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1. Introduction

Let G be a semisimple algebraic group over Q, let G(Q) and G(A)
be its rational and adelic groups, and let K ⊂ G(A) be a good max-
imal compact subgroup. Let K = KfK∞ with K∞ ⊂ G(R) and
Kf ⊂ G(Af), where G(Af) is the finite adelic group and G(R) is the
group of real points. By our assumption on G, we know that G(R)
and K∞ are connected Lie groups (cf. proposition 2.1.1 below). Then
the cohomology of the congruence subgroup Γ = G(Q) ∩ Kf can be
computed by

(1) H∗(Γ,C) = H∗ (G(Q)\G(A)/K∞,C)Kf ,
1
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where the superscript Kf stands for the subspace of Kf -invariants in
the G(Af)-module

(2) H∗ (G(Q)\G(A)/K∞,C) : = colim
K

f
H∗
(

G(Q)\G(A)/Kf
K∞,C

)

.

The inductive limit is over all open subgroups K
f ⊆ Kf . It is clear

from the definition (1) that the Hecke algebra H = C∞
c (Kf\G(Af)/Kf )

of compactly supported Kf -biinvariant functions on G(Af) acts on
H∗(Γ,C). Let

I : =
{

f ∈ H = C∞
c (Kf\G(Af )/Kf)

∣

∣

∣

∫

G(Af )

f(g) dg
}

= 0

be the ideal of elements of H which act trivially on the constant rep-
resentation. Since H∗(Γ,C) is a finite dimensional vector space, any
element of H∗(Γ,C) is annihilated by a finite power of an ideal of finite
codimension in H. Therefore, the subspace

H∗(Γ,C)I = {x ∈ H∗(Γ,C) |Inx = {0} for some n > 0}

is a direct summand ofH∗(Γ,C) which, among other elements, contains
the constant cohomology class in dimension zero. One of the aims of
this article is to study the space H∗(Γ,C)I.

Our main result gives a topological model for H∗(Γ,C)I. We first
recall the topological model for the cohomology of the constant rep-
resentation of G(R), which maps to H∗(Γ,C)I. Let I∗G(R),K∞

be the

algebra of G(R)-invariant differential forms on the symmetric space
G(R)/K∞. Such forms are closed and give rise to G(Af)-invariant el-
ements in H∗ (G(Q)\G(A)/K∞,C). We get a map of graded vector
spaces

I∗G(R),K∞
→ H∗(Γ,C)I.

Furthermore, H∗(Γ,C)I is a I∗G(R),K∞
-module since multiplication by

G(Af)-invariant cohomology classes, unlike the rest of the multiplica-
tive structure, commutes with the action of the Hecke algebra. Let
G(c)(R) ⊂ G(C) be a compact form of G(R) such that K∞ ⊂ G(c)(R).

Then the homogeneous space X
(c)
G : = G(c)(R)/K∞ is the compact

dual of G(R)/K∞. The complexified tangent spaces at the origins of

X
(c)
G and of G(R)/K∞ can be identified, and one gets an identification

of I∗G(R),K∞
with the space of G(c)(R)-invariant forms on X

(c)
G . The

space of G(c)(R)-invariant forms on X
(c)
G is equal to the space of har-

monic forms (with respect to a G(c)(R)-invariant metric) on X
(c)
G /K∞,

hence it is isomorphic to H∗(X
(c)
G ,C). We get a multiplicative isomor-

phism between I∗G(R),K∞
and H∗(X

(c)
G ,C)π0(K∞).
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Our topological model for H∗(Γ,C)I consists of a canonical isomor-

phism of I∗G(R),K∞

∼= H∗(X
(c)
G ,C)-modules from H∗(Γ,C)I onto the

invariants of a certain group in H∗(UG,C), where UG ⊂ X
(c)
G is a

certain open subset. To give the definition of UG, we first have to in-
troduce some new notations. Let Po be a minimal Q-rational parabolic
subgroup of G. We consider standard parabolic subgroups P ⊇ Po. Let
NP ⊂ P be the radical of P and let LP = P/NP . Let

(3) MP : =
(

⋂

χ∈X∗(LP)

ker(χ)
)o

be the connected component of the intersection of the kernels of all
Q-rational characters of LP . To make sure that our constructions do
not depend on such a choice, we will never choose a Q-rational section
LP → P of the canonical projection P → LP . We will however use
the fact that the projection P ∩ θ(P) → LP , where θ is the Cartan
involution defined by K∞, is an isomorphism of algebraic groups over
R. This identifies LP(R) and LP(C) with subgroups of G(R) and
G(C). Using this identification, the compact form of MP

M(c)
P (R) = MP(C) ∩ G(c)(R)

becomes a subgroup of the compact form of G, and the compact dual

X
(c)
MP

= M(c)
P (R)/(K∞ ∩MP(R)) ⊂ X

(c)
G

of the symmetric space defined by MP becomes a subset of the compact
dual of the symmetric space defined by G. We put

(4) UG : = X
(c)
G −

⋃

P⊇Po

X
(c)
MP

.

The group K∞∩Po(R) acts on X
(c)
G by left translations and leaves U G

invariant. The action of K∞∩Po(R) on the cohomology of X
(c)
G is triv-

ial, the action on the cohomology of UG factorises over the finite group
of connected components π0

(

K∞ ∩Po(R)
)

. With these definitions, we
can formulate our main result about H∗(Γ,C)I.

Theorem 1. There is a canonical isomorphism of I∗G(R),K∞

∼= H∗(X
(c)
G ,C)-

modules

(5) H∗(Γ,C)I ∼= H∗(UG,C)K∞∩Po(R).

Furthermore, elements of H∗(Γ,C)I, which by definition are annihi-
lated by some power of I ⊂ H, are already annihilated by I itself.
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The map I∗G(R),K∞
→ H∗(Γ,C) was first studied by Borel [Bor74],

who proved that it is an isomorphism in low dimension. SinceH∗(Γ,C)I
is a direct summand of H∗(Γ,C), the question of non-injectivity of
Borel’s map (which was studied by Speh [Spe83]), can be understood

in terms of restriction of cohomology classes from X
(c)
G to UG. Our

interest in this particular summand was, however, motivated by the
fact that it is an important model case for the effects produced by the
singularities of Eisenstein series when one studies the cohomology of
congruence subgroups in terms of automorphic forms. Our method of
studying H∗(Γ,C)I uses the results of [Fra98]. It consists of express-
ing H∗(Γ,C)I as the (g, K)-cohomology of a direct summand of the
space of automorphic forms and of representing this space in terms
of Eisenstein series. The Eisenstein series which are of interest are
the Eisenstein series starting from the constant functions on the Levi
components of standard parabolic subgroups, evaluated at one half the
sum of the positive roots. There are many singular hyperplanes which
go through this parameter, and the iterated residue of the Eisenstein
series is the constant function on G(A). The contributions from the
Eisenstein series starting from a given parabolic subgroup is therefore
no direct summand of the space of automorphic forms, but only a quo-
tient of a suitable filtration on the space of automorphic forms. The
problem of understanding these extensions was the main motivation
for writing this paper. For GL2 over algebraic number fields the sum-
mand of the cohomology considered in this paper has been computed
by Harder ([Har87, Theorem 4.2.2.]). There are probably more explicit
calculations for rank one cases and also some for rank two cases, for
instance in [Sch83]. These authors do not use topological models to
describe the Eisenstein cohomology, they arrive at explicit formulas.

We can more generally study the G(Af)-module of all elements x in
the cohomology H∗ (G(Q)\G(A)/K∞,C) which at all but the finitely
many ramified places are annihilated by some power of I. Again it
turns out that the first power is sufficient. Let H∗(G)I be the space of
cohomology classes x with that property. Then H∗(G)I can be iden-
tified with the K∞ ∩ Po(R)-invariants in the hypercohomology of a

complex of sheaves with G(Af )-action on X
(c)
G . It turns out that the

hypercohomology spectral sequence for this complex degenerates, and
that the limit filtration can be described in terms of the G(Af )-action.
However, Hilbert modular forms and SL3 over imaginary quadratic
fields provide easy examples that the limit filtration will usually not
split in the category of G(Af)-modules. To get a complete picture of
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H∗(G)I as a G(Af)-module, one may be forced to carry out the labo-
rious work of explicit calculations for the various families of algebraic
groups. As an example, we carry out explicit calculations for SLn over
imaginary quadratic fields. This example shows that while explicit
calculations for the various series of classical groups should be possi-
ble, the topological model provides a much more vivid picture of the
cohomology.

By the work of Moeglin and Waldspurger [MW89], the residual spec-
trum of GLn over a number field is now completely understood. The
structure of the residues is quite similar to the case investigated in
this paper. Therefore there is some hope that our methods can be
used to completely understand the Eisenstein cohomology of GLn in
terms of the cuspidal cohomological representations. Compared with
this paper, one has to expect two difficulties. Firstly, there is the pos-
sibility of “overlapping Speh segments”. In this case, the structure of
the Eisenstein cohomology may depend on whether some automorphic
L-function vanishes at the center of the functional equation. This effect
was first found by Harder [Har91, §III] in the case of GL3 over imag-
inary fields. As a second complication, the Borel-Serre-Solomon-Tits
theorem 3 in this paper will not suffice. One needs a Solomon-Tits type
theorem with twisted coefficients, which investigates the cohomology
of a complex formed by normalised intertwining operators. I hope that
the methods of this paper are flexible enough to extend to this new
situation.

The author is indebted to J. Arthur, D. Blasius, M. Borovoi, G.
Harder, J. Rohlfs, J. Schwermer and C. Soulé for interesting discus-
sions on the subject and methods of this paper. In fact, it was after
a discussion with C. Soulé and G. Harder that he realised the need
for passing to the space of invariants in (5). He also wants to use
this occasion to thank the mathematics department of the Katholische
Universität Eichstätt and the Max-Planck-Institut für Mathematik in
Bonn (where this paper was written) and the Institute for Advanced
Study, the Sonderforschungsbereich “Diskrete Strukturen in der Math-
ematik”, and the mathematics department of the Eidgenössische Tech-
nische Hochschule Zürich (where [Fra98] was written) for their hospi-
tality and support.

2. Notations

We will study connected reductive linear algebraic groups G over
Q. Let K = KfK∞ be a good maximal compact subgroup of G(A),
decomposed into its finite adelic factor Kf and its real factor K∞. Let
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θ be the Cartan involution with respect to K∞, and let K
o
∞ be the

connected component of K∞. We denote by Po a fixed minimal Q-
rational parabolic subgroup of G. Unless otherwise specified, parabolic
subgroups P will be supposed to be defined over Q and to be standard
with respect to Po. Let NP be the radical of P, and let LP = P/NP

be the Levi component. Unless P = G, we will not think of LP as a
subgroup of P. We will, however, identify L ×Spec Q SpecR with the
R-rational algebraic subgroup P ∩ θ(P) of LP . Let AP be a maximal
Q-split torus in the center of LP , and let MP be defined by (1.3), such
that LP = APMP is an isogeny. In the case P = Po, we will write
Mo, Ao, No instead of MPo

, APo
, and NPo

. In the case P = G, AG

is a maximal Q-split torus in the center of G, and MG is generated by
the derived group of G and the Q-anisotropic part of the center of G.

Let G(A) be the adelic group of G. If S is a subset of the set of
valuations of Q, let G(AS) be the restricted product over all places
v ∈ S of the groups G(Qv). In the special case where S is the set of finite
primes, this is the finite adelic group G(Af ). Let KS = K ∩ G(AS).
For a parabolic subgroup P, let AP(R)+ be the connected component
of the group of real points AP(R). In the special case P = G, this is the
connected component of the group of real points of a maximal Q-split
torus in the center of G.

Let g be the Lie algebra of G(R), U(g) its universal enveloping alge-
bra, and Z(g) the center of U(g). Similar notations will be used for the
Lie algebras of other groups.

Let aP be the Lie algebra of AP(R). We will write ao for aPo
. If P ⊆

Q, then it is possible to choose a section iQ : LQ → Q of the projection
Q → LQ. Then iQ

(

prQ→LQ
(P)
)

⊂ P. We define an embedding aQ →
aP as the restriction to aQ of the differential of the map

prP→LP
iQ.

This embedding is independent of the choice of iQ. The dual space ǎP

of aP can be identified with the real vector space X∗(P)⊗Z R generated
by the group of Q-rational characters of P. The same identification can
be made for Q. Then restriction of characters from Q to P defines an
embedding ǎQ → ǎP . The embeddings aQ → aP and ǎQ → ǎP define
canonical direct sum decompositions aP = aQ ⊕ aQ

P and ǎP = ǎQ ⊕ ǎQ
P .

Let ∆o ⊂ ǎG
o be the set of simple positive (with respect to Po) roots

of Ao. The subset ∆P
o of simple positive roots which occur in the Lie

algebra of MP is contained in ǎP
o . Of course, both definitions require

the choice of sections Lo → LP → P, but the result does not depend
on such a choice. Let ∆P be the projection of ∆o − ∆P

o to ǎP , and let
∆Q

P for P ⊆ Q be the projection of ∆Q
o − ∆P

o to ǎQ
P . Let ρo ∈ ǎo be
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one half the sum of the positive roots of Ao, and let ρP and ρQP be the
projections of ρo to aP and to aQ

P .
Our notion of a (g, K)-module is the same as in [Vog81, §6.1]. A

G(Af)-module is a vector space on which G(Af) acts with open sta-
bilisers. If K is a field, let C∞

c (G(Af ),K) be the G(Af )-module of
compactly supported locally constant K-valued functions on G(Af). If
no field is given, it is assumed that K = C. A similar notation is used
for quotients of the adelic group. For quotients of the full adelic group
like C∞(P(A)\G(A)) or similar quotients of partial adelic groups which
contain G(R), we adopt the condition that C∞-functions have to be lo-
cally constant with respect to the finite adelic part and K∞-finite and
infinitely often differentiable with respect to G(R).

2.1. Connected components of real groups. Let us recall the fol-
lowing fact:

Proposition 1. Let G be a reductive connected algebraic group over R

and let K∞ be a maximal compact subgroup of G(R).

(1) Then π0

(

K∞

)

∼= π0

(

G(R)
)

.
(2) If R ⊂ Q are parabolic subgroups defined over R, then the map

π0

(

R(R) ∩ K∞

)

→ π0

(

Q(R) ∩ K∞

)

is surjective.
(3) If G is R-anisotropic or if it is semisimple and simply connected,

then G(R) is connected.

Proof. The first two assertions are consequences of the Iwasawa de-
composition G(R) ∼= P(R)o × K∞, where P is a minimal R-parabolic
subgroup, cf. [Spr79, Proposition 5.15]. The third fact is [BT72, Corol-
laire 4.7.] for semisimple simply connected groups and [BT65, Corol-
laire 14.5] for anisotropic groups. �

3. Formulation of the main results

Let H∗(G) be the inductive limit

(1) H∗(G) : = colim
K

f
H∗
(

G(Q)AG(R)+\G(A)/Kf
K

o
∞,C

)

over all sufficiently small compact open subgroups K
f ⊂ G(Af). This

is a G(Af)-module. Let H∗
c (G,C) be the same inductive limit over the

cohomology with compact support. For any set of finite primes S, the
Hecke algebra HS = C∞

c (KS\G(AS)/KS) of KS-biinvariant compactly
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supported functions on G(AS) acts on H∗(G,C) and H∗
c (G,C). Let IS

be the ideal

IS : =

{

f ∈ HS

∣

∣

∣

∣

∫

G(AS)

f(g) dg = 0

}

,

and let

H∗(G,C)I : =
{

x ∈ H∗(G,C)
∣

∣

for any set S of finite primes, Im
S x = {0} for m� 0

}

H∗
c (G,C)I : =

{

x ∈ H∗
c (G,C)

∣

∣

for any set S of finite primes, Im
S x = {0} for m� 0

}

.

These are direct summands of H∗(G,C) and H∗
c (G,C). Our main result

describes them as the space of K
o
∞ ∩ Po(R)-invariants in the hyperco-

homology of a complex of sheaves of G(Af)-modules on the compact
dual.

The construction of these complexes of sheaves follows a general
pattern, which associates a chain complex to a functor with values in
an abelian category on the poset PG of standard parabolic subgroups.
Note that G is a maximal element of PG. Let ≺ be a total order on
∆o. We order successors Q of P in PG by the order ≺ of the unique
element of ∆Q

o −∆P
o and denote the i-th successor (0 ≤ i < dim aG

P) of
P by Pi. Let F

P be a contravariant functor on PG . For P ⊆ Q, let

F
P⊆Q : F

Q → F
P

be the transition map. We define the chain complex C∗(F •) by

Ck(F •) =
⊕

P∈P

dim aGP=k

F
P

with the differential

(2) d

(

(fP) P∈P

dim aGP=k

)

=

(

k
∑

i=0

(−1)i
F

Q⊂Qi(fQi
)

)

Q∈P

dim aGQ=k+1

.

Similarly, let F P be covariant, with transition maps

F P⊆Q : F P → FQ.

