7 FPQQ; C*(F.)u
C*(F.), C*(F%), C*(FT),
C*(F?)

section 3, (2), (3),
pp- 89

A(gv KgovR)v A(Q,KZO,C)

section 3, pp. 9-10

G(Ar) §G(Ay)
%P(Af)’ Snp(**f)

section 3, (5), p. 10

B(Q,R)*, B(Q,R).

section 4, lemma 1,
pp. 12-13

C(G,R,As)*

section 4, theorem 3,
p- 13

Ghs) 0(As) :
Briany: Bpiaz)r Stoms), Stoas)

section 4, (2), p. 15

D(G)"

section 4, (3),
theorem 4, pp. 15-16
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section 4, (4),

E(R)®, det
(R)*, lemma 3, p. 17
J, Ay section 5, pp. 17-18
Agz section 5, (3), p. 18
Hp(g) section 5, (4), p. 19
g 0 o section 5, (5)
E’P((bv )‘)7 Q’P (A)a T’P Pp. 19726 ’
G\ — section 5, (9), (10
S(Cl%), :793 ) ( )7 ( )’
pp- 20-21
section 5
F(g)* .
(9) proposition 1, p. 27
section 5,
G(9): proposition 2,
pp. 28-29
Pa section 6, (3),
pp- 29-30
HG)o' section 6, (4), (5),
Q proposition 1, p. 30
Q(Ay) .
TP(Aff) section 6, (8), p. 31
550 section 6, (9), p. 31
p subsection 7.3,
mGF pp. 44-45
]5,176,1:, M, Fek subsection 7.3, p. 45
REFERENCES
[BC79] Armand Borel and William Casselman, editors. Automorphic Forms,
Representations, and L-Functions, volume XXXIII:1,2 of Proceedings of
Symposia in Pure Mathematics, Providence, RI, 1979. American Mathe-
matical Society. Proceedings of a conference held at Oregon State Uni-
versity, Corvallis, July 5—August 11, 1977.
[Bor55]  Armand Borel. Topology of Lie groups and characteristic classes. Bulletin
of the American Mathematical Society, 61:397-432, 1955.
[Bor74]  Armand Borel. Stable real cohomology of arithmetic groups. Annales Sci-
entifiques de I’Ecole Normale Supérieure, 7:235-272, 1974.
[BS73]  Armand Borel and Jean-Pierre Serre. Corners and arithmetic groups.
Commentarii Mathematici Helvetici, 48:236-491, 1973. See also Borel’s
collected papers, Volume III, p. 244-491.
[BS76]  Armand Borel and Jean-Pierre Serre. Cohomologie d’immeubles et de

groupes S-arithmetiques. Topology, 15(3):211-232, 1976.



62
[BT65]
[BT72]

[BWS0]

[Car79)
[FMTS9]
[Fra9s]

[FS91]

[GHV76]

[Har87]

[Har91]

[LanT76]
[LST78]
[MW89]

[MW95]

[Qui73)

[Sch83]

[Sou78|
[Spe83]

JENS FRANKE

Armand Borel and Jacques Tits. Groupes réductifs. Inst. Hautes Etudes
Sci. Publ. Math., 27:55-151, 1965.

Armand Borel and Jacques Tits. Complements a D’article “groupes
réductifs”. Inst. Hautes Etudes Sci. Publ. Math., 41:253-276, 1972.
Armand Borel and Nolan R. Wallach. Continuous cohomology, discrete
subgroups, and representations of reductive groups, volume 94 of Annals
of Mathematics Studies. Princeton University Press and Tokyo University
Press, 1980.

Pierre Cartier. Representations of p-adic groups. A survey. In Borel and
Casselman [BC79], pages 111-155. Volume 1.

J. Franke, Yu. I. Manin, and Y. Tschinkel. Rational points of bounded
height on Fano varieties. Invent. Math., 95:421-435, 1989.

Jens Franke. Harmonic analysis in weighted Lo-spaces. Ann. Sci. Ecole
Norm. Sup. (4), 31:181-279, 1998.

Jens Franke and Joachim Schwermer. Decomposition of spaces of au-
tomorphic forms and rationality properties of automorphic cohomology
classes for GL,,. To appear in Annales Scientifiques de I’Ecole Normale
Supérieure, 1991.

Werner Greub, Stephen Halperin, and Ray Vanstone. Connections, Cur-
vature, and Cohomology. Volume III., volume 47-111 of Pure and Applied
Mathematics. Academic Press, 1976.

Giinter Harder. Eisenstein cohomology of arithmetic subgroups. the case
GLo. Inventiones Mathematicae, 89:37-118, 1987.

Giinter Harder. Some results on the Eisenstein cohomology arithmetic
subgroups of GL,,. In Jean-Pierre Labesse and Joachim Schwermer, edi-
tors, Cohomology of Arithmetic Groups and Automorphic Forms, volume
1447 of Lecture Notes in Mathematics, pages 85—153. Springer, 1991. Pro-
ceedings, Luminy/Marseille 1989.

Robert P. Langlands. On the functional equations satisfied by Eisenstein
series, volume 544 of Lecture Notes in Mathematics. Springer, 1976.
Ronnie Lee and R. H. Szczarba. On the torsion in K4(Z) and K5(Z).
Duke Mathematical Journal, 45(1):101-129, March 1978.

C. Moeglin and J.-L. Waldspurger. Le spectre résiduel de GL(n). Ann.
Sci. Ecole Norm. Sup. (4), 22:605-674, 1989.

Colette Moeglin and Jean-Loup Waldspurger. Spectral Decomposition and
Eisenstein Series, volume 113 of Cambridge tracts in mathematics. Cam-
bridge University Press, 1995.

Daniel G. Quillen. Higher algebraic K-theory I. In Higher K -Theories,
volume 341 of Lecture Notes in Mathematics, pages 85-147. Springer,
1973.

Joachim Schwermer. Kohomologie arithmetisch definierter Gruppen und
FEisensteinreihen, volume 988 of Lecture Notes in Mathematics. Springer,
1983.

Christophe Soulé. The cohomology of SL3(Z). Topology, pages 1-22, 1978.
Birgit Speh. A note on invariant forms on locally symmetric spaces. In
Peter C. Trombi, editor, Representation Theory of Reductive Groups, vol-
ume 40 of Progress in Mathematics, pages 197-206. Birkh&user, 1983.



TOPOLOGICAL MODEL FOR EISENSTEIN COHOMOLOGY 63

[Spr79] T. A. Springer. Reductive groups. In Borel and Casselman [BC79], pages
3-27. Volume 1.

[Sri91] V. Srinivas. Algebraic K -Theory, volume 90 of Progress in Mathematics.
Birkh&user, 1991.

[Sta79] Ross E. Staffeldt. Reduction theory and K3 of the Gaussian integers.
Duke Mathematical Journal, 46(4):773-798, December 1979.

[Vog81] David A. Vogan. Representations of real reductive Lie groups, volume 15
of Progress in Mathematics. Birkh&user, 1981.

[Wal88] Nolan R. Wallach. Real Reductive Groups I, volume 132 of Pure and
applied mathematics. Academic Press, Inc., 1988.

UNIVERSITAT BONN, BERINGSTRASSE 1, 53115 BONN, GERMANY
E-mail address: franke@@rhein.iam.uni-bonn.de