We order predecessors Q of P in P according to the order by ≺ of
the unique element of ∆P

o − ∆Q
o , denote the i-th predecessor (0 ≤ i <
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dim aP
o ) by iP and form the chain complex

Ck(F •) =
⊕

P∈P

dim aPo =k

F P

with differential

(3) d

(

(fP) P∈P

dim aPo =k

)

=

(

k
∑

i=0

(−1)i
F

iQ⊂Q(f
iQ)

)

Q∈P

dim aQo =k+1

.

We apply similar conventions to functors of several variables. For in-
stance, if F

Q
P is covariant with respect to P and contravariant with

respect to Q, then we have the following chain complexes:

• For fixed P, the chain complex C∗(F •
P) obtained by applying

construction (2) to the contravariant variable.
• For fixed Q, the chain complex C∗(FQ

• ) obtained by applying
construction (3) to the covariant variable.

• The chain complex C∗(F •
•) which is the total complex of the

double complex obtained by applying (2) to the contravariant
variable and (3) to the covariant variable.

Of course, all these complexes depend on the choice of ≺. However,
they do so only up to unique isomorphism. For instance, let C∗(F P)≺
be formed with respect to ≺ and let C∗(F P)≺̃ be formed with respect
to ≺̃. Then we have the isomorphism of complexes

C∗(F •)≺ → C∗(F P)≺̃

(fP) P∈P

dim aGP=k
→ (εPfP) P∈P

dim aGP=k
,

where εP is the signature of the permutation of ∆o−∆P
o which identifies

the total orders ≺ and ≺̃ of ∆o − ∆P
o . We will therefore suppress

the ≺-dependence of C∗(F •) in our notations. The same applies to
C∗(F •) and the constructions for bifunctors. We will also apply these
constructions if F takes values in the category of chain complexes. In
this case, C∗(F •) has the total differential formed by the differential of
F

• and (2).

Recall the definition of the compact dual X
(c)
MG

and of the embed-

dings X
(c)
MP

→ X
(c)
MG

from the introduction. For a topological space X,
a closed subset Y and a vector space V , let VY be the constant sheaf
with stalk V on Y and let (iY ⊆X)∗VY be its direct image on X. If K

is either R or C, let A(G,Ko
∞,K)P be the functor which to P ∈ P
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associates the sheaf with G(Af)-action
(

i
X

(c)
MP

⊆X
(c)
MG

)

∗
C∞

c (P(Af )\G(Af),K)
X

(c)
MP

.

For P ⊆ Q, A(G,Ko
∞,K)P⊆Q is defined by the inclusion

C∞
c (Q(Af )\G(Af),K) ⊆ C∞

c (P(Af )\G(Af),K),

followed by restriction from X
(c)
MQ

to X
(c)
MP

. The group K
o
∞ ∩ Po(R)

acts on this complex by left translation, and the resulting action on
hypercohomology factorises over the quotient π0(K

o
∞ ∩ Po(R)). Re-

call the Borel map I∗MG(R),Ko
∞

→ H∗(G,C)G(Af ) and the isomorphism

I∗MG ,Ko
∞

∼= H∗(X
(c)
MG

) from the introduction.
With these notations, we can formulate our main result as follows:

Theorem 2. There is a canonical isomorphism of G(Af )- and I∗MG(R),Ko
∞

∼=

H∗(X
(c)
MG

)-modules between H∗
c (G,C)I and the hypercohomology of the

complex associated to the functor A(G,C)P

(4) H∗
c (G,C)I ∼= H∗(X

(c)
MG

, C∗(A(G, C)))πo(Ko
∞∩Po(R)).

This isomorphism identifies the real subspace Hp
c (G,R)I with

ipHp(X
(c)
MG

, C∗(A(G, C)))πo(Ko
∞∩Po(R)).

The proof of this theorem will occupy most of the remainder of this
paper. We will now give some corollaries. Since the sheaf of G(Af)-
modules A(G,C)P is annihilated by IS, we have the following result.

Corollary 1. If S is a set of finite places of Q, then H∗(G,C)I and
H∗

c (G,C)I are annihilated by IS (and not just a power of IS).

The assertion about H∗(G,C)I follows from the result about coho-
mology with compact support by duality.

To evaluate the cohomology sheaves of the complex C∗(A(G,C)•),
we have to define some Steinberg-like G(Af)-modules. Let

(5) V
G(Af )

P(Af ) = C∞(P(Af )\G(Af),C)
/

∑

Q⊃P

C∞(Q(Af)\G(Af ),C),

and let V̌
G(Af )

P(Af ) be the dual of V
G(Af )

P(Af ). For instance, V
G(Af )

G(Af ) and V̌
G(Af )

G(Af )

are both isomorphic to the constant representation.Recall the definition
of the subsets

UMP
= X

(c)
MP

−
⋃

Q⊂P

X
(c)
MQ

.

If V is a sheaf on UMP
, let

(

i
UMP

⊆X
(c)
MG

)

!
V be its continuation by zero.
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Corollary 2. The i-th cohomology sheaf of the complex C∗(A(G,Ko
∞,C))

is given by

(6)
⊕

P∈P

dim aGP=i

(

i
UMP

⊆X
(c)
MG

)

!

V
G(Af )

P(Af ).

The hypercohomology spectral sequence degenerates, and the limit fil-
tration FiliH

∗
c (G,C)I has quotients

(7)

(Fili /Fili−1 )Hk
c (G,C)I ∼=

⊕

P∈P

dim aGP=i

Hk−i
c (UMP

)πo(K∞∩Po(R)) ⊗ V
G(Af )

P(Af ),

where the isomorphism is an isomorphism of modules over G(Af ). This
is the only ascending filtration of H∗

c (G,C)I whose i-th quotient is of
the form

⊕

P∈P

dim aGP=i

VP ⊗ V
G(Af )

P(Af ).

Similarly, H∗(G,C)I has a descending filtration Fili with quotients
(8)
(

Fili
/

Fili+1
)

Hk
c (G,C)I ∼=

⊕

P∈P

dim aGP=i

Hk+dim(nP )(UMP
)πo(K∞∩Po(R))⊗V̌

G(Af )

P(Af ).

This is the only descending filtration of H∗(G,C)I whose i-th quotient
is of the form

⊕

P∈P

dim aGP=i

V P ⊗ V
G(Af )

P(Af ).

Proof. By Poincare duality, it suffices to prove the assertions about
cohomology with compact support. The formula (6) is a consequence
of the Solomon-Tits like theorem 3 in the next section, which gener-
alises [BS76, §3]. The degeneration of the hypercohomology spectral
sequence follows from Hodge theory and the fact that the restriction
of an invariant (= harmonic) form on the compact dual of a Levi com-
ponent of G to the compact dual of a smaller Levi component is again
invariant.

The uniqueness assertion about the filtration of H∗
c (G,C)I follows

from the next proposition. �

Proposition 1. Let S be a set which contains all non-archimedean
primes of Q with finitely many exceptions, and let P 6= Q be parabolic
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subgroups of G. Then the spaces of S-spherical vectors V
G(Af )

P(Af )

KS

and

V
G(Af )

Q(Af )

KS

have finite length as representations of the group
∏

v nonarchimedean
v 6∈ S

G(Qv),

and their Jordan-Hölder series have mutually non-isomorphic quotients.

Proof. This is a consequence of [BW80, X.4.6.]. �

Unfortunately, Hilbert modular forms and SL3 over imaginary fields
provide examples where the filtration FiliH

∗
c (G,C)I does not split in

the category of G(Af)-modules.
Since Kf was supposed to be good, we have P(Af )Kf = G(Af) for

all parabolic subgroups P. Therefore, V
G(Af )

P(Af ) has Kf -spherical vectors

only if P = G, and the only quotient of FiliH
∗
c (G,C)I which has a Kf -

spherical vector is in dimension zero. We get the following corollary.

Corollary 3. The natural maps

H∗
c (G,C)G(Af ) → H∗

c (G,C)
G(Af )
I → H∗

c (G,C)
Kf

I

are isomorphisms (the first of these isomorphisms follows from the fact
that the constant G(Af )-representation is annihilated by I). Similarly,
the maps

H∗(G,C)
Kf

I → (H∗(G,C)I)G(Af ) → H∗(G,C)G(Af )

are isomorphisms, where the subscript G(Af ) stands for the space of

G(Af)-coinvariants. Also, we have isomorphisms of I∗MG(R),Ko
∞

∼= H∗(X
(c)
MG

)-
modules

H∗(G,C)G(Af )
∼= H∗(UMG

,C)

and

H∗
c (G,C)G(Af ) ∼= H∗

c (UMG
,C).

In particular, this establishes theorem 1 in the introduction.

4. An adelic Borel-Serre-Solomon-Tits theorem

In this section we study the cohomology of the chain complexes asso-
ciated to certain functors on P. Let us start with the easiest example.
For parabolic subgroups Q ⊆ R, consider the contravariant functor

B(Q,R)P =

{

C if Q ⊆ P ⊆ R
{0} otherwise
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and the covariant functor

B(Q,R)P =

{

C if Q ⊆ P ⊆ R
{0} otherwise

such that B(Q,R)P⊆P̃ and B(Q,R)P⊆P̃ are the identities if Q ⊆ P ⊆

P̃ ⊆ R and zero otherwise.

Lemma 1. If Q ⊂ R, C∗(B(Q,R)•) and C∗(B(Q,R)•) are acyclic.
If Q = R, then the only cohomology group of C∗(B(Q,R)•) is C in
dimension dim aG

Q, and the only cohomology group of C∗(B(Q,R)•) is
C in dimension dim aQ

o .

This is straightforward.
For a more interesting example, one takes the set of all C-valued

functions on P(Q)\G(Q) for F
P , together with the obvious inclusions

as transition maps. The associated chain complex gives the reduced
cohomology of the Tits building of G shifted by −1, hence by the
Solomon-Tits theorem it has cohomology only in degree dim aG

o . The
related theorem in which continuous functions on P(Qv)\G(Qv) (with
Qv-rational parabolic subgroups P which are standard with respect
to a minimal Qv-rational parabolic subgroup) are considered has been
proved by Borel and Serre [BS76, §3]. We need an adelic version of
their result.

Theorem 3. Let S be a set of places of Q, and let R be a standard
Q-parabolic subgroup. Let C(G,R,AS)• be defined by

C(G,R,AS)P =

{

C∞(P(AS)\G(AS)) if P ⊆ R
{0} otherwise

(recall our convention that C∞-functions are supposed to be K∞-finite).
Let the transition functions for C be given by the obvious inclusions.
Then the complex C∗(C(G,R,AS)•) is acyclic in dimension < dim aG

o .

Proof. The only difference to the situation considered by Borel and
Serre is that we consider quotients of an adelic group by Q-parabolic
subgroups, whereas they consider quotients of the v-adic group by Qv-
rational subgroups. Their method is flexible enough cover our situation.
To destroy any possible doubt, let us give the modified proof.

Since C(G,P,AS)• is the inductive limit of its subfunctors C(G,P,AT )
for finite T , it suffices to consider the case where S is a finite set of
places of Q. We will prove the following proposition.
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Proposition 1. Let S be a finite set of places of Q, let B be a Banach
space, and let R ∈ P. Let C̃(R,AS) be given by spaces of B-valued
continuous functions on flag varieties of G

C̃(R,AS, B)P =

{

C(P(AS)\G(AS), B) if P ⊆ R
{0} otherwise

with the obvious inclusions as transition homomorphisms. Then the
complex C∗(C̃(R,AS, B)•) is acyclic in dimension < dim aG

o .

For finite S, the theorem follows from the proposition since C(G,R,AS)
is the inductive limit of its subfunctors C(G,R,AS)e over idempo-
tents e of the convolution algebra C∞(KS). But C(G,R,AS)e =
C̃(R,AS,C)e is a direct summand of C̃(R,AS,C). �

Proof of proposition 4.1: We proceed by induction on the car-
dinality of S, starting with the case S = ∅. For this case, we have
C̃(R,A∅, B)• : = B(Po,R)• ⊗ B and apply lemma 4.1.

Let v ∈ S be such that the proposition has been verified for S−{v}
and arbitrary R and B. Let Pv ⊆ Po be a minimal Qv-parabolic
subgroup, and let Av ⊂ Pv be a maximal Qv-split torus. Let w0,. . . ,
wN be an enumeration of the elements of the Weyl groupW (Av,G(Qv))
such that `(wi) ≤ `(wj) if i < j, where `(w) is the length of w. Let

C(w) = Pv(Qv)\Pv(Qv)wPv(Qv) ⊂ Pv(Qv)\G(Qv)

be the Schubert cell associated to w, and let Ei =
⋃i

j=0C(wj). Let ∆v

and ∆P
v be defined like ∆o and ∆P

o , but with Po replaced by Pv. For
α ∈ ∆v, let sα be the reflection belonging to α. Let

πP : Pv(Qv)\G(Qv) → P(Qv)\G(Qv)

be the projection. We have the following consequence of the Bruhat
decomposition

Lemma 2. Let 0 ≤ i ≤ N . If P ⊇ Pv is a Qv-parabolic subgroup such
that `(sαwi) > `(wi) for all α ∈ ∆P

o , then πP induces an isomorphism

C(wi) ∼= πP(C(wi)) = πP(Ei) − πP(Ei−1).

Otherwise, we have πP(Ei) = πP(Ei−1).

This is [BS76, 2.4.].

Let FiliC̃(R,AS, B)P be the set of all f ∈ C̃(R,AS, B)P which
vanish on

(1)
(

P(AS−{v})\G(AS−{v})
)

× πP(Ei).

This is a subfunctor of C̃(R,AS, B)•. Let us consider 0 ≤ i ≤ N .
If there exists no Q-parabolic subgroup Q ⊇ Pv such that `(sαwi) >
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`(wi) for all α ∈ ∆Q
v , then lemma 4.2 implies Fili−1

C̃(R,AS, B)• =
FiliC̃(R,AS, B)•. Otherwise, let Qi be the largest Q-parabolic sub-
group with this property. Let C(C(w), B) be the Banach space of con-

tinuousB-valued functions on C(w), and let Cc(C(w), B) ⊂ C(C(w), B)
be the closure of the set of compactly supported functions. Identifying
B-valued continuous functions on (1) with C(πP(Ei), B)-valued con-
tinuous functions on

P(AS−{v})\G(AS−{v})

and using the isomorphism

ker (C(πP(Ei), B) → C(πP(Ei−1), B)) =

{

{0} if P 6⊂ Qi

Cc(C(wi), B) if P ⊂ Qi,

we get an isomorphism
(

Fili−1
/

Fili
)

C̃(R,AS, B)P ∼= C̃(R ∩Qi,AS−{v}, Cc(C(wi), B)),

and the induction argument is complete.
The proof of proposition 4.1 is complete. Q.E.D.

Generalising the definition of V
G(Af )

P(Af ) in the third section, we define

(2) V
G(AS)
P(AS) = C∞ (P(AS)\G(AS))

/

∑

Q⊃P

C∞ (Q(AS)\G(AS))

where it is understood that if S contains the archimedean place, then

induction at this place is (g,K)-module induction. Let V̌
G(AS)
P(AS) be the

KS-finite dual of V
G(AS)
P(AS). We put StG(AS) = V

Po(AS)
G(AS) and ŠtG(AS) =

V̌
Po(AS)
G(AS) . These can be considered as Steinberg-like modules, although

they are highly non-irreducible unless S consists of a single place v at
which Po is also a minimal Qv-parabolic subgroup.

If we choose Haar measures on G(A) and Po(A), then the dual of

C∞(P(A)\G(A)) = IndG
PC

can be identified with IndG
PC2ρo

. This allows us to view

IndG
PŠtLP(A) ⊗ C2ρP

as a submodule of IndG
Po

C2ρo
. It is the orthogonal complement of

∑

Q⊂P

C∞(Q(A)\G(A)),
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hence it decreases if P increases. This allows us to define
(3)

D(G)P =







IndG
PŠtLP(A) ⊗ C2ρP if P 6= Po

∑

P∈P

IndG
PŠtLP(A) ⊗ C2ρP if P = Po







⊂ IndG
Po

C2ρo
.

Theorem 4. If dim aG
o > 0, then C∗(D(G)•) is acyclic.

Proof. D(G)• ⊂ B(Po,G)• ⊗ IndG
Po

C2ρo
is the orthogonal complement

of
M • ⊂ B(Po,G)• ⊗ IndG

Po
C,

where

MP =























∑

R⊆P

dim aRo =1

C∞(R(A)\G(A)) if P 6= Po

C =
⋂

R∈P

dim aRo =1

C∞(R(A)\G(A)) otherwise























⊂ C∞(Po(A)\G(A)).

By lemma 4.1, it suffices to show that C∗(M •) is acyclic. Let

M̃P =

{

MP if P 6= Po

{0} if P = Po.

Since C ⊆ MPo
⊆ H1(C∗(M̃ •)), the acyclicity of C∗(M •) and the the-

orem will follow if we show that C∗(M̃ •) has only one one-dimensional
cohomology space in dimension one.

We will reduce this to theorem 3 by introducing a functor of two
variables N•

• and using the spectral sequence for its double complex.
We define N•

• by

N
Q
P =

{

{0} if Q 6⊆ P or if Q = Po

C∞(Q(A)\G(A)) otherwise.

It is a consequence of theorem 3 (applied to C(G,LG,A)) that

Hk(C∗(N •
P)) =

{

{0} if k 6= dim aG
o − 1

M̃P if k = dim aG
o − 1.

Since

N
Q
• =

{

{0} if Q = Po

B(Q,G)• ⊗ C∞(Q(A)\G(A)) if Q ⊃ Po,

lemma 4.1 implies

H l
(

C∗(NQ
• )
)

=

{

{0} if l 6= dim aG
o or Q 6= G

C if l = dim aG
o and Q = G.
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Combining these two facts, we get

Hk
(

C∗(M̃ •)
)

= Hk+dimaGo−1 (C∗(N•
• )) =

{

{0} if k 6= 1
C if k = 1.

As was mentioned earlier, this implies the theorem. �

We complete this chapter with a rather elementary lemma. For a
parabolic subgroup R of G, let

(4) E(R)P
∗

=

{

Λ∗(ǎP
R) if P ⊇ R

{0} if P 6⊇ R.

The transition homomorphism E(R)P̃⊆P
∗

is given by the projection

ǎP
R → ǎP̃

R. E(R)•∗ is a functor from P into the category of graded
vector spaces.

Lemma 3. The projection

E(R)G
∗

= Λ∗(ǎG
R) → det ǎG

R[− dim ǎG
R]

defines an isomorphism on cohomology

H∗ (C∗ (E(R)•∗)) ∼= det ǎG
R[− dim ǎG

R].

By the determinant of a finite dimensional vector space, we understand
its highest exterior power.

Proof. Let R1, . . . ,Rk be the parabolic subgroups containing R with
the property that dim aRi

R = 1. Then

C∗ (E(R)•∗) ∼=

k
⊗

i=1

(

(C ⊕ ǎRi

R ) → C
)

,

proving the lemma. �

5. The space of automorphic forms

It is known that H∗(G,C) can be evaluated by using the cohomology
of the de Rham complex, which is isomorphic to the standard complex
for evaluating the (mG,K

o
∞)-cohomologyH∗

(mG ,K∞)(C
∞(AG(R)+G(Q)\G(A))).

Let

(1) C∞
umg(AG(R)+G(Q)\G(A)) ⊂ C∞(AG(R)+G(Q)\G(A))

be the subspace of functions of uniformly moderate growth. Let J =
U(g)g ∩ Z(g) be the annihilator of the constant representation in Z(g).
Let

(2) AJ : =
{

f ∈ C∞
umg(AG(R)+G(Q)\G(A))

∣

∣J nf = {0} for n� 0
}

.



18 JENS FRANKE

Borel has verified that the inclusion (1) defines an isomorphism on co-
homology and conjectured that the inclusion AJ ⊂ C∞

umg also defines
an isomorphism on cohomology with constant coefficients. After par-
tial results by Casselman, Harder, and Speh, this has been verified in
[Fra98], where we denoted C∞

umg by S∞ and AJ by FinJS∞ since we
worked in a more general situation.

Let S be a set of finite primes which contains all but finitely many
primes. It is a consequence of well-known finiteness properties of the
space of automorphic forms (cf. [FS91, Proposition 2.3]) that the space
of KS-spherical vectors AKS

J ⊂ AJ has a decomposition into associated
Hecke eigenspaces

AKS

J =
∐

Ĩ

AKS

J ,Ĩ
,

where the sum is over maximal ideals Ĩ ⊂ HS and

AKS

J ,Ĩ
=
{

f ∈ AJ

∣

∣

∣
Ĩnf = {0} for n� 0

}

.

It is clear from the proven Borel conjecture that the cohomology of AKS

J ,Ĩ

is isomorphic to the space of KS-spherical vectors in H∗(G,C) which

are annihilated by a power of Ĩ. Recall the maximal ideal IS ⊂ HS,
which is the annihilator of the constant representation. We put

(3) AJ ,I : = colim
S

AKS

J ,IS
.

The aim of this section is to study AJ ,I.
There are two methods available for studying the space of automor-

phic forms. One method is to define a filtration on the space of auto-
morphic forms, and to show that its quotients are spanned by principal
values of cuspidal and residual Eisenstein series. This method was used
in [Fra98]. It is particularly useful in a general situation, where one has
only the facts proved in Langlands’ book [Lan76] available. The sec-
ond method, which was proposed by Harder in [Har91] before [Fra98]
was written, is to generate the space of automorphic forms by the co-
efficients of the Laurent expansions of cuspidal Eisenstein series at a
certain point. In [FS91], we derived from the result of [Fra98] that this
procedure really gives the space of all automorphic forms. This method
gives a complete description of the space of automorphic forms (and
not just the quotients of a filtration), but it is useful only if the precise
structure of the singularities of the cuspidal Eisenstein series near the
point where they have to be evaluated is known. For the Eisenstein
series which contribute to AJ ,I , we are in the fortunate situation to
have such information available. We will therefore generate the space
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AJ ,I by cuspidal Eisenstein series. At the beginning, the procedure
will be quite similar to the methods used by Speh in [Spe83]. However,
Speh studied only a certain subspace of AJ ,I, which was sufficient for
her examples of the non-injectivity of the Borel map, and for which
only Eisenstein series depending on one parameter were needed.

Let P be a standard parabolic subgroup. Recall the standard height
function HP : G(A) → aP , which is defined by

(4) 〈HP(g), χ〉 =
∑

v

log |χ(pv)|v ,

where g = pk with p ∈ P(A) and k ∈ K. The scalar product 〈., .〉 on
the left side is the pairing between aP and ǎP , and χ ∈ X∗(P) ⊂ ǎP . It
is clear that (4) characterises HP(g) uniquely, and that HP(g) does not
depend on the choice of the Iwasawa decomposition g = pk. If Q ⊇ P,
then HQ(g) is the projection of HP(g) to aQ.

We have to recall a few facts about the Eisenstein series starting from
the constant representation of a Levi component. Proofs can be found
in [FMT89, Lemma 2.7], although the results about the Eisenstein
series were almost certainly known before. If φ ∈ C∞(P(A)\G(A)),
the Eisenstein series starting from φ is defined by

(5) EG
P(φ, λ) =

∑

γ∈P(Q)\G(Q)

φ(γg) e〈λ+ρP ,HP(γg)〉 .

It converges for sufficiently regular <λ in the positive Weyl chamber,
and has an analytic continuation to λ ∈ (ǎP)C. The singular hyper-
planes of this function which cross through ρP are precisely the hy-
perplanes 〈λ − ρP , α̌〉 = 0, where α ∈ ∆P and α̌ is the corresponding
coroot. The residues may be described as follows. Let for λ ∈ (ǎP)C

qQP (λ) =
∏

α∈∆Q
P

〈α̌, λ− ρP〉.

Then the function qQP (λ)EG
P(φ, λ) is regular on an open dense subset of

ρQP + (ǎQ)C. Its restriction to ρQP + (ǎQ)C can be described as follows.
If φ ∈ C∞(P(A)\G(A)), then

e〈HP (.),2ρP〉 φ(.) ∈ IndG
PC2ρP ,

and let C2ρP be the one dimensional vector space on which p ∈ P(A)
acts by multiplication by e〈HP(p),2ρP 〉. There exists a unique non-vanishing
homomorphism

τQP : IndG
PC2ρP → IndG

QC2ρQ
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with the following property. For generic ϑ ∈ ǎQ we have

(6)
(

qQP (.)EG
P(.)

)

(φ, ϑ+ ρQP ) = EG
Q

(

e−〈2ρQ,HQ(.)〉 τQP
(

e〈2ρP ,HP(.)〉 φ
)

, ϑ
)

.

It is easy to verify

τRQ τ
Q
P = τRP

and to see that τQP is independent of Kf .
Let S(ǎG

o ) be the symmetric algebra of ǎG
o . It can be identified with

the algebra of differential operators with constant coefficients on ǎG
o .

After we choose a basis for ǎG
o , we have elements ∂α

∂λα ∈ S(ǎG
o ) for

any multi-index α = (α1, . . . , αdim ǎGo
). Elements of S(ǎG

o ) can also be

viewed as polynomials on aG
P ⊂ aP . Let Hα be the polynomial in

H ∈ aP belonging to ∂α

∂λα . We define a G(Af )-action on

(7) S(ǎG
P) ⊗ C∞(P(A)\G(A))

by

(8)
(

h(
∂α

∂λα
⊗ φ)

)

(g) =
∑

α=β+γ

(

dim aGP
∏

i=1

αi!

βi!γi!

) ∂β

∂λβ
⊗

⊗
(

(

HP(gh) −HP(g)
)γ

e2〈ρP ,HP(gh)−HP (g)〉 φ(gh)
)

for h ∈ G(Af). In a similar way, one obtains a (g,K∞)-module struc-
ture on (7) by taking the differential of the G(R)-action which would
be given by (8) if there was no condition of K∞-finiteness for elements
of C∞(P(A)\G(A)). Let a P(A)-action on S(ǎG

P) be defined by

p : D → e−〈HP(p),.〉D e〈HP(p),.〉 .

At the infinite place, the P(R)-action gives rise to the structure of
a (p,K∞ ∩ P(R))-module. There is a homomorphism of (p,K∞ ∩
P(R),P(Af))-modules

S(ǎG
P) ⊗ C∞(P(A)\G(A)) → S(ǎG

P) ⊗ C2ρP

D ⊗ φ(g) → D ⊗ φ(1)

which defines an isomorphism

(9) S(ǎG
P) ⊗ C∞(P(A)\G(A)) → IndG

PS(ǎG
P) ⊗ C2ρP .

Using this isomorphism and the regularity of qGP(.)EG
P(φ, .) at ρP , we

get a homomorphism of (g,K∞,G(Af))-modules

(10) ΞG
P : S(ǎG

P) ⊗ C∞(P(A)\G(A)) ∼= IndG
PS(ǎG

P) ⊗ C2ρP → AJ ,I

which maps D ⊗ φ to
(

DqGP(.)EG
P(φ, .)

)

(ρP).
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To see that the functions in the image of ΞG
P are annihilated by suf-

ficiently high powers of IS and J , it suffices to note that IndG
PS(ǎG

P)⊗
C2ρP is the union of an ascending sequence of subrepresentations with

quotients isomorphic to IndG
PC2ρP , and that IS and J trivially act on

IndG
PC2ρP .

We first prove the surjectivity of ΞG
Po

.

Theorem 5. ΞG
Po

is surjective. It is independent of the choice of Kf .

Proof. The fact that Ξ is independent of Kf is established by an easy
computation, using the fact that both EG

Po
and the identification

S(ǎG
o ) ⊗ C∞(Po(A)\G(A)) ∼= IndG

Po
S(ǎG

o ) ⊗ C2ρo

depend on Kf , and these dependencies cancel out.
We will derive the surjectivity of ΞG

Po
from the description of the space

of automorphic forms in[FS91, §1]. Recall from [FS91, Theorem 1.4]
that the space AJ as a composition

(11) AJ =
⊕

{P}

∐

ϕ∈ΦC,{P}

AC,{P},ϕ,

where the first sum is over classes {P} of associate parabolic subgroups
and the second sum is over ΦC,{P}, a set of equivalence classes of cus-
pidal automorphic representations π of the Levi components of the
elements of {P}. Here two cuspidal automorphic representations be-
long to the same equivalence class if they can be identified by a Weyl
group substitution. An equivalence class belongs to ΦC,{P} if and only
if it is in a certain way compatible with the infinitesimal character J of
the constant representation. For a precise definition, we refer to [FS91,
§1.2.]. Note that our notations are slightly different from the notations
in [FS91], where the space of automorphic forms was denoted AE with
an finite dimensional representation E , which in our case is C. There-
fore, AJ in our notations is AC in [FS91]. The notations on the left
side of (11) are, however, the same as in [FS91].

By [FS91, Theorem 1.4], the space AC,{P},ϕ can be spanned by the
coefficients of the Laurent expansion of cuspidal Eisenstein series start-
ing from elements of ϕ. In particular, [FS91, Theorem 1.4] says that,
for the special case {P} = {Po} and ϕ = {Cw·ρo

}w∈W (Ao:G(Q)), we have

(12) image of ΞG
Po

= AC,{Po},{Cw·ρo}w∈W (Ao:G(Q))
.

Let us fix {P} and ϕ ∈ ΦC,{P}. Let P ∈ {P} and let π be an
irreducible cuspidal automorphic representation of LP which belongs
to ϕP . Let χπ : AP(A)/AP(Q) → C× be the central character of π,
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and let λπ ∈ ǎG
P be the differential of the restriction of χπ to AP(R).

By applying a Weyl group substitution to P and π, we may assume

λπ ∈ ǎG+
P . Let S be a set of non-archimedean primes of Q which has

a finite complement. We assume that π is unramified at the places
of S. Let v ∈ S. By [FS91, Theorem 2.3], we have an ideal Iϕ,v ⊂
Hv associated to ϕ such that all Kv-spherical vectors in AC,{P},ϕ are
annihilated by some power of Iϕ,v. Recall the annihilator Iv ⊂ Hv of
the constant representation. If AC,{P},ϕ ∩ AJ ,I 6= {0}, then we must
have Iϕ,v = Iv for all but finitely many places. We will verify that this
implies {P} = {Po} and ϕ = {w · C2ρo

}w∈W (Ao:G(Q)). By (12), this will

complete the proof of the theorem.
Let v ∈ S such that Iϕ,v = Iv. We recall Satake’s description of Hv.

Let Pv ⊂ Po be a minimal Qv-rational parabolic subgroup with Levi
component Lv. Let

ǎv = X∗(Pv)Qv
⊗Z R,

where X∗
Qv

are the characters defined over Qv, and let av be the dual
of ǎv. Let T v be the group of unramified characters of Lv(Qv), i.e.,
of continuous characters χ : Lv(Qv) → C× which are trivial on the
projection of Pv(Qv) ∩ Kv to Lv(Qv). The map

(ǎv)C → T v(13)

λ → χλ(l) = e〈HPv (l),χ〉

is surjective, and T v has the structure of a complex torus which is
isomorphic to (ǎv)C/Γv, where Γv is a lattice in iǎv. Let O(Tv) be the
ring of algebraic functions on the complex torus T v. The Weyl group
W (Av : G(Qv)) of Av in G(Qv) acts on Tv, and we have the Satake
isomorphisms

SG(Qv) : Hv → O(T v)
W
(

Av :G(Qv)
)

SLP(Qv) : Hv(LP) → O(T v)
W
(

Av :LP(Qv)
)

(cf. [Car79, Theorem 4.1.]) for G and for the Levi components of
standard parabolic subgroups. Here Hv(LP) is the Hecke algebra for
LP(Qv), defined by the projection of Kv ∩ P(Qv) to LP(Qv).

Let Hv(LP) act on the Kv-spherical vector of π by multiplication by
the character (SLP(Qv)h)(tv) for tv ∈ T v. The W (Av : LP(Qv))-orbit

of tv is uniquely determined by π. Let t̃v ∈ ǎv be a lifting of tv. It
is well-known that the ideal Iv corresponds to the image of ρv in T v

by (13), where ρv is one half the sum of the positive roots of Av. If
Iv = Iϕ,v, then the W (Av : G(Qv))-orbit of that image must contain
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tv. By changing t̃v in its Γv-orbit, we may assume

(14) tv = wρv

for some w ∈ W (Av : G(Qv)). Let ǎP
v be defined in a similar way

as ǎP
o , and let tv = tPv + tvP be the decomposition of tv according to

ǎv = ǎP
v ⊕ ǎP ,v, where ǎP ,v ⊇ ǎP is the Qv-character group of P made

into a real vector space. By changing tv in its W (Av : LP(Qv))-orbit,
we may assume that tPv belongs to the closure of the positive Weyl

chamber ǎP+
v .

Let ∆v and ∆P
v be the same as in the proof of proposition 4.1. For

a root α of Av, let nα be its multiplicity. If α is positive and reduced,
then we have the inequality

(15) 〈α̌, ρv〉 ≥ nα + 2n2α,

and equality occurs if and only if α is simple. This is easily verified by
comparing the expressions

sαρv = ρv − α〈α̌, ρv〉 = ρv −
∑

β>0

sαβ<0

nββ.

From (14) and (15), we get for α ∈ ∆P
v

∣

∣〈α̌, tPv 〉
∣

∣ = |〈α̌, tv〉|

≥ nα + n2α

= 〈α̌, ρPv 〉.

This implies tPv ∈ ρPv + ǎP+
v . By the boundedness of the matrix coeffi-

cients of the unitary representation π, this may happen only if tπv = ρPv .
But then the local factor πv of π at v is multiplication by an unramified
character of L(Qv). Since this has to be the case at all but finitely many
primes, weak approximation proves that π must be one-dimensional.
Since π is cuspidal, this implies P = Po.

To show that π = Cρo
, it remains to verify that tvPo

= ρo. Fix a
Weyl group invariant scalar product on ǎv and consider the following
inequality

|tvPo
|2 = 〈tvPo

, tv〉

≤ 〈tvPo
, ρv〉

= 〈tvPo
, ρo〉

≤ |tvPo
| |ρo|(16)

The equalities are easy orthogonality relations. The inequality on the
second line follows from tv = wρv ∈ ρv − +ǎv, where +ǎv is the closed
positive cone spanned by the positive roots, plus the fact that by our
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assumption on π we have tvPo
= λπ ∈ ǎG+

o for the central character
λ+π of π. The inequality on the last line of (16) is the Cauchy-Schwarz
inequality. We also have the equality

|tvPo
|2 = |tv|

2 −
∣

∣tPo

v

∣

∣

2
= |ρv|

2 −
∣

∣ρPo

v

∣

∣

2
= |ρo|

2 .

Comparing this with (16), we see that equality must occur on the last
line of (16). By Cauchy-Schwarz, this implies tvPo

= ρo, and we have
finally verified that P = Po and π = Cρo

. As was mentioned earlier,
this completes the proof. �

Our next task is to determine the kernel of ΞG
Po

. We start with a

few facts about the kernel of the operators τPPo
. The operator τGPo

is a

G(A)-invariant linear functional on IndG
PC2ρo

and induces a duality

C∞(Po(A)\G(A) ⊗ IndG
Po

C2ρo
→ C

φ⊗ φ̃ → τGPo
(φφ̃)

With respect to this pairing, for any standard parabolic subgroup
P with dim aP

o = 1 the orthogonal complement of C∞(P(A)\G(A))
is IndG

PŠtLP(A). For arbitrary P 6= Po, the orthogonal complement
of C∞(P(A)\G(A)) is the kernel of τP . By theorem 3 applied to
C(LP ,Po/NP ,A)•, we have

C∞(P(A)\G(A)) =
⋂

Q⊂P

dim aQo =1

C∞(Q(A)\G(A)),

and the orthogonal complement of the intersection is the sum of the or-
thogonal complements since any K-type occurs with finite multiplicity.
We get

(17) ker τPPo
=

∑

Q⊂P

dim aQo =1

IndG
QŠtLQ(A).

We will now give the description of the kernel of ΞG
Po

.

Theorem 6. We have

(18) ker ΞG
Po

=
∑

P∈P

dim aPo =1

IndG
PŠtLP(A) ⊗ S(ǎG

P) ⊗ C2ρP .

Proof. It is clear from (6) that the left hand side of (18) is really con-
tained in the kernel of ΞG

Po
. Conversely, let f ∈ IndG

Po
S(ǎG

o ) ⊗ C2ρo

belong to the kernel of ΞG
Po

. Define δP ∈ S(ǎG
P) by

δP =
∏

α∈∆P

ωα,
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where ωα is defined by

〈ωα, β̌〉 =

{

{0} if β ∈ ∆P − {α}
1 if α = β.

There is a unique decomposition

f =
∑

P∈P

f (P)δP

with

f(P) ∈ IndG
Po
S(ǎG

P) ⊗ C2ρo
.

Of course, the map f → f (P) is only a map of vector spaces. From the
fact that f ∈ ker ΞG

Po
we will derive

(19) (Id ⊗ τPPo
)f (P) = 0 ∈ IndG

PS(ǎG
P) ⊗ C2ρP .

By (17) this will imply

f (P)δP ∈
∑

Q⊆P

dim aQo =1

IndG
QS(ǎG

P) ⊗ ŠtLQ(A) ⊗ C2ρQ

and prove (18).
Let T be a bijective map from the set of vectors ρP for P ∈ P to the

set {0; 1; . . . ; 2dim aGo −1} with the following property: If ρQ ∈ ρP −+ǎG
o ,

then T (ρP) ≤ T (ρQ). Here +ǎG
o is the closed cone spanned by ∆o. It

easy to verify the existence of such a function T . Let P (i) be the unique
parabolic subgroup with T (ρP(i)) = i. Then P (0) = Po.

It is a consequence of (6) that

(20) ΞG
Po
f =

∑

P

ΞG
P

(

(Id ⊗ τPPo
)f (P)δP

)

.

We will prove (19) for P = P (i) by induction on i by an investigation
of the constant term of the Eisenstein series occurring in (20). Recall
that for a continuous function ψ on G(Q)\G(A), the constant term with
respect to P is defined by

ψP(g) =

∫

NP(Q)\NG(A)

ψ(ng) dn,

where the Haar measure dn is normalised by 1P = 1. The necessary
facts about the constant term of Eisenstein series are summarised in
the following lemma, which will be proved after the proof the theorem
is complete.
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Lemma 1. There exists a finite set Wi of affine maps ǎP(i) → ǎo such
that

(21)
(

EG
P(i)(φ, λ)

)

Po
(g) =

∑

w∈Wi

(Ni(w, λ)φ) (g) e〈wλ+ρo,HPo(g)〉,

where Ni(w, λ) is a meromorphic function from ǎP to the space of K-
invariant homomorphisms from C∞(P(A)\G(A)) to C∞(Po(A)\G(A)).
If wi is defined by

wi : ǎP(i) → ǎo

wiλ = λ− ρP
(i)

o ,

then wi ∈ Wi and Ni(wi, λ)φ = φ. Furthermore, if w ∈ Wj and if

wρP(j) = ρP(i) − ρP
(i)

o , then j ≤ i.

Let us assume that (19) has been proved for P = P (j) with j < i. If
i = 0, this assumption is void. In any case, the induction assumption
implies that the only summands in (20) which are possibly different
from zero belong to the parabolic subgroups P (j) with j ≥ i. As a
consequence of (21), the constant term of ΞG

Po
f may be written as

(

ΞG
Po
f
)

Po
(g) =

∑

λ∈Λ

fλ(g) e〈λ+ρo,HPo(g)〉,

where Λ is a finite subset of ǎo and where fλ is a continuous function
on G(A) with the property that for any g ∈ G(A), the function fλ(pg)
of p ∈ Po(A) is a polynomial in HPo

(p). Since f is in the kernel of ΞG
Po

,

we have fλ = 0 for any λ. Let N = dim aG
P(i) , let α1, . . . , αN be the

elements of ∆P(i) , and let ωi = ωαi
. We have a unique representation

(Id ⊗ τPPo
)f (P) =

∞
∑

a1,...,aN =0

(

N
∏

k=1

ωai

i ) ⊗ fa1,...,aN

with fa1,...,aN
∈ IndG

P(i)C2ρ
P(i)

. By the induction assumption, (20), the

definition of ΞG
P and lemma 5.1, we have

f
ρ
P(i)−ρP

(i)
o

(g) =

∞
∑

a1,...,aN=0

(

N
∏

k=1

(ai + 1)〈ωi, HPo
(g)〉ai

)

fa1,...,aN
(g).

This function vanishs identically if and only if fa1 ,...,aN
= 0 for all

choices of the ai. This establishes (19) and completes the proof of the
theorem. �

Proof of lemma 5.1: The formula (21) is a general fact from the
theory of Eisenstein systems (cf. [Lan76, §7] or the modern exposition
[MW95, §IV]). In general, the theory of Eisenstein systems provides
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for the possibility of additional polynomial factors of higher degree in
the expression for the constant term. Since this may happen only in
the case of singular infinitesimal character, in our case the expression
for the constant term simplifies to (21).

To get the assertion about Ni(wi, λ), we consider the partial Eisen-
stein series ER

P (φ, λ), which is defined as in (5), but with the summation
restricted to P(Q)\R(Q). As a general fact about Eisenstein systems,
the constant term of ER

P (φ, λ) is given as in (21), but with the sum-
mation restricted to those w ∈ Wi whose linear part is the identity on
ǎR. In the special case R = P, where

EP
P (φ, λ) = e〈λ+ρP ,HP(·)〉 φ(·),

this expression for the constant term boils down to the assertion about
Ni(wi, λ).

Finally, the fact that the only Eisenstein series EG
P(φ, ρP) which have

an exponential term of the form e〈2ρ
P(i) ,H

P(i) 〉 in their constant term are
the Eisenstein series starting from P = P (j) with j ≤ i is a consequence
of our condition on T and the proof of the main theorem in [Fra98, §6].

The proof of lemma 5.1 is complete. Q.E.D.

The description of the kernel of ΞG
Po

is a little too complicated to use
it directly. Therefore we will use it to get a resolution of the space of
automorphic forms by induced representations whose cohomology can
be described easily. This is achieved in two steps. In the first step, we
consider the functor

F
P =

{

IndG
PS(ǎG

P) ⊗ ŠtLP(A) ⊗ C2ρP if P 6= Po

IndG
Po
S(ǎG

o ) ⊗ C2ρo
if P = Po.

}

⊆ IndG
Po
S(ǎG

o )⊗C2ρo

The map F (G)P̃⊇P is given by the inclusion S(ǎG
P̃
) ⊂ S(ǎP), followed

by the inclusion

ŠtLP̃(A) ⊆ IndP̃
PŠtLP(A) ⊗ C

2ρP̃P

which holds because of the description of ŠtG(A) as the orthogonal
complement of

∑

P⊃Po

C∞(P(A)\G(A)).

Proposition 1. The map ΞG
Po

defines an isomorphism

Hdim aGo (C∗ (F (G)•)) ∼= AJ ,I .

This is the only non-vanishing cohomology group of C∗ (F (G)•).
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Proof. Let the functor F̃
•

be defined by F̃
P

= F (G)P if P ⊃ Po and

F̃
Po

=
∑

P∈P

dim aPo =1

IndG
PŠtLP(A) ⊗ S(ǎG

P) ⊗ C2ρP .

This is our expression for the kernel of ΞG
Po

. It is therefore sufficient to

prove the acyclicity of the chain complex of F̃
•
.

We have a filtration of functors

FilkF̃
P

=



























∑

Q⊇P

dim aGQ=k

IndG
PS(ǎG

Q) ⊗ ŠtLP(A) ⊗ C2ρP if P ⊃ Po

∑

Q∈P

dim aGQ=k

IndG
PS(ǎG

Q) ⊗ ŠtLP(A) ⊗ C2ρP if P = Po

with quotients

(Filk /Filk−1 ) F̃
•

=
∑

R∈P

dim aGR=k

M(R)•,

where

M(R)P =

{

0 if Q 6⊆ R
S(ǎG

R) ⊗ IndG
RD(LR)P/NR if Q ⊆ R.

The acyclicity of the functors D(LR)• is the assertion of theorem 4.

This implies the acyclicity of the quotients of the filtration of F̃
•
, and

hence of F̃
•

itself. �

If P ⊃ Po, then the cohomology of the representation F (G)P is still
rather mysterious. We construct a second resolution for AJ ,I by the
bifunctor

G(G)PQ =

{

IndG
QS(ǎG

P) ⊗ C2ρQ if Q ⊆ P
{0} if Q 6⊆ P.

The map G(G)P
Q̃⊆Q

is given by τQ
Q̃

, and the map G(G)P⊆P̃
Q is given by

the inclusion S(ǎG
P̃
) ⊆ S(ǎG

P).

Proposition 2. The map

IndG
Po
S(ǎG

Po
) ⊗ C2ρo

= G(G)Po

Po
⊂ Zdim aGo (G•

•(G))

induces a surjection

IndG
Po
S(ǎG

Po
) ⊗ C2ρo

→ Hdim aGo (C∗ (G(G)••))
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whose kernel is equal to the kernel of ΞG
Po

. This gives us an isomorphism

Hdim aGo (C∗ (G(G)••))
∼= AJ ,I.

The other cohomology groups of C∗ (G(G)••) vanish.

Proof. It suffices to construct an isomorphism

(22) H l
(

C∗
(

G(G)P•
))

=

{

F (G)P if l = 0
{0} if l > 0

which is functorial in P. Let us fix P. Then

G(G)P• = IndG
PS(ǎG

P) ⊗ M • ⊗ C2ρP ,

where

MQ =

{

IndP
QC2ρPQ

if Q ⊆ P

{0} if Q 6⊆ P.

If Q ⊆ P, then MQ is in duality with C (LP , (Po/NP),A). An iso-
morphism (22) is therefore given by theorem 3. It is easy to see that
this isomorphism is functorial in P. �

6. Construction of the isomorphism (3.4)

Our final goal is to compute the (g, K)-hypercohomology of the chain
complex C∗(G(G)••) and to relate it to the topological model explained
in section 2. We first compute H∗

(mG ,Ko
∞)

(

C∗
(

G(G)•Q
))

for a given
parabolic subgroup Q.

We have the projection

C∗
(mG ,Ko

∞)

(

C∗
(

G(G)•Q
))

→ C∗
(mG ,Ko

∞)

(

G(G)GQ
)

= C∗
(mG ,Ko

∞)

(

IndG
QC2ρQ

)

.(1)

By Frobenius reciprocity we have

C∗
(mG ,Ko

∞)

(

IndG
QC2ρQ

)

∼=(2)

∼=
(

Ind
G(Af )

Q(Af )C2ρQ

)

⊗
(

homK
o
∞∩Q(R) (Λ∗(q ∩ mG/q ∩ k),C)

)

,

where the G(Af )-action on the second factor is trivial. The second
factor carries the differential of the standard complex for computing
(q ∩ mG,K

o
∞ ∩Q(R))-cohomology. The embedding

det(aG
Q ⊕ nQ) ⊗ Λ∗(mQ/mQ ∩ k) ⊂ Λ∗(q ∩ mG/q ∩ k)[dim aG

Q + dim nQ]

defines a projection

pQ : homK
o
∞∩Q(R) (Λ∗(q ∩ mG/q ∩ k),C) →(3)

→ homK
o
∞∩Q(R)

(

Λ∗(mQ/mQ ∩ k) ⊗ det(aG
Q ⊕ nQ),C

)

[− dim aG
Q − dim nQ].
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This is a homomorphism of chain complexes, and the differential of its
target vanishes. Let H(G)Q

∗ be the graded vector space

H(G)Q
∗ =

(

Ind
G(Af )

Q(Af )C2ρQ

)

⊗(4)

⊗ homK
o
∞∩Q(R)

(

Λ∗(mQ/mQ ∩ k) ⊗ det(aG
Q ⊕ nQ),C

)

[− dim aG
Q − dim nQ],

which can also be viewed as a chain complex with zero differential. The
composition of (1), (2), and (3) defines a projection

(5) C∗
(mG ,Ko

∞)

(

C∗
(

G(G)•Q
))

→ H(G)Q
∗.

Proposition 1. The projection (5) defines an isomorphism on coho-
mology.

Proof. By Frobenius reciprocity and by Kostant’s theorem on n-homology
([Wal88, Theorem 9.6.2] or [Vog81, Theorem 3.2.3]), there is an isomor-
phism

H∗
(mG ,Ko

∞)

(

IndG
QS(ǎG

P) ⊗ C2ρQ

)

[dim nQ] ∼=

∼= Ind
G(Af )

Q(Af )

({

H∗
(mQ,Ko

∞∩Q(R))(C) ⊗H∗
aGQ

(

S(ǎG
P)
)

⊗ det n−1
Q

}

⊗ C2ρQ

)

∼= Ind
G(Af )

Q(Af )

({

H∗
(mQ,Ko

∞∩Q(R))(C) ⊗ Λ∗(ǎP
Q) ⊗ det n−1

Q

}

⊗ C2ρQ

)

(6)

∼= Ind
G(Af )

Q(Af )

({

H∗
(mQ,Ko

∞∩Q(R))(C) ⊗ E(Q)P
∗
⊗ det n−1

Q

}

⊗ C2ρQ

)

,

where the factors in curved braces have trivial Q(Af )-action. We have
used the following isomorphism, which is easily constructed:

H∗
aGQ

(

S(ǎG
P)
)

∼= Λ∗(ǎP
Q) ∼= E(Q)P

∗
,

where E(Q)P = Λ∗(ǎP
Q) was considered at the end of section 3. This

isomorphism, and hence also (6), is functorial with respect to P (recall

that E(Q)P̃⊆P
∗

is defined by the projection ǎQ
P → ǎQ

P̃
).

If P = G, then the composition of the isomorphism (6) with the
projection

(7) E(Q)G = Λ∗(ǎG
Q) → det(aG

Q)−1[− dim aG
Q]

is precisely the map defined by (2) and (3) on cohomology. By lemma 4.3,
the projection (7) defines an isomorphism

H∗
(

C∗
(

Ind
G(Af )

Q(Af )

({

H∗
(mQ,Ko

∞∩Q(R))(C) ⊗ E(Q)P
∗
⊗ det n−1

Q

}

⊗ C2ρQ

)

))

∼=

∼= Ind
G(Af )

Q(Af )

({

H∗
(mQ,Ko

∞∩Q(R))(C) ⊗ E(Q)P
∗
⊗ det(aG

Q ⊕ nQ)−1
}

⊗ C2ρQ

)

[− dim aG
Q],

which proves our claim. �
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We now have to determine the structure of a covariant functor on
H(G)Q

∗ such that (5) becomes functorial in Q. We have to introduce
some new notations. For any Q, let the Haar measure on K∞ ∩Q(R)
be normalised by

∫

K∞∩Q(R)
dk = 1. Then there is a unique homomor-

phism

τ
Q(Af )

P(Af ) : Ind
G(Af )

P(Af )C2ρP → Ind
G(Af )

Q(Af )C2ρP

such that we have, for the standard model of the induced representation
in the space of functions on the adelic group,

(8) (τQP f)(gfg∞) = τ
Q(Af )

P(Af ) e〈HQ(g∞),2ρQ〉

∫

K∞∩Q(R)

f(gfkk∞) dk,

where gf ∈ G(Af) and g∞ = p∞k∞ ∈ G(R) with p∞ ∈ P(R) and
k∞ ∈ K

o
∞. Is easy to see that the right hand side of (8) is independent

of the choice of the Iwasawa decomposition g∞ = p∞k∞.
It is clear that (1) is functorial with respect to Q. Let Q̃ ⊇ Q. Since

q̃ ∩ mG/q̃ ∩ k = q ∩ mG/q ∩ k, the formula

(9)
(

iQ̃⊇Qφ
)

(λ) =

∫

K∞∩Q̃(R)

φ(kλ) dk

for λ ∈ Λ∗(q̃ ∩ mG/q̃ ∩ k) and

φ ∈ homK
o
∞∩Q(R)(q̃ ∩ mG/q̃ ∩ k,C) = homK

o
∞∩Q(R)(q ∩ mG/q ∩ k,C)

defines a map

iQ̃⊇Q : homK
o
∞∩Q(R)(q ∩ mG/q ∩ k,C) → hom

K
o
∞∩Q̃(R)(q̃ ∩ mG/q̃ ∩ k,C).

It follows from (8) that the isomorphism (2) is functorial in Q if the

transition homomorphism for its target is defined by τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. It

is clear that

iQ̃⊇Q homK
o
∞∩Q(R)(mQ/q ∩ k ⊗ det(aG

Q ⊕ nQ),C) ⊆

⊆ hom
K

o
∞∩Q̃(R)(mQ̃/q̃ ∩ k ⊗ det(aG

Q̃
⊕ nQ̃),C).

Therefore, we may define H(G)Q̃⊇Q by τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. To verify that

(3) is functorial in Q, we have to verify that pQ̃iQ̃⊇Q vanishes on the
kernel of pQ. This follows from the following lemma:

Lemma 1. Let H be a semisimple algebraic group over R, K ⊂ H(R)
a maximal compact subgroup, and let P = MAN be a R-parabolic
subgroup of H. Let h, p, m, a, n be the Lie algebras of H(R), P(R),
M(R), A(R), N (R). If λ ∈ Λia ⊗ det n ⊗ Λ∗(m/k ∩ m) ⊂ Λ∗(h/h ∩ k)
for i < dim a, then

∫

Ko

kλ dk = 0
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in Λ∗(h/h ∩ k).

Since (1), (2) and (3) are natural in Q, the same is true for their com-
position (5). Therefore, proposition 6.1 together with proposition 5.2
and the proven Borel conjecture imply the following theorem.

Theorem 7. Let H(G)Q
∗ be defined by (4), and let H(G)Q̃⊇Q =

τ
Q̃(Af )

Q(Af ) ⊗ iQ̃⊇Q. Then there we have an isomorphism of G(Af )-modules

Hk(G,C)I ∼= Hk−dim aGo (C∗ (H(G)•
∗))

which respects the canonical real structures on its source and its target.

It remains to prove lemma 6.1.
Proof of lemma 6.1: By Poincare duality, it suffices to verify that

(10) φ
(

Λj(a) ⊗ Λ∗(m/m ∩ k)
)

= 0

for j > 0 and any φ ∈ homKo (Λ∗(h/k),C). Recall the definition of

the compact homogeneous space X
(c)
H and of the compact duals H(c),

M(c), A(c) from the introduction. Then (10) admits a topological re-
formulation

(11) im
(

H∗(X
(c)
H ,C) → H∗(X

(c)
M ×A(c)(R),C)

)

⊆ H∗(X
(c)
M,C)

in terms of the pull-back of cohomology classes from X
(c)
H to X

(c)
M ×

A(c)(R). Let J be an integer, and let

fJ : A(c)(R) × X
(c)
M → X

(c)
H

fJ(a, x) = aJx

be defined by the action of A(c)(R) on X
(c)
H and the embedding X

(c)
M ⊂

X
(c)
H . To verify (11), it suffices to take some J 6= 0 and to verify

(12) im(f ∗
J) = im(f ∗

0 )

for the pull-back on cohomology with complex coefficients. For the
right hand side of (12) is always contained in the right hand side of
(11), and for J 6= 0 the left hand sides of (11) and (12) agree.

As H was supposed to be semisimple, the fundamental group of
H(c)(R) is finite. Since A(c)(R) is a product of circles, if J is divisible
by a certain positive integer the map

A(c)(R) → H(c)(R)

a → aJ

will be homotopic to the identity. But then f0 and fJ are homotopic,
and this implies (12).
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The proof of lemma 6.1 is complete. Q.E.D.

For those who are only interested in an algebraic formula forH∗(G,C)I,
theorem 7 would be the final result of this paper. It remains to derive
the isomorphism (3.4) from this theorem.

Let

Ȟ(G)Q
∗

= C∞(Q(Af )\G(Af)) ⊗ homK
o
∞∩Q(R)(Λ

∗(mQ/mQ ∩ k),C),

where the transition maps Ȟ(G)Q⊇Q̃
∗

are given by the embedding

C∞(Q(Af )\G(Af )) ⊆ C∞(Q̃(Af )\G(Af))

and the restriction to mQ̃

homK
o
∞∩Q(R)(Λ

∗(mQ/mQ ∩ k),C) → hom
K

o
∞∩Q̃(R)(Λ

∗(mQ̃/k ∩ mQ̃),C).

If P is a standard parabolic subgroup, then K
o
∞ ∩ Po(R) meets ev-

ery connected component of K∞ ∩ P(R) by proposition 2.1.1. Conse-
quently, there is a canonical isomorphism between

H∗
(

C∗
(

H̃(G)•
∗
))πo(K∞∩Po(R))

and the invariants in the hypercohomology of the complex associated
to the functor A(G,C)P

H∗
(

C∗
(

H̃(G)•
∗
))

∼= H∗
c (G,C)I ∼= H∗(X

(c)
MG

, C∗(A(G, C))).

This isomorphism identifies the canonical real subspace of its source
with

ipHp(X
(c)
MG

, C∗(A(G, C))).

To construct (3.4), we construct a duality between H̃(G)•
∗

and
H(G)•

∗. Let o be an orientation of the real vector space mG/k. Mul-
tiplication by a square root i of −1 defines an isomorphism between

mG/k and the tangent space of X
(c)
MG

at the origin. Therefore, o and i

define a orientation oi of the differentiable manifold X
(c)
MG

. There exists

δo ∈ idim(mG/k) det(mG/k) such that
∫ oi

X
(c)
MG

δo = idim(mG/k)

if δo is viewed as a real dim(mG/k)-form on X
(c)
MG

. We have

o−i = (−1)dim(mG/k)oi,

hence δo is independent of the choice of i. Then δo defines a duality

homK
o
∞∩Q(R)(Λ

∗(mQ/mQ ∩ k) ⊗ det(aG
Q ⊕ nQ),C) ⊗ homK

o
∞∩Q(R)(Λ

∗(mQ/mQ ∩ k),C)

→ C[− dim(mG/k)],
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and τqfQ
G(Af ) defines a duality between Ind

G(Af )

Q(Af )C and Ind
G(Af )

Q(Af )CtrQ.

We get a duality

(13) H̃(G)•
∗
⊗ H(G)•

∗ → C[− dim(mG/k)]

which defines an isomorphism (3.4) which is independent of o since
(13) changes its sign if o is changed. Furthermore, (13) maps the real
subspaces of H and Ȟ to idim(mG/k)R, whence the assertion about real
subspaces in theorem 2.

7. Some examples

7.1. Ghost classes in the image of the Borel map. It is rather
easy to use the topological model to explicitly compute the kernel of
the Borel map

I∗G(R),Ko
∞
→ H∗(G,C).

This allows us to give new examples of ghost classes. Recall that a
cohomology class of G is called a ghost class if it trivially restricts
to each boundary component of the Borel-Serre compactification and
if its restriction to the full Borel-Serre boundary is not zero. This
notion was coined by Borel. The first example of a ghost class was
constructed by Harder in the cohomology ofGL3 over totally imaginary
fields, using Eisenstein series starting from an algebraic Hecke character
whose L-function vanishes at the center of the functional equation. Our
computation of the kernel of the Borel map will make it clear that ghost
classes abund in the image of the Borel map, at least for most groups
of sufficiently high rank.

Recall that H∗
c (G,C)I can be computed as the cohomology of the

complex of graded vector spaces C∗(Ȟ
•∗

). The map

C∗(Ȟ
•∗

) → Ȟ
G∗

→ I∗G(R),Ko
∞

defines a homomorphism

(1) H∗
o (G,C)I → I∗G(R),Ko

∞

which is easily identified with the Poincare dual of the Borel map.
It can also be viewed as the restriction to the subspaces which are
annihilated by the Hecke ideal I of the map from cohomology with
compact support to L2-cohomology. By the definition of the differential
of the complex C∗(Ȟ

•∗
), the image of (1) is the space

(2) (I∗G(R),Ko
∞

)Image = ker

(

I∗G(R),Ko
∞
→

⊕

P∈P

dim aGP=1

I∗MP(R),Ko
∞∩P(R)

)

.
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In other words, a cohomology class of the constant representation of G
is in the image of the cohomology with compact support if and only
if its restriction to the cohomology of the constant representation of
any maximal Levi component vanishes. By Poincare duality, the kernel
(I∗G(R),Ko

∞
)Kernel of the Borel map is equal to the orthogonal complement

of (I∗G(R),Ko
∞

)Image. Let (I∗G(R),Ko
∞

)Ghost be the space of all invariant forms

i ∈ I∗G(R),Ko
∞

such that, for any parabolic subgroup P with dim aG
P = 1,

the image of j in
I∗MP(R),Ko

∞∩P(R)

belongs to
(I∗MP(R),Ko

∞∩P(R))Kernel.

Then the space of ghost classes in the image of the Borel map is iso-
morphic to (IGhost/IImage + IKernel)

∗
G(R),Ko

∞
. This follows from the fact

([Sch83, 1.10]) that after identifying (g,K)- and de Rham-cohomol-
ogy, the homomorphism defined on (g,K)-cohomology by taking the
constant term along P corresponds to restriction to the Borel-Serre
boundary component belonging to P, and from 7.1.2 below.

Let us explain this a little more in the case of groups over totally
imaginary fields. That is, let G be obtained by Weil restriction from a

totally imaginary field. Then X
(c)
G has a group structure. Therefore, its

cohomology I∗G(R),Ko
∞

is a Hopf algebra. By the Hopf structure theorem,

it is an exterior algebra over a graded space E∗(G) of primitive elements,
which are of odd order. The same is true for all Levi components of
parabolic subgroups of G. Let

E∗
Top(G) = ker

(

E∗(G) →
⊕

P∈P

dim aGP=1

E∗(MG)

)

and

E∗
Ghost(G) = ker

(

E∗(G) →
⊕

P∈P

dim aGP=2

E∗(MG)

)

.

Then
(

I∗G(R),Ko
∞

)

Image
= E∗

Top(G) ∧ Λ∗
(

E∗(G)
)

(

I∗G(R),Ko
∞

)

Kernel
= det

(

E∗
Top(G)

)

∧ Λ∗
(

E∗(G)
)

(

I∗G(R),Ko
∞

)

Ghost
= det

(

E∗
Ghost(G)/E∗

Top(G)
)

∧ Λ∗
(

E∗(G)/E∗
Top(G)

)

.

For instance, for SLn over a totally imaginary field K, we have prim-

itive generators λ
(v)
2 ,. . . , λ

(v)
n for each v in the set V∞

K of archimedean

primes of K, with the relation
∑

V∞
K
λ

(v)
1 = 0. The degree of λ

(v)
j is
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2j − 1. The following fact is an obvious consequence of what has been
said above.

Theorem 8. Then a invariant form is in the image of cohomology with
compact support if and only if it is a sum of monomials which contain

one of the classes λ
(v)
n . It is in the kernel of the Borel map if and only

if it is divisible by
∧

V∞
K
λ

(v)
n . It defines a ghost class if and only if it is

a sum of monomials which contain all of the classes λ
(v)
n−1 but none of

the classes λ
(v)
n .

The space E∗(G) is known for groups over totally imaginary fields
by the known calculation of the cohomology of compact Lie groups,
cf. [Bor55, §11] for a statement of the result and for references, and
[GHV76, §VI.7] for the case of the classical groups. Therefore, the
spaces (I∗G(R),Ko

∞
)Image,Kernel,Ghost are at least in principle known for

groups over totally imaginary fields.
Let us also formulate the result about the kernel of the Borel map

and about ghost classes for SLn over a field K which has real places.
We first have to formulate the necessary facts about the cohomol-
ogy of SU(n,R)/SO(n,R). They can be obtained from the consid-
eration of the Leray spectral sequence for the projection SU(n,R) →
SU(n,R)/SO(n,R), either by hand or by the general theory (cf. [GHV76,
XI.4.4.]).

Proposition 1. If n is odd, then the cohomology with complex coeffi-
cients of SU(n,R)/SO(n,R) is an exterior algebra with generators λ̃3,

λ̃5,. . . , λ̃n, where deg λ̃i = 2i − 1. Furthermore, λ̃i can be obtained
from the primitive element λi in the cohomology of SU(n,R) by pull
back via the map

SU(n,R)/SO(n,R) → SU(n,R)(3)

ġ → g · gT.

If n is even, then the cohomology of SU(n,R)/SO(n,R) is an exterior

algebra generated by elements λ̃3,. . . , λ̃n−1 obtained in the same way
as above, and by a class ε in degree n, which is the Euler class of the
canonical n-dimensional orientable real bundle on SU(n,R)/SO(n,R).

If
∑k

i=1 ni ≤ n, then the restriction of λ̃l to

(4)

k
∏

i=1

SU(ni,R)/SO(ni,R) ⊂ SU(n,R)/SO(n,R)
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is
∑

1≤i≤k

ni≤l

λ̃
(i)
l ,

where λ̃
(i)
l is the copy of λ̃l for the i-th factor in (4). If n is even, then

the restriction of the Euler class ε to (4) can be described as follows.

If n =
∑k

i=1 ni and if all the ni are even, then the restriction of ε is
given by

ε(1) ∧ . . . ε(k),

where εi is the copy of ε for the i-th factor in (4). If n <
∑k

i=1 ni or if
some of the ni are odd, then the restriction of the Euler class is zero.

Now let K be a field which has at least one real place. Let G be SLn

over K. If n is odd, then the space of invariant forms is an exterior

algebra with generators λ̃
(u)
3 , λ̃

(u)
5 ,. . . , λ̃

(u)
n for the real places u and

λ
(v)
2 ,. . . ,λ

(v)
n for the complex places v (if there are any complex places).

A monomial in these generators belongs to (I∗G(R),Ko
∞

)Image if and only

if it contains one of the generators λ̃
(u)
n for a real place u or one of the

generators λ
(v)
n for a complex place v. It belongs to the kernel of the

Borel map if and only if it is divisible by
∧

u real

λ̃(u)
n ∧

∧

v imaginary

λ(v)
n .

If n is even, then I∗G(R),Ko
∞

is an exterior algebra with generators

λ̃
(u)
3 , λ̃

(u)
5 ,. . . , λ̃

(u)
n−1 and ε(u) for each real place u and λ

(v)
2 ,. . . , λ

(v)
n

for the complex places v. A monomial in these generators belongs to
(I∗G(R),Ko

∞
)Image if and only if it contains one of the following factors:

• λ(v)
n for a imaginary place v.

• ε(u) ∧ λ̃(w)
n−1 for real places u and w.

• ε(u) ∧ λ(v)
n−1 for a real place u and an imaginary place v.

A monomial belongs to the kernel of the Borel map if and only if it
contains at least one of the following two factors:

∧

u real

λ̃
(u)
n−1 ∧

∧

v imaginary

(λ̃(u)
n ∧ λ̃(u)

n−1)

∧

u real

ε(u) ∧
∧

v imaginary

λ(v)
n ,

where a product over the set of imaginary places is supposed to be
one if the field is totally real. In particular, if n > 2 is even and if
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K is totally real, then (I∗G(R),Ko
∞

)Image does not contain (I∗G(R),Ko
∞

)Kernel

completely.
We can use this to describe all ghost classes in the image of the Borel

map. If n is odd, then a monomial in the generators of I∗G(R),Ko
∞

is a

ghost class if and only if it contains all the generators λ̃
(u)
n−2 for all the

real places u and all the generators λ
(v)
n−1 and λ

(v)
n−2 for all the imaginary

places v, but none of the generators λ̃
(u)
n or λ

(v)
n . If n = 3, this means

that there are no ghost classes in the image of the Borel map (recall
our assumption that K is not purely imaginary).

If n is even, then a monomial µ in the generators of I∗G(R),Ko
∞

defines
a ghost class if and only if at least one of the following four conditions
is satisfied:

• K is not totally real, and µ contains all the generators λ
(v)
n−1 for

v complex and λ̃
(u)
n−1 for u imaginary, but none of the classes λ

(v)
n

nor any Euler class ε(u).
• K is not totally real, and µ contains all the generators ε(u) for u

real and λ
(v)
n−2 for v imaginary, but none of the generators λ

(v)
n .

• n ≥ 6 and K is not totally real, and µ contains at least one

of the generators ε(u) and all of the generators λ̃
(u)
n−3, λ

(v)
n−3 and

λ
(v)
n−2, but none of λ

(v)
n , λ

(v)
n−1 or λ̃

(u)
n−1

• n ≥ 6 and K 6= Q is totally real, and µ contains at least one

but not all of the generators ε(u) and all of the generators λ̃
(u)
n−3,

but none of λ̃
(u)
n−1.

If n = 4 and K is totally real or if n > 4 is even and K = Q, this means
that there are no ghost classes in the image of the Borel map.

In our description of ghost classes, we have used fact:1

Proposition 2. Let P be a standard parabolic subgroup. Then the
image of the restriction map

H∗
mG ,K∞

(C) → H∗
mP+n,K∞∩P(R)(C)

is contained in H∗
mP+nP ,K∞∩P(R)(C) ⊂ H∗

mP+n,K∞∩P(R)(C).

Proof. By an easy induction argument, it suffices to prove this assertion
for maximal proper Q-parabolic subgroups. In this case, it follows from
the lemma below that

H∗
mP+n,K∞∩P(R)(C) ∼= H∗

mP+n,K∞∩P(R)(C) ⊕H∗−dim nP
mP+n,K∞∩P(R)(det nP),

1I am indebted to A. Kewenig and T. Rieband for pointing out that this is not
self-evident
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and it follows from 6.1 that the restriction of an element of H∗
mG ,K∞

(C)
never has a non-vanishing projection to the second summand. �

Lemma 1. Let P be a maximal proper Q-parabolic subgroup of G. Then

(5) H∗(nP ,C)MP = C ⊕ det nP [− dim nP ].

Proof. Let h be a Cartan subalgebra of g which contains ao and is
contained in ao ⊕ mP . Let B ⊆ Po be a Borel subgroup defined over
C with h ⊆ b, and let ∆η be the set of simple positive roots of h
determined by B. This set decomposes according to the restrictions to
ao:

∆h =
⋃

a∈∆o∩{0}

∆h,α.

By a theorem of Kostant ([Wal88, Theorem 9.6.2] or [Vog81, Theo-
rem 3.2.3])

(6) H∗(nP ,C) ∼=
∑

w∈Ω(h,g)

w−1∆
mP
h >0

Fwρh−ρh
[−`(w)].

In fact, it follows from the proof given in the above references that
(6) even holds in the derived category of (mP ,K∞ ∩ P(R))-modules.
This implies the splitting of the Leray spectral sequence, which will be
used below. Since both summands on the right hand side of (5) are
accounted for by this formula, it suffices to show that there are at most
two w for which the corresponding summand in (6) contributes to (5).

Indeed, if the summand belonging to w in (6) contributes to (5),
then

(7) 〈α̌, wρh〉 = 〈α̌, ρh〉 = 1

for all α ∈ ∆mP
h and

(8) 〈α̌, wρh〉 =
〈

β̌, wρh

〉

for α, β ∈ ∆h,γ, where ∆o = ∆P
o ∪ {γ}. The first of these conditions

implies that w−1α is not only positive but also a simple positive root.
It follows from the second condition (8) that either w−1∆h,γ > 0 or
w−1∆h,γ < 0. In the first case, w−1 maps every positive root to a
positive root, and w is the identity. In the second case, Let γ be a root of
h in nP . Then γ = γ′ +γ′′, where γ′ is a linear combination of elements
of ∆h,γ with non-negative coefficients, and γ ′′ is a linear combination of
elements of ∆P

h . By our assumption, w−1γ′ is a linear combination of
simple roots with non-positive coefficients. Since γ ′ does not vanish on
aP , it is not a linear combination of elements of ∆P

h . Therefore, there is

an element α ∈ ∆h − w−1∆P
h which occurs with negative coefficient in
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the representation of w−1γ′ as a linear combination of elements of ∆h.
Since w−1γ′′ is a linear combination of the elements of w−1∆P

h ⊂ ∆h,
this means that α occurs with negative coefficient in the representation
of w−1γ as a linear combination of positive roots. But this means
that w−1 maps all positive roots of h which do not occur in lP to
negative roots. Therefore, the length of w is the largest possible, and
the contribution of w to (6) is in the highest possible degree, which is
one-dimensional and coincides with the second summand in (5) �

7.2. SLn over imaginary quadratic fields. Let K be an imaginary
quadratic field, and let G = resK

QSLn. We want to explcitly compute

H∗
c (G,C)I. We will directly use the complex C∗

(

Ȟ(G)•∗
)

. Let us first
describe this complex explicitly.

Recall that the cohomology of the constant representation of SLn

over an imaginary quadratic field is the exterior algebra with generators
λ2,. . . , λn. The degree of λn is 2n−1, and, using the coalgebra structure

of the cohomology of X
(c)
G = SU(n,C) coming from the group law, λn

is characterised up to multiplication by a non-vanishing number as the
primitive element in degree 2n− 1. We will assume that for k ≤ l < n,
the restriction of λk on SLn is λk on SLl.

Let the minimal parabolic subgroup be the stabiliser of the full flag
V1 ⊂ V2 ⊂ . . . ⊂ Vn = Kn. Then any standard parabolic subgroup
P is the stabiliser of a flag Vi1 ⊂ Vi2 ⊂ . . . ⊂ ViK for some sequence
0 < i1 < i2 < . . . < iK = n. Then

MP =

K
∏

l=1

ResK
QSLil−il−1

, i0 : = 0

hence the cohomology of X
(c)
MP

is an exterior algebra with generators

λ
(1)
2 , . . . , λ

(1)
i1
, λ

(2)
2 , . . . , λ

(2)
i2−i1

, . . . , λ
(K)
2 , . . . , λ

(K)
iK−iK−1

,

where the supercript (l) stands for the l-th simple factor of the Levi
component. If il − il−1 = 1, there is primitive element of H∗(MG)

belonging to the l-th factor. Furthermore, the restriction from X
(c)
G to

X
(c)
MP

of the primitve generator λk is given by

(1) res
X

(c)
G

X
(c)
MP

λk =
∑

il−il−1≥k

λ
(l)
k .

Finally,

K∞ ∩ P(R) = S(U(i1) × U(i2 − i1) × . . .× U(iK − iK−1))
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is connected, hence its group of connected components does not inter-
fere with the computation of the functor Ȟ(G)•∗. Therefore, we get
an explicit desription of the functor Ȟ(G)•∗ which we now want to
describe.

Let Ln(K) be the set of functions

l : {2, . . . , n} → {0, 1, . . .}

such that

(2)
∞
∑

j=1

max {k |l(k) ≥ j } ≤ n.

If the parabolic subgroup P corresponds to 0 < i1 < . . . < iK = n, let
Yl,P be the set of functions

y : {(k, l) |2 ≤ k ≤ n, 1 ≤ l ≤ l(k)} → {1, . . . , k}

with the property that

(3) iy(k,l) − iy(k,l)−1 ≥ k

and

(4) 0 < y(k, 1) < y(k, 2) < . . . < y(k, l(k)).

Note that Yl,P is not functorial with respect to P. Let P̃ ⊇ P, y ∈ Yl,P ,

ỹ ∈ Yl,P̃ . Let P belong to the sequence 0 < i1 < . . . < iK = n and let P̃

correspond to 0 < ĩ1 < . . . < ĩK̃ = n. Then {̃i1, . . . , ĩK̃} ⊆ {i1, . . . , iK}.
We will write ỹ � y if

(5) ĩỹ(k,l)−1 < iy(k,l) ≤ ĩy(k,l).

It is clear that for given P, P̃, and y there is at most one ỹ with
ỹ � y. Let I

P
l be the vector space with base Yl,P . Then I

P
l is a

contravariant functor from P to the category of vector spaces if we put
for ỹ ∈ Yl,P̃ ⊂ (IP)l

(6) I
P̃⊇P
l (ỹ) =

∑

y ∈ Yl,P

ỹ � y

y.

By (1), the map

I
P
l [− deg l] → Ȟ(G)P∗

y →
n
∧

k=2

l(k)
∧

l=1

λ
y(k,l)
k ,
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where

(7) deg l =
n
∑

k=2

(2k − 1)l(k),

is a functormorphism. We get a direct sum decomposition

(8) Ȟ(G)P∗ ∼=
⊕

l∈Ln(K)

I
P
l [− deg l] ⊗ C∞(P(Af )\G(Af)).

If Kf is a good maximal compact subgroup of G(Af), we also get a
direct sum decomposition for spherical vectors

(9) (Ȟ(G)P∗)Kf ∼=
⊕

l∈Ln(K)

I
P
l [− deg l].

Let us first formulate our result for spherical vectors in the cohomol-
ogy.

Theorem 9. For l ∈ Ln(K), e ∈ {0, 1}, and N ≤ 0, let XN,e,l be the
set of ordered N + 1-tuples x = (X0, . . . , XN) of subsets of {2, . . . , n}
with the following properties:

• Each number k with 2 ≤ k ≤ n belongs to precisely l(k) of the
sets Xi.

• We have
N
∑

i=0

max #{Xi} = n− e.

If l = 0, we put XN,e,l = ∅. Then for each x ∈ XN,e,l, H
∗(C∗(I•

l )) has a
generator {x} in degree N + e, and we have

(10) H i(C∗(I•
l )) =

1
⊕

e=0

⊕

x∈Xi−e,e,l

C · {x}.

Consequently,

Hj
c (G,C)I ∼=

⊕

l∈Ln(K)

1
⊕

e=0

⊕

x∈Xj−e−deg l

C · {x}.

Moreover, let the ordering ≺ on the roots which was used to define the
complex C∗(F •) be

x1 − x2 ≺ x2 − x3 ≺ . . . ≺ xn−1 − xn.
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Then for x = (X0, . . . , XN) ∈ XN,0,l a representative of the cohomology
class {x} is given by the element

(11)
N
∧

i=0

#(Xi)
∧

j=2

j∈Xi

λ
(i)
j

in the cohomology of X
(c)
MP

, where P ∈ P is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < #(X0) < #(X0) + #(X1) < . . . <
N−2
∑

i=0

#(Xi) <
N−1
∑

i=0

#(Xi) = n.

If x = (X0, . . . , XN) ∈ XN,1,l and if 0 ≤ k ≤ N+1, then a representative
of the cohomology class {x} is given by the element

(12) (−1)k
k−1
∧

i=0

#(Xi)
∧

j=2

j∈Xi

λ
(i)
j ∧

N
∧

i=k

#(Xi)
∧

j=2

j∈Xi

λ
(i+1)
j

in the cohomology of X
(c)
MP

, where P ∈ P is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < #(X0) < #(X0) + #(X1) < . . . <
k−1
∑

i=0

#(Xi) <

< 1 +

k−1
∑

i=0

#(Xi) < . . . 1 +

N−2
∑

i=1

#(Xi) < 1 +

n−1
∑

i=1

#(Xi) = n.

For instance, if n = 2, then the only spherical vector in H∗
c (G,C)I

is the volume form in degree 2. This is in good keeping with the
results of Harder for SL2 and also with the computation of R. Staffeldt
[Sta79, Theorem IV.1.3.] which implies that H∗(SL2(Z[i]),C) vanishes
in positive dimension. In particular, there are no harmonic cusp forms
for SL2(Z[i]). If n = 3, then H∗

c (G,C)I contains the following three
spherical vectors:

• In degree 4, the cohomology class belonging to

l(k) =

{

1 if k = 2
0 otherwise

and x =
{

{2}
}

∈ X0,1,l.
• In degree 5, the cohomology class belonging to

l(k) =

{

1 if k = 3
0 otherwise
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and x =
{

{3}
}

∈ X0,0,l. This class maps to λ3 in I∗G(R),K∞
.

• In degree 8, the volume form belonging to

l(k) =

{

1 if k = 2 or k = 3
0 otherwise

and x =
{

{2, 3}
}

∈ X0,0,l.

In the case K = Q(i), this can be compared with the computation
by R. Staffeldt ([Sta79, Theorem IV.1.4.] combined with the Borel-
Serre duality theorem [BS73, Theorem 11.4.1.]). It turns out that in
this case all cohomology classes of SL3(Z[i]) can be generated by Eisen-
stein series starting from the constant representation or by the constant
representation itself. In particular, there are no harmonic cusp forms
modulo SL3(Z).

7.3. Homotopy type of a poset of partitions. As the main combi-
natorial tool in our computation of H∗

c (G,C)I for GLn over imaginary
quadratic fields we use the description of the homotopy type of a par-
tially ordered set of partitions.

In the following, we shall write ‘poset’ for ‘partially ordered set’. Let
BX be the classifying space of the poset X. Notions from homotopy
theory applied to posets or morphisms of posets will have the mean-
ing of these notions, applied to the classifying space of the poset or
morphism of posets. We will freely use the basic techniques for investi-
gating the homotopy of the classifying space of a category, cf. [Qui73]
or the textbook [Sri91].

By an ordered partition of an integer n, we mean a tuple (M,x0, . . . , xM),
where M is the number of intervals in the partition and 0 = x0 < x1 <
. . . < xM = n are the vertices of these intervals. We will say that a
partition (M,x0, . . . , xM) is finer than or equal to (N, y0, . . . , yN), and
write

(M,x0, . . . , xM ) � (N, y0, . . . , yN),

if {y0, . . . , yN} ⊆ {x0, . . . , xM}.
Consider a finite set S and a function F : S → {1, 2, . . .}. Let

Pn,S,F be the set of pairs (f, (M,x1, . . . , xM)), where (M,x0, . . . , xM) is
a partition of n and f : S → {1, . . . ,M} such that xf(s)−xf(s)−1 ≥ F (s)
for s ∈ S. In other words, elements of Pn,S,F are ordered partitions
of n in which for each element s ∈ S an interval of length ≥ F (s) is
marked. The intervals for associated to different elements of S are not
supposed to be different.

There is a partial order � on Pn,S,F for which

(f, (M,x1, . . . , xM )) � (g, (N, y1, . . . , yN))
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if and only if (M,x0, . . . , xM) � (N, y0, . . . , yN) and yf(s)−1 ≤ xf(s)−1 <
xf(s) ≤ yf(s) for s ∈ S. In other words, the partition (M,x0, . . . , xM)
has to be finer than (N, y0, . . . , yN) and the interval in (M,x0, . . . , xM)
associated to s by f must be contained in the interval in (N, y0, . . . , yN)
associated to s by g.

If n < max
s∈S

F (s), the poset Pn,S,F is empty. Otherwise, it is con-

tractible since it has a final object (1, (1, 0, n)), where 1 is the constant
function s→ 1 on S. Let

P̃n,S,F = pn,S,F − {(1, (1, 0, n))}.

We will investigate the homotopy type of P̃n,S,F . It will turn out that it
is a wedge of spheres. Before formulating our result, we have to define
the index sets over which the wedge is taken. For 1 ≤ k ≤ #(S) and
e ∈ {0, 1}, let Mn,S,F,e,k be the set of ordered k-tuples (S1, . . . ,Sk) of

non-empty mutually disjoint subsets of S such that S =
⋃k

l=1 Sk and

n = e +
∑k

l=1 max
s∈Sl

F (s).

Proposition 1. If n = max
s∈S

F (s), P̃n,S,F is empty. Let n > max
s∈S

F (s).

Fix the basepoint z =

(

1, (2, 0,max
s∈S

F (s), n)

)

of the poset P̃n,S,F . We

have a homotopy equivalence of pointed spaces

(1) φn,S,F :
(

BP̃n,S,F

)

∼=

1
∨

e=0

#S
∨

k=1

∨

Mn,S,F,e,k

Sk+e−2,

where S l is the pointed l-sphere (a set of two points if l = 0). It is
assumed that the wedge over an empty index set is a contractible space.

Moreover, if s = (S1, . . . ,Sk) ∈ Mn,S,F,0,k, then the reduced coho-
mology class of its factor in (1) is given by the unrefinable chain of
length k − 1

x1(s) � x2(s) � . . .� xk−1(s),

where

xl(s) =

(

f s
l ,
(

k − l,

l
∑

j=1

#Sj,

l+1
∑

j=1

#Sj, . . . ,

k
∑

j=1

#Sj = n
)

)

and

fl(s) =

{

1 if s ∈
⋃l

i=1 Si

k + 1 if s ∈ Sl+k with k > 0.

Similarly, if (S1, . . . ,Sk) ∈ Mn,S,F,1,k, then any of the following unre-
finable chains of length k is a representative for the reduced cohomol-
ogy class defined by the corresponding factor in the wedge (1). Take
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1 ≤ m ≤ k + 1, define

f
(m)
l (s) =















1 if l < m and s ∈
⋃l

i=1 Si

2 if l ≥ m and s ∈
⋃l

i=1 Si

k + 1 if s ∈ Sk+l with k > 0 and k + l < m
k + 2 if s ∈ Sk+l with k > 0 and k + l ≥ m

for 1 ≤ l ≤ k and consider the chain

x
(m)
1 � x2 � . . .� x

(m)
k

with

x
(m)
l =

(

f
(m)
l ,

(

k + 2 − l,
l
∑

i=1

#Si, . . .

m−1
∑

i=1

#Si, 1 +
m−1
∑

i=1

#Si, 1 +
m
∑

i=1

#Si, . . . , n
)

)

if l < m and

x
(m)
l =

(

f
(m)
l ,

(

k + 2 − l, 1 +
m−1
∑

i=1

#Si, 1 +
m
∑

i=1

#Si, . . . , n

))

otherwise.

Proof. It is clear that P̃n,S,F is empty if n = max
s∈S

F (s). If n = 1 +

max
s∈S

F (s), it is easy to see that P̃n,S,F consists of two points without

relation, and the theorem follows. Let n > 1 + max
s∈S

F (s).

Let A be the poset of all elements (f, (M,x1, . . . , xM )) ∈ P̃n,S,F

which satisfy one of the following two conditions:

• f−1(1) is empty.
• x1 > max

s∈f−1(1)
F (s).

Since n > 1 + max
s∈S

F (s), Pn−1,S,F is contractible. We have an embed-

ding
i1 : Pn−1,S,F → A

defined by

i1 ((g, (N, y1, . . . , yN))) =

= (g + 1, (N + 1, 0, 1 = y1 + 1, y2 + 1, . . . , n = yN + 1)) ,

where g+1 is the function s→ g(s)+1 on S. We also have a retraction
for i1

r1 : A→ Pn−1,S,F
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which is defined by

r1 ((f, (M,x1, . . . , xM)))

=

{

(f − 1, (M − 1, 0 = x1 − 1, x2 − 1, . . . , n− 1 = xM − 1)) if x1 = 1
(f, (M, 0, x1 − 1, . . . , xM − 1 = n− 1)) if x1 > 1.

Since i1r1 (f, (M,x1, . . . , xM)) � (f, (M,x1, . . . , xM)), Pn−1,S,F is a de-
formation retract of A, hence A is contractible.

Let B ⊂ P̃n,S,F be the poset of all (f, (M,x1, . . . , xM)) which satisfy
at least one of the following two conditions:

• (f, (M,x1, . . . , xM)) ∈ A.
• M > 2.

We have the obvious inclusion i2 : A → B and a retraction r2 : B →
A which is defined as follows. If (f, (M,x1, . . . , xM)) ∈ A, we put
r2((f, (M,x1, . . . , xM))) = (f, (M,x1, . . . , xM)). If (f, (M,x1, . . . , xM )) ∈
B − A, we define a function

h : S → 1, . . . ,M − 1

by

(2) h(s) =

{

1 if f(s) = 1
f(s) − 1 if f(s) > 1

and put

(3) r2((f, (M,x1, . . . , xM))) = (h, (M − 1, x0, x2, . . . , xn)) .

It is easy to see that r2 is a morphism of posets, that r2i2 = Id, and
that i2r2 (f, (M,x1, . . . , xM)) � (f, (M,x1, . . . , xM)). Therefore, A is a
deformation retract of B, and B is contractible.

For x ∈ P̃n,S,F−B, let B−(x) be the poset of all y ∈ B with y�x. The
set of all x for which B−(x) is empty can be identified with Mn,S,F,0,2.

Since no element of P̃n,S,F can be coarser than x, the fact that B is
contractible gives us a homotopy equivalence

(4) BP̃n,S,F
∼=

∨

x∈P̃n,S,F −B

B−(x)6=∅

Σ(BB−(x)) ∨
∨

Mn,S,F,0,2

S0,

where Σ is the suspension functor.
Let us first assume that S consists of a single element s. The as-

sumption made at the beginning of the proof means that n > F (s)+1.
Then all sets Mn,S,F ,e,k are empty, and we have to show that P̃n,S,F

is contractible. The only factor in (4) is B−(z), which has an initial
object

(1, (n− F (s), 0, F (s), F (s) + 1, . . . , n)) .
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This completes the proof of the proposition if S has only one element.
Now we assume by induction that the proposition has been verified

for all subsets of S. As above, B−(z) has an initial object and is
contractible. The other elements of P̃n,S,F −B for which B−(x) is not
empty are of the form

x =

(

(

1 on T

2 on S − T

)

,
(

2, 0,max
s∈T

F (s), n
)

)

,

where T is a non-empty subset of S such that max
s∈T

F (s)+max
s6∈T

F (s) ≤ n,

and for such x we have

B−(x) = P̃n−max
s∈T

F (s),S−T,F .

Then a combination of (4) with the induction assumption gives us

BP̃n,S,F
∼=

∨

T⊂S

T 6=∅
max
s∈T

F (s)+max
s6∈T

F (s)<n

Σ(BP̃n−max
s∈T

F (s),S−T,F ) ∨
∨

Mn,S,F,0,2

S0

∼=

(

∨

T⊂S

T 6=∅
max
s∈T

F (s)+max
s6∈T

F (s)<n

1
∨

e=0

#(S−T )
∨

k=1

∨

Mn−max
s∈T

F (s),S−T,F,e,k

Sk+e−1

)

∨

∨
∨

Mn,S,F,0,2

S0.

Since the maps

Mn−max
s∈T

F (s),S−T,F,e,k → Mn,S,F ,e,k+1

(S1, . . . ,Sk−1) → (T,S1, . . . ,Sk−1)

define an isomorphism
⋃

T⊂S

T 6=∅
max
s∈T

F (s)+max
s6∈T

F (s)<n

Mn−max
s∈T

F (s),S−T,F,e,k
∼= Mn,S,F ,e,k+1,

this completes the induction argument. The explicit formula for the
reduced cohomology classes defined by the individual factors in the
wedge (1) can easily be verified by induction. �

We now want to explain how one can translate homology computa-
tions for certain posets into assertions about the homology of functors
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from P to abelian groups. Let

p : (X,�) → (P,⊂)

be a morphism of posets such that p−1(G) is empty and such that

a.: for G ⊃ P ⊇ Q and x ∈ p−1(Q) there is a unique y ∈ p−1(P)
with y � x.

We define a functor J
•
X,p by

(5) J
P
X,p =

{ ⊕

x∈p−1(P) Cx if P ⊂ G
Cif P = G

and
J

Q⊆P
X,p (x) =

∑

y ∈ p−1(Q)
y � x

y

for x ∈ p−1(P) with P ⊂ G and

J
Q⊆G
X,p 1 =

∑

y∈p−1(Q)

y.

Proposition 2. Assume condition a. above and assume moreover the
condition

b.: If x1, . . . , xk ∈ X such that p(xi) is a maximal parabolic sub-
group for 1 ≤ i ≤ k, then there is at most one y ∈ p−1(p(x1) ∩
. . . ∩ p(xk)) with y � xi for all 1 ≤ i ≤ k.

Under these circumstances, we have a canonical isomorphism

(6) H∗(C∗(J•
X,p))[1] ∼= H̃∗(BX).

Moreover, let us assume that the differential on C∗(J•
X,p) was defined

using the order ≺ on ∆o. Let ξ = (x1 � x2 � . . . xk) be an unrefinable
chain in X, defining a reduced cohomology class [ξ] in degree k − 1 on
BX. Then x1 cannot be refined, hence it defines a cohomology class in

degree k for JX,p. Let αi be the unique element of ∆
p(xi+1)
o − ∆

p(xi)
o if

i < k and the unique element of ∆o−∆
p(xk)
o if i = k, and let ε ∈ {1;−1}

be the orientation with respect to ≺ of α1, . . . , αk. Then (6) maps [ξ]
to εxk.

Proof. Let us define a simplicial complex (Y,Σ) as follows. The set of
vertices Y is the set of x ∈ X sucht that p(x) is a standard maximal
parabolic subalgebra. A k-tuple (x1, . . . , xk) of vertices belongs to the
set Σ of simplices if there exists an x ∈ X with x � xk for all k. By
conditions a. and b. above, the reduced chain complex for computing
the cohomology of (Y,Σ) is C∗(J•

X,p)[1]. The proposition now follows
from the well known fact that the barycentric subdivision of a simplicial
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complex is the nerve of its poset of simplices, which in the case of (Y,Σ)
is X. �

7.4. Proof of theorem 9. We now prove the explicit formulas for the
Eisenstein cohomology which we announced earlier. We are considering
the group G = resK

QGLn for an imaginary quadratic field K.
To prove theorem 9, consider l ∈ Ln(K). If l(n) = 1, then Yl,P

is empty unless P = G, in which case it has precisely one element. It
follows that C∗(I•

l ) has a one-dimensional cohomology group in dimen-
sion zero, and no other cohomology. Also, XN,e,l is empty unless N = 1
and e = 0, in which case it consists of a single element. This proves
the theorem for those l with l(n) = 1. The case l(n) > 1 is excluded
by the condition (7.2.2). Therefore we suppose for the remaining part
of this proof that l(n) = 0.

We define the set Sl by

Sl = {(k, l) |2 ≤ k ≤ n, 1 ≤ l ≤ l(k)}

and define the function F : Sl → {1, 2, . . .} by F ((k, l)) = k. Since
l(n) = 0, the poset P̃n,Sl,F defined in the last subsection is not empty.
We have the map

pl : P̃n,Sl,F → P

from P̃n,Sl,F to the poset P of standard parabolic subgroups which
associates to the tuple (f, (M, i1, . . . , iM)) the parabolic subgroup of
type 0 < i1 < . . . < iM = n, i.e., the stabiliser of the standard flag of
subspaces of succesive dimension ik. The formula (7.3.5) now defines us
a functor J P̃n,Sl,F ,pl

from P to vector spaces whose homology is known

by proposition 7.3.1 and proposition 7.3.2. We will express I
P
l as an

“antisymmetrisation” of J P̃n,Sl,F
,pl

.

The product of the symmetric groups
∏n

k=2 Sl(k) acts on the set Sl by
permutation of the second entry of the pairs (k, l) which form Sl. This
permutation leaves F invariant, therefore it extends to a action of the
group

∏n
k=2 Sl(k) on the poset P̃n,Sl,F . This action leaves pl invariant,

therefore it extends to an action of
∏n

k=2 Sl(k) on the functor J P̃n,Sl,F ,pl
.

We want to consider the antisymmetrisation of J P̃n,Sl,F ,pl
with respect

to this action.
For each parabolic subgroup P, we have an injective map of sets

i : Yl,P → p−1
l (P)

which maps the element y ∈ Yl,P to the element

(y, (K, i1, . . . , iK)) ∈ Sl.
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By condition (7.2.3), this element really belongs to Sl. Consider an
element (f, (K, i1, . . . , iK)) of p−1(P). If there exist a k and 1 ≤ l1 <
l2 ≤ l(k), then exchanging (k, l1) and (k, l2) is an odd element of
∏n

k=2 Sl(k) which leaves (f, (K, i1, . . . , iK)) fixed. Therefore, the image
of (f, (K, i1, . . . , iK)) in the anisymmetrisation of J P̃n,Sl,F

,pl
vanishes.

Otherwise, the
∏n

k=2 Sl(k)-orbit of (f, (K, i1, . . . , iK)) contains an ele-
ment in the image of i, which is unique by (7.2.4). This identifies I

•
l

with the antisymmetrisation of J P̃n,Sl,F
,pl

.

By proposition 7.3.1 and proposition 7.3.2, the cohomology of J P̃n,Sl,F
,pl

is a graded vector space with a basis given by the sets Mn,Sl,F,e,k. A
permutation p in

∏n
k=2 Sl(k) acts on these sets by

π : (S1, . . . ,Sk) → (π(S1), . . . , π(Sk)),

and this action commutes with the action on the cohomology of J P̃n,Sl,F
,pl

.

We have the map

j : XN,e,l →Mn,Sl,F,e,N+1

which maps the collection X0, . . . , XN of subsets of {2, . . . , n} to the

disjoint partition Sl =
⋃N+1

j=1 Sj, where

Sj =
{

(k, l) ∈ Sl

∣

∣

∣
k ∈ Xj+1, and there

are precisely l − 1 elements i with 0 ≤ i < j and k ∈ Xi+1

}

.

If (S1, . . . , SN+1) ∈ Mn,Sl,F,e,N+1 and if there exist 2 ≤ k < n and
1 ≤ l1 < l2 ≤ l(k), then exchanging (k, l1) and (k, l2) is an odd element
of
∏n

k=2 Sl(k) which leaves (S1, . . . , SN+1) fixed. Therefore, the image
of the generator belonging to (S1, . . . , SN+1) vanishes in the antisym-
metriztion of the cohomology of J P̃n,Sl,F ,pl

. Otherwise, the
∏n

k=2 Sl(k)-

orbit of (S1, . . . , SN+1) contains a unique element in the image of j.
We have identified I

•
l with the antisymmetrisation of J P̃n,Sl,F

,pl
and

the right hand side of (7.2.10) with the antisymmetrisation of the ho-
mology of J P̃n,Sl,F ,pl

. This proves (7.2.10). By the remarks made before

the formulation of theorem 9, this also completes the computation of
the spherical subspace of H∗

c (G,C)I.
To get a result about the non-spherical vectors in the cohomology,

we have to investigate the cohomology of the functor

J̃
P

n,S,F = J P̃n,S,F ,pl
⊗ C∞(P(Af )\G(Af)),

where S is a finite set and F is a function from S to integers. Since
both the formulation and the proof of the result are straightforward but
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quite unpleasant,the result will be formulated precisely but the proof
will only be sketched. Let Qk(S) be the set of partitions

s : S =
k
⋃

l=1

Sl

into k disjoint pieces. For s ∈ Qk(S), let As,S,F be the set of pairs
(P, f) with the following properties:

• P is a standard parabolic subgroup, stabilising the standard
flag of subspaces of dimensions

0 = iP0 < iP1 < . . . < iP
dim aGP

= n.

• f is a monotonous map from {1, . . . , k} to {1, . . . , dim aG
P} such

that

if(j) − if(j)−1 = max
s∈Sj

F (s).

• If j ∈ {1, . . . , dim aG
P} − f({1, . . . , k}), then ij − ij−1 = 1.

Note that the rank of P is uniquely determined, it is equal to

d(s) = dim aG
P = k + n−

k
∑

j=1

#(Sk).

For (P, f) ∈ As,S,F , let xP ,f ∈ Pn,S,F be the element
(

f♠, (dim aG
P , i1, . . . , idim aGP

)
)

,

where f♠ is equal to f(j) on Sj. This is a minimal element of Pn,S,F

which lies over P. We get a homomorphism

as :
⊕

(P ,f)∈As

C∞(P(Af)\G(Af )) → Hd(s)
(

C∗(Ĩ
•

n,S,F )
)

(fP ,f)(P ,f∈As) →
∑

(P ,f)∈As

fP ,f ⊗ xP ,f.

If Q is a parabolic subgroup of rank > d(s), let B†
Q,s be the set of all

pairs
(

(P, f), (P̃, f̃)
)

with the following properties:

• We have (P, f), (P̃, f̃) ∈ As and Q ⊃ P, Q ⊃ P̃ .
• Let 0 = iQ0 < ıQ1 < . . . < iQ

dim aGQ
= n be the dimension of the

spaces in the standard flag defining Q. For each j ∈ {1, . . . , k},
there exists an l with

iQl−1 < iPf(j) ≤ iQl
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and
iQl−1 < iP̃

f̃(j)
≤ iQl .

In other words, the intervals [iPf(j)−1 +1; iPf(j)] and [iP̃f(j)−1 +1; iP̃f(j)]

are contained in the same interval of the partition iQm.
• We have

∑

1≤j≤k

iQ
l−1<iP

f(j)
≤iQ

l

#Sj = iQl − iQl−1 − 1.

An empty sum is supposed to be zero. Note that by the previous
assumption, the sum on the left hand side of the inequality is
also equal to

∑

1≤j≤k

iQ
l−1<iP̃

f̃(j)
≤iQ

l

#Sj.

We have the homomorphism

b†
s :

⊕

Q∈ dim aGQ>d(s)

⊕

((P ,f),(P̃ ,̃f))∈B
†
Q,s

→
⊕

(P ,f)∈As

C∞(P(Af)\G(Af ))

which for
(

(P, f), (P̃, f̃)
)

maps f ∈ C∞(Q(Af )\G(Af)) to f ⊗ (P, f) −

f ⊗ (P̃, f̃). Similarly, let C†
Q,s be the set of all (P, f) ∈ As such that

P ⊂ Q and such that there exists an l with

iQl − iQl−1 − 1 >
∑

1≤j≤k

iQ
l−1<iP

f(j)
≤iQ

l

#Sj.

Let c†s be the obvious map
⊕

Q∈ dim aGQ>d(s)

⊕

(P ,f)∈C
†
Q,s

C∞(Q(Af )\G(Af)) →
⊕

(P ,f)∈As

C∞(P(Af )\G(Af)).

Theorem 10. The kernel of ãs is equal to the image of b†
s ⊕ c†s, and

we have an isomorphism of G(Af )-modules

(1) H∗
(

C∗(J̃n,S,F )
)

∼=
⊕

k

⊕

s∈Qk(S)

coker(b†
s ⊕ c†s)[−d(s)].

To prove the theorem, one filters ĨP
n,S,f by the subspaces

⊕

R∈P

R⊆P
dim aG

R
≤k

C∞(R(Af )\G(Af)) ⊗ J P̃n,Sl,F
,pl
,
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defines a similar filtration on the sources of as, b†
s and c†s, and derives the

theorem for the grading from proposition 7.3.1 and proposition 7.3.2.
To compute H∗(G,C)I, recall that I

P
l is the antisymmetrization of

J̃n,Sl,F with respect to the group
∏n

k=2 Sl(k) and note that (1) identifies

the action of this group on the cohomology of J̃n,Sl,F with the action on
the right hand side of (1) derived by permutation of the elements of the
set Qk(Sl). If therefore Qmon

k (Sl) is the set of all s = (S1, . . . ,Sk) ∈
Qk(Sl) such that if 1 ≤ l1 < l2 < l(m) and (m, l1) ∈ Si1 and (m, l2) ∈
Si2 then i1 < i2, then we get

Theorem 11. We have a canonical isomorphism

(2) H∗(G,C)I ∼=
⊕

l∈Ln(K)

⊕

k

⊕

s∈Qmon
k

(Sl)

coker(b†
s ⊕ c†s)[−d(s) − deg l].

7.5. The case SLn(Z). Here we consider the case G = SLn. We want
to explicitly compute the space of spherical vectors in H∗(G,C)I and
to compare the result with computations by C. Soulé and J. Schwermer
for n = 3 and by R. Lee and R. H. Szczarba for n = 4.

We start with an explicit description of the spaces Ȟ(G)P∗Kf
. Recall

that the minimal parabolic subgroup Po is the stabiliser of a standard
full flag V1 ⊂ V2 ⊂ . . . ⊂ Vn = Kn. Let P be the stabiliser of the subflag
Vi1 ⊂ Vi2 ⊂ . . . ⊂ ViK for some sequence 0 < i1 < i2 < . . . < iK = n.
Then

MP =
K
∏

l=1

SLil−il−1
.

By proposition 7.1.1, the cohomology of X
(c)
MP

is an exterior algebra
which, for 1 ≤ l ≤ K, has the following generators:

(1)
λ̃

(l)
3 , λ̃

(l)
5 , . . . , λ̃

(l)
n if il − il−1 is odd

λ̃
(l)
3 , λ̃

(l)
5 , . . . , λ̃

(l)
n−1, ε

(l) if il − il−1 is even.

The group

π0

(

SO(n,R) ∩ LP(R)
)

∼=

{

σ1, . . . , σK ∈ {±1}

∣

∣

∣

∣

K
∏

l=1

σl = 1

}

acts on this cohomology algebra, and only the invariants will contribute

to Ȟ(G)P∗Kf
. Using the fact that λ̃

(l)
i is obtained by pull-back with

respect to (7.1.3), one easily sees that the classes λ̃
(l)
i are π0

(

SO(n,R)∩

LP(R)
)

-invariant. However, conjugation by an element of O(n,R) −
SO(n,R) changes the orientation of the canonical n-dimensional real

bundle on SU(n,R)/SO(n,R), hence
(

σi

)K

i=1
∈ π0

(

SO(n,R) ∩ LP(R)
)
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maps ε(l) to σlε
(l). This means that a monomial µ in the generators (1)

is π0

(

SO(n,R) ∩ LP(R)
)

-invariant if and only if one of the following
cases occurs:

• µ contains no Euler class ε(l).
• The numbers il − il−1 are all even, and µ contains all Euler

classes ε(l).

It follows that

(2) Ȟ(G)P∗Kf
=

{

M
∗P
(n) n odd

M
∗P
(n) ⊕

eM
∗P
(n) n even,

where

M
∗P
(n) =

{

monomials in the λ̃
(l)
i

}

and

e
M

∗P
(n) =







∏K
l=1 ε

(l) ·

{

monomials in the λ̃
(l)
i

}

if all the numbers il,
1 ≤ l ≤ K, are even.

{0} otherwise.

The explcit formulas for the restriction of cohomology classes in propo-
sition 7.1.1 show that for n even the decomposition (2) is functorial in
P.

We first give an explicit formula for the first summand in (2). Let

Odd≤n : =

{

{3, . . . , n} if n is odd
{3, . . . , n− 1} if n is even.

Let Ln(Q) be the set of functions

l : Odd≤n → {0, 1, . . .}

satisfying the condition

(3)
∞
∑

j=1

max {k ∈ Odd≤n |l(k) ≥ j } ≤ n.

If the parabolic subgroup P corresponds to 0 < i1 < . . . < iK = n, let
Yl,P be defined in the same way as in the case of imaginary quadratic
fiels, i.e., as the set of functions

y : {(k, l) |k ∈ Odd≤n, 1 ≤ l ≤ l(k)} → {1, . . . , k}

with the properties (7.2.3) and (7.2.4). For P̃ ⊇ P, y ∈ Yl,P , and
ỹ ∈ Yl,P̃ let the relation ỹ � y be defined by (7.2.5). Then the vector
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space I
P
l with base Yl,P is functorial in P by formula (7.2.6), and there

is a functor isomorphism

(4) M
∗P
(n)

∼=
⊕

l∈Ln(Q)

I
P
l [− deg l]

which maps y to

∧

k∈Odd≤n

l(k)
∧

l=1

λ̃
y(k,l)
k .

The degree deg l is defined in the same way as for imaginary quadratic
fields, by (7.2.7).

Let
Sl = {(k, l) |k ∈ Odd≤n, 1 ≤ l ≤ l(k)} ,

and let F (k, l) = k. As in the case of imaginary quadratic fields, I
•
l can

be identified with the antisymmetrisation of J P̃n,Sl,F
,pl

with respect to

the product of symmetric groups
∏

k∈Odd≤n
Sl(k). As a result, we get a

description for the first summand in (2) which is similar to (7.2.10).

Theorem 12. For l ∈ Ln(Q), e ∈ {0, 1}, and N ≤ 0, let XN,e,l be the
set of ordered N + 1-tuples x = (X0, . . . , XN) of subsets of {Odd≤n}
with the following properties:

• Each number k ∈ Odd≤n belongs to precisely l(k) of the sets Xi.
• We have

N
∑

i=0

max #{Xi} = n− e.

If l = 0, we put XN,e,l = ∅. Then for each x ∈ XN,e,l, H
∗(C∗(I•

l )) has a
generator {x} in degree N + e, and we have

H i

(

C∗
(

I
•
l

)

)

=

1
⊕

e=0

⊕

x∈Xi−e,e,l

C · {x}.

Consequently, the cohomology of the first summand in (2) is given by

Hj

(

C∗
(

M
∗P
(n)

)

)

∼=
⊕

l∈Ln(K)

1
⊕

e=0

⊕

x∈Xj−e−deg l

C · {x}.

These cohomology classes are given by formulas similar to (7.2.11) and

(7.2.12), with λ
(i)
j replaced by λ̃

(i)
j .

If n is odd, this is the only summand in (2), and the computation of

H∗
c (G,C)

Kf

I is complete in this case. For instance, if n = 3, the only
possible l are l(3) = 1 or l(3) = 0. In the second case, the XN,e,l are
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empty by definition. In the first case, the only element of the sets XN,e,l

is
{

{2}
}

∈ X0,0,l, which gives us the volume form in degree 5. This
compares well to the result of Soulé [Sou78, theorem 4], which implies
that H∗(SL3(Z),C) vanishes in positive dimension. In particular, there
are no harmonic cusp forms for SL3(Z).

If n is even, then we still have to compute the cohomology of the
second summand eM

∗P
(n) in (2). Let eLn(Q) be the set of functions

l : Odd≤n−1 → {0, 1, . . .}

satisfying the condition

(5)

∞
∑

j=1

(

1 + max {k ∈ Odd≤n−1 |l(k) ≥ j }

)

≤ n.

If the parabolic subgroup P corresponds to 0 < i1 < . . . < iK = n, let
eYl,P be empty of one of the numbers il is odd, and be equal to the set
of functions

y : {(k, l) |k ∈ Odd≤n−1, 1 ≤ l ≤ l(k)} → {1, . . . , k}

with the properties (7.2.3) and (7.2.4) if all numbers ik are even. The
vector space eI

P
l with base eYl,P is functorial in P by by formula (7.2.6),

where the relation � is defined by (7.2.5), and there is a functor iso-
morphism

(6) e
M

∗P
(n)

∼=
⊕

l∈eLn(Q)

e
I
P
l [−n− deg l]

which maps y to
K
∧

j=1

ε(j) ∧

l(k)
∧

l=1

λ̃
y(k,l)
k .

Let
eSl = {(k, l) |k ∈ Odd≤n−1, 1 ≤ l ≤ l(k)} ,

and let F (k, l) = k. Recall the poset P̃n,eSl,F consisting of partitions
of n which have for each s ∈ eSl a piece of length ≥ F (s) marked, and
recall the projection

pl : P̃n,eSl,F → P

which sends a partition of n to the corresponding parabolic subgroup
of GLn. Let P̂n,l ⊂ P̃n,eSl,F be the subposet of all partitions of n into
even pieces, together with a map which for each s ∈ eSl marks a piece
of length ≥ F (s), and let p̂l be the restriction of pl to P̂n,l. Then e

I
•
l

can be identified with the antisymmetrisation of J
•
P̂n,l,p̂l

with respect
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to the product of symmetric groups
∏

k∈Odd≤n−1
Sl(k). Proposition 7.3.2

can be applied to J
•
P̃n,eSl,F ,pl

and gives us an isomorphism

H∗
(

C∗(J•
P̂n,l,p̂l

)
)

∼= H̃∗(BP̂n,l).

On the other side, the homotopy type of the poset

P̂n,l
∼= P̃n

2
,eSl,

1+F
2

is given by proposition 7.3.1. We arrive at the following explicit de-
scription of the second summand in (2).

Theorem 13. If n = 2, we have

H∗

(

C∗
(

e
M

∗•
(n)

)

)

∼= C[2].

For n > 2 and l ∈ eLn(Q), e ∈ {0, 1}, and N ≤ 0, let eXN,e,l be the set
of ordered N +1-tuples x = (X0, . . . , XN) of subsets of {Odd≤n−1} with
the following properties:

• Each number k ∈ Odd≤n−1 belongs to precisely l(k) of the sets
Xi.

• We have
N
∑

i=0

(1 + max{Xi}) = n− 2e.

If l = 0, we put eXN,e,l = ∅. Then for each x ∈ eXN,e,l, H
∗(C∗(eI

•
l )) has

a generator {x} in degree N + e, and we have

H i

(

C∗
(

e
I
•
l

)

)

=

1
⊕

e=0

⊕

x∈eXi−e,e,l

C · {x}.

Consequently, the cohomology of the second summand in (2) is given
by

Hj

(

C∗
(

e
M

∗•
(n)

)

)

∼=
⊕

l∈eLn(K)

1
⊕

e=0

⊕

x∈eXj−e−n−deg l

C · {x}.

Moreover, let the ordering ≺ on the roots which was used to define the
complex C∗(F •) be

x1 − x2 ≺ x2 − x3 ≺ . . . ≺ xn−1 − xn.
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Then for x = (X0, . . . , XN) ∈ eXN,0,l a representative of the cohomology
class {x} is given by the element

(7)

N
∧

i=0

(

ε(i) ∧

#(Xi)
∧

j=2

j∈Xi

λ̃
(i)
j

)

in the cohomology of X
(c)
MP

, where P ∈ P is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < 1 + #(X0) < 2 + #(X0) + #(X1) < . . .

. . . < N − 1 +

N−2
∑

i=0

#(Xi) < N +

N−1
∑

i=0

#(Xi) = n.

If x = (X0, . . . , XN) ∈ eXN,1,l and if 0 ≤ k ≤ N + 1, then a representa-
tive of the cohomology class {x} is given by the element

(8) (−1)k
N−1
∧

i=0

ε(i)
k−1
∧

i=0

#(Xi)
∧

j=2

j∈Xi

λ̃
(i)
j ∧

N
∧

i=k

#(Xi)
∧

j=2

j∈Xi

λ̃
(i+1)
j

in the cohomology of X
(c)
MP

, where P ∈ P is the stabiliser of the stan-
dard flag of vector spaces with dimensions

0 < 1 + #(X0) < 2 + #(X0) + #(X1) < . . . < k +
k−1
∑

i=0

#(Xi) <

< k + 2 +

k−1
∑

i=0

#(Xi) < . . .N + 2 +

N−2
∑

i=1

#(Xi) < 1 +

n−1
∑

i=1

#(Xi) = n.

In the case n = 4, we have the vector degree 6 in the first summand in
(2) defined by l(3) = 1 and x =

{

{3}
}

∈ X0,1,l. In the second summand,

we have the cohomology class defined by l(3) = 1 and x =
{

{3}
}

∈
eX0,0,l. It is the volume form in degree 9. These are all spherical
vectors in the cohomology with compact support, since H i

(

SL4(Z),Z
)

is of dimension one if i ∈ {0; 3} and zero otherwise, by the computation
of Lee and Szczarba [LS78, Theorem 2]. Again it turns out that there
are no harmonic cusp forms modulo SL4(Z). One may ask if this is
true for all the groups SLn(Z).

It is also possible to give a full computation of H∗(G,C) for G = SLn.
It has a decomposition similar to (2) into a summand containing no
Euler classes and, for n even, a summand containing the Euler classes.
The first of these summands is given by (7.4.2). The second summand
is similar to (7.4.2), however, the definition of the summands in (7.4.2)
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has to be modified by allowing only parabolic subgroups corresponding
to decompositions of n into even pieces. It is also possible to generalise
this to SLn over arbitrary number fields. The only difference to the
cases treated here is that the cohomology with compact support of
the Levi components has addtional generators in dimension one, which
complicate the formulation of the result even more.

Selective Index of Notation

This is a selective index of the mathematical notations which are most
frequently used. They are listed according to the order in which they
are introduced in the text.

I∗G(R),K∞
section 1, p. 2

G(c)(R), X
(c)
G

section 1, p. 2

G, K, Kf , K∞, K
o
∞, Po, LP ,

MP , NP , Lo, Lo, No, AG, MG, θ
section 2, pp. 5–6

G(A), G(A)S, G(A)f , KS,
AP(R)+, AG(R)+ section 2, p. 6

g, U(g), Z(g) section 2, p. 6

aP , ao, aQ
P , ǎP , ǎo, ǎQ

P section 2, p. 6

∆o, ∆P
o , ∆P ∆Q

P , ρo, ρP , ρQP section 2, pp. 6–7

(g, K)-module, (Af )-module,
C∞

c (G(Af ,K)), C∞(P(A)\G(A))
section 2, p. 7

H∗(G,C), H∗
c (G,C), HS, IS,

H∗(G,C), H∗
c (G,C)I

section 3, (1), pp. 7–8

PG, F
P⊆Q, F P⊆Q, C∗(F •),

C∗(F •), C
∗(F •

P), C∗(F P
• ),

C∗(F •
•)

section 3, (2), (3),
pp. 8–9

A(G,Ko
∞,R), A(G,Ko

∞,C) section 3, pp. 9–10

V
G(Af )

P(Af ), V̌
G(Af )

P(Af ) section 3, (5), p. 10

B(Q,R)•, B(Q,R)•
section 4, lemma 1,
pp. 12–13

C(G,R,AS)•
section 4, theorem 3,
p. 13

V
G(AS)
P(AS), V̌

G(AS)
P(AS), StG(AS), ŠtG(AS) section 4, (2), p. 15

D(G)P
section 4, (3),
theorem 4, pp. 15–16
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E(R)•, det
section 4, (4),
lemma 3, p. 17

J , AJ section 5, pp. 17–18

AJ ,I section 5, (3), p. 18

HP(g) section 5, (4), p. 19

EG
P(φ, λ), qQP (λ), τQP

section 5, (5),
pp. 19–20

S(ǎG
P), ΞG

P

section 5, (9), (10),
pp. 20–21

F (G)•
section 5,
proposition 1, p. 27

G(G)••

section 5,
proposition 2,
pp. 28–29

pQ
section 6, (3),
pp. 29–30

H(G)Q
∗ section 6, (4), (5),

proposition 1, p. 30

τ
Q(Af )

P(Af ) section 6, (8), p. 31

iQ̃⊇Q section 6, (9), p. 31

Pn,S,F
subsection 7.3,
pp. 44–45

P̃n,S,F , Mn,S,F,e,k subsection 7.3, p. 45
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Birkhäuser, 1991.

[Sta79] Ross E. Staffeldt. Reduction theory and K3 of the Gaussian integers.
Duke Mathematical Journal, 46(4):773–798, December 1979.

[Vog81] David A. Vogan. Representations of real reductive Lie groups, volume 15
of Progress in Mathematics. Birkhäuser, 1981.
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